1
|
Shalaby AS, Eid HH, El-Shiekh RA, Mohamed OG, Tripathi A, Al-Karmalawy AA, Sleem AA, Morsy FA, Ibrahim KM, Tadros SH, Youssef FS. Taming Food-Drug Interaction Risk: Potential Inhibitory Effects of Citrus Juices on Cytochrome Liver Enzymes Can Safeguard the Liver from Overdose Paracetamol-Induced Hepatotoxicity. ACS OMEGA 2023; 8:26444-26457. [PMID: 37521669 PMCID: PMC10373174 DOI: 10.1021/acsomega.3c03100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Paracetamol overdose is the leading cause of drug-induced hepatotoxicity worldwide. Because of N-acetyl cysteine's limited therapeutic efficacy and safety, searching for alternative therapeutic substitutes is necessary. This study investigated four citrus juices: Citrus sinensis L. Osbeck var. Pineapple (pineapple sweet orange), Citrus reticulata Blanco × Citrus sinensis L. Osbeck (Murcott mandarin), Citrus paradisi Macfadyen var. Ruby Red (red grapefruit), and Fortunella margarita Swingle (oval kumquat) to improve the herbal therapy against paracetamol-induced liver toxicity. UHPLC-QTOF-MS/MS profiling of the investigated samples resulted in the identification of about 40 metabolites belonging to different phytochemical classes. Phenolic compounds were the most abundant, with the total content ranked from 609.18 to 1093.26 μg gallic acid equivalent (GAE)/mL juice. The multivariate data analysis revealed that phloretin 3',5'-di-C-glucoside, narirutin, naringin, hesperidin, 2-O-rhamnosyl-swertisin, fortunellin (acacetin-7-O-neohesperidoside), sinensetin, nobiletin, and tangeretin represented the crucial discriminatory metabolites that segregated the analyzed samples. Nevertheless, the antioxidant activity of the samples was 1135.91-2913.92 μM Trolox eq/mL juice, 718.95-3749.47 μM Trolox eq/mL juice, and 2304.74-4390.32 μM Trolox eq/mL juice, as revealed from 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid, ferric-reducing antioxidant power, and oxygen radical absorbance capacity, respectively. The in vivo paracetamol-induced hepatotoxicity model in rats was established and assessed by measuring the levels of hepatic enzymes and antioxidant biomarkers. Interestingly, the concomitant administration of citrus juices with a toxic dose of paracetamol effectively recovered the liver injury, as confirmed by normal sections of hepatocytes. This action could be due to the interactions between the major identified metabolites (hesperidin, hesperetin, phloretin 3',5'-di-C-glucoside, fortunellin, poncirin, nobiletin, apigenin-6,8-digalactoside, 6',7'-dihydroxybergamottin, naringenin, and naringin) and cytochrome P450 isoforms (CYP3A4, CYP2E1, and CYP1A2), as revealed from the molecular docking study. The most promising compounds in the three docking processes were hesperidin, fortunellin, poncirin, and naringin. Finally, a desirable food-drug interaction was achieved in our research to overcome paracetamol overdose-induced hepatotoxicity.
Collapse
Affiliation(s)
- Aya S. Shalaby
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Hanaa H. Eid
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Riham A. El-Shiekh
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Osama G. Mohamed
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Natural
Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashootosh Tripathi
- Natural
Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Amany A. Sleem
- Pharmacology
Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Fatma Adly Morsy
- Pathology
Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Khaled M. Ibrahim
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Soad H. Tadros
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Fadia S. Youssef
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, Abbasia, Cairo 11566, Egypt
| |
Collapse
|
2
|
Moretti A, Liguori S, Paoletta M, Migliaccio S, Toro G, Gimigliano F, Iolascon G. Bone fragility during the COVID-19 pandemic: the role of macro- and micronutrients. Ther Adv Musculoskelet Dis 2023; 15:1759720X231158200. [PMID: 36937822 PMCID: PMC10015293 DOI: 10.1177/1759720x231158200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/01/2023] [Indexed: 03/18/2023] Open
Abstract
Bone fragility is the susceptibility to fracture due to poor bone strength. This condition is usually associated with aging, comorbidities, disability, poor quality of life, and increased mortality. International guidelines for the management of patients with bone fragility include a nutritional approach, mainly aiming at optimal protein, calcium, and vitamin D intakes. Several biomechanical features of the skeleton, such as bone mineral density (BMD), trabecular and cortical microarchitecture, seem to be positively influenced by micro- and macronutrient intake. Patients with major fragility fractures are usually poor consumers of dairy products, fruit, and vegetables as well as of nutrients modulating gut microbiota. The COVID-19 pandemic has further aggravated the health status of patients with skeletal fragility, also in terms of unhealthy dietary patterns that might adversely affect bone health. In this narrative review, we discuss the role of macro- and micronutrients in patients with bone fragility during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Sara Liguori
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Marco Paoletta
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health
Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Francesca Gimigliano
- Department of Physical and Mental Health and
Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties
and Dentistry, University of Campania “Luigi Vanvitelli”, Naples,
Italy
| |
Collapse
|
3
|
Anand U, Adelodun B, Cabreros C, Kumar P, Suresh S, Dey A, Ballesteros F, Bontempi E. Occurrence, transformation, bioaccumulation, risk and analysis of pharmaceutical and personal care products from wastewater: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:3883-3904. [PMID: 35996725 PMCID: PMC9385088 DOI: 10.1007/s10311-022-01498-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/22/2022] [Indexed: 05/02/2023]
Abstract
Almost all aspects of society from food security to disease control and prevention have benefited from pharmaceutical and personal care products, yet these products are a major source of contamination that ends up in wastewater and ecosystems. This issue has been sharply accentuated during the coronavirus disease pandemic 2019 (COVID-19) due to the higher use of disinfectants and other products. Here we review pharmaceutical and personal care products with focus on their occurrence in the environment, detection, risk, and removal. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01498-7.
Collapse
Affiliation(s)
- Uttpal Anand
- Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Bashir Adelodun
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Carlo Cabreros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, Uttarakhand 249404 India
| | - S. Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462 003 India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
4
|
Moosazadeh M, Ifaei P, Tayerani Charmchi AS, Asadi S, Yoo C. A machine learning-driven spatio-temporal vulnerability appraisal based on socio-economic data for COVID-19 impact prevention in the U.S. counties. SUSTAINABLE CITIES AND SOCIETY 2022; 83:103990. [PMID: 35692599 PMCID: PMC9167466 DOI: 10.1016/j.scs.2022.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 05/02/2023]
Abstract
A mature and hybrid machine-learning model is verified by mature empirical analysis to measure county-level COVID-19 vulnerability and track the impact of the imposition of pandemic control policies in the U.S. A total of 30 county-level social, economic, and medical variables and a timeline of the imposed policies constitutes a COVID-19 database. A hybrid feature-selection model composed of four machine-learning algorithms is developed to emphasize the regional impact of community features on the case fatality rate (CFR). A COVID-19 vulnerability index (COVULin) is proposed to measure the county's vulnerability, the effects of model's parameters on mortality, and the efficiency of control policies. The results showed that the dense counties in which minority groups represent more than 45% of the population and those with poverty rates greater than 24% were the most vulnerable counties during the first and the last pandemic peaks, respectively. Highly-correlated CFR and COVULin scores indicated a close agreement between the model outcomes and COVID-19 impacts. Counties with higher poverty and uninsured rates were the most resistant to government intervention. It is anticipated that the proposed model can play an essential role in identifying vulnerable communities and help reduce damages during long-term alike disasters.
Collapse
Affiliation(s)
- Mohammad Moosazadeh
- Department of Environmental Science and Engineering, Center for Environmental Studies, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, South Korea
| | - Pouya Ifaei
- Department of Environmental Science and Engineering, Center for Environmental Studies, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, South Korea
| | - Amir Saman Tayerani Charmchi
- Department of Environmental Science and Engineering, Center for Environmental Studies, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, South Korea
| | - Somayeh Asadi
- Department of Architectural Engineering, Pennsylvania State University, 213 Engineering Unit, University Park, PA 16802, United States
| | - ChangKyoo Yoo
- Department of Environmental Science and Engineering, Center for Environmental Studies, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, South Korea
| |
Collapse
|
5
|
Ibrahimagić OĆ, Vujadinović A, Ercegović Z, Kunić S, Smajlović D, Dostović Z. Retraction Note to: Comment on an article: "Osteoporosis in the age of COVID-19 patients". Osteoporos Int 2021; 32:1909. [PMID: 34259885 PMCID: PMC8277984 DOI: 10.1007/s00198-021-06031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- O Ć Ibrahimagić
- Department of Neurology, University Clinical Centre Tuzla, 75000, Tuzla, Bosnia and Herzegovina
| | - A Vujadinović
- Department of Orthopaedics and Traumatology, University Clinical Centre Tuzla, 75000, Tuzla, Bosnia and Herzegovina
| | - Z Ercegović
- Department of Neurosurgery, University Clinical Centre Tuzla, 75000, Tuzla, Bosnia and Herzegovina
| | - S Kunić
- Department of Neurology, Primary Health Care Centre Tuzla, Albina i Franje Herljevića 1, 75000, Tuzla, Bosnia and Herzegovina.
| | - Dž Smajlović
- Department of Neurology, University Clinical Centre Tuzla, 75000, Tuzla, Bosnia and Herzegovina
| | - Z Dostović
- Department of Neurology, University Clinical Centre Tuzla, 75000, Tuzla, Bosnia and Herzegovina
| |
Collapse
|