1
|
Mobley KB, Barton HJ, Ellmén M, Ruokolainen A, Guttorm O, Pieski H, Orell P, Erkinaro J, Primmer CR. Sex-specific overdominance at the maturation vgll3 gene for reproductive fitness in wild Atlantic salmon. Mol Ecol 2024; 33:e17435. [PMID: 38877757 DOI: 10.1111/mec.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/11/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Linking reproductive fitness with adaptive traits at the genomic level can shed light on the mechanisms that produce and maintain sex-specific selection. Here, we construct a multigenerational pedigree to investigate sex-specific selection on a maturation gene, vgll3, in a wild Atlantic salmon population. The vgll3 locus is responsible for ~40% of the variation in maturation (sea age at first reproduction). Genetic parentage analysis was conducted on 18,265 juveniles (parr) and 685 adults collected at the same spawning ground over eight consecutive years. A high proportion of females (26%) were iteroparous and reproduced two to four times in their lifetime. A smaller proportion of males (9%) spawned at least twice in their lifetime. Sex-specific patterns of reproductive fitness were related to vgll3 genotype. Females showed a pattern of overdominance where vgll3*EL genotypes had three-fold more total offspring than homozygous females. In contrast, males demonstrated that late-maturing vgll3*LL individuals had two-fold more offspring than either vgll3*EE or vgll3*EL males. Taken together, these data suggest that balancing selection in females contributes to the maintenance of variation at this locus via increased fitness of iteroparous vgll3*EL females. This study demonstrates the utility of multigenerational pedigrees for uncovering complex patterns of reproduction, sex-specific selection and the maintenance of genetic variation.
Collapse
Affiliation(s)
- Kenyon B Mobley
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Genetics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Henry J Barton
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mikko Ellmén
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Annukka Ruokolainen
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Olavi Guttorm
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hans Pieski
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Panu Orell
- Natural Resources Institute Finland (Luke), Oulu, Finland
| | | | - Craig R Primmer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute for Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Koch IJ, Narum SR. An evaluation of the potential factors affecting lifetime reproductive success in salmonids. Evol Appl 2021; 14:1929-1957. [PMID: 34429740 PMCID: PMC8372082 DOI: 10.1111/eva.13263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/24/2023] Open
Abstract
Lifetime reproductive success (LRS), the number of offspring produced over an organism's lifetime, is a fundamental component of Darwinian fitness. For taxa such as salmonids with multiple species of conservation concern, understanding the factors affecting LRS is critical for the development and implementation of successful conservation management practices. Here, we reviewed the published literature to synthesize factors affecting LRS in salmonids including significant effects of hatchery rearing, life history, and phenotypic variation, and behavioral and spawning interactions. Additionally, we found that LRS is affected by competitive behavior on the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our review of existing literature revealed limitations of LRS studies, and we emphasize the following areas that warrant further attention in future research: (1) expanding the range of studies assessing LRS across different life-history strategies, specifically accounting for distinct reproductive and migratory phenotypes; (2) broadening the variety of species represented in salmonid fitness studies; (3) constructing multigenerational pedigrees to track long-term fitness effects; (4) conducting LRS studies that investigate the effects of aquatic stressors, such as anthropogenic effects, pathogens, environmental factors in both freshwater and marine environments, and assessing overall body condition, and (5) utilizing appropriate statistical approaches to determine the factors that explain the greatest variation in fitness and providing information regarding biological significance, power limitations, and potential sources of error in salmonid parentage studies. Overall, this review emphasizes that studies of LRS have profoundly advanced scientific understanding of salmonid fitness, but substantial challenges need to be overcome to assist with long-term recovery of these keystone species in aquatic ecosystems.
Collapse
Affiliation(s)
- Ilana J. Koch
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| |
Collapse
|
3
|
Šmejkal M, Bartoň D, Brabec M, Sajdlová Z, Souza AT, Moraes KR, Soukalová K, Blabolil P, Vejřík L, Kubečka J. Climbing up the ladder: male reproductive behaviour changes with age in a long-lived fish. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02961-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
High reproductive performance is the key attribute of male fitness, especially due to the high reproductive skew among the males of most animal species. Males of long-lived iteroparous species have opportunities to improve upon their previous reproductive attempts with increasing age. We collected individual-specific reproductive behaviour and age data on a cyprinid fish, the asp (Leuciscus aspius), from 2015 to 2019. We tested whether males changed their performance over time using a unique dataset where individual performance was recorded yearly with passive telemetry. Individual fish behaviour was tracked from one to five reproductive seasons at least a year after the tagging. Fish were scored by measures of quality (first arrival time, number of visits and time spent in the reproductive grounds, and encountered proportion of males to all adult fish). In general, fish improved in the first three metrics with age, suggesting a shift towards behaviours likely to enhance reproductive success as individuals aged. A larger size at tagging was predictive of earlier fish arrival on the spawning ground in subsequent years. Our study therefore demonstrates the importance of age as a factor when considering the potential reproductive success of long-lived fish species.
Significance statement
High reproductive performance is the key attribute of male fitness. Males of long-lived species reproducing multiple times in their life have opportunities to improve upon their previous reproductive performance with increasing age. In this 5-year study, we tracked a large cyprinid fish with telemetry systems during their reproduction. We investigated the age-related behavioural changes in males and demonstrated the improvement of male reproductive timing and length of stay with potential repercussions for male’s reproductive output. We emphasize the importance of old and experienced individuals among the fish population, which are often targeted and selectively removed from the human-managed waters.
Collapse
|
4
|
Rahman MM, Biswas R, Gazi L, Arafat ST, Rahman MM, Asaduzzaman M, Rahman SM, Ahsan MN. Annually twice induced spawnings provide multiple benefits: Experimental evidence from an Indian major carp (
Catla catla
, Hamilton 1822). AQUACULTURE RESEARCH 2020; 51:2275-2290. [DOI: 10.1111/are.14572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 09/27/2023]
Affiliation(s)
- Md. Moshiur Rahman
- Tokyo University of Marine Science and Technology Tokyo Japan
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Ripon Biswas
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Litan Gazi
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Shaikh Tareq Arafat
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Md. Mostafizur Rahman
- Department of Disaster and Human Security Management Bangladesh University of Professionals Dhaka Bangladesh
| | - Md. Asaduzzaman
- Department of Marine Bioresource Science Chattogram Veterinary and Animal Sciences University Chittagong Bangladesh
| | - Sheikh Mustafizur Rahman
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
- Fish Resources Research Center King Faisal University Hofuf Saudi Arabia
| | - Md. Nazmul Ahsan
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| |
Collapse
|
5
|
Tamario C, Sunde J, Petersson E, Tibblin P, Forsman A. Ecological and Evolutionary Consequences of Environmental Change and Management Actions for Migrating Fish. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00271] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Janowitz‐Koch I, Rabe C, Kinzer R, Nelson D, Hess MA, Narum SR. Long-term evaluation of fitness and demographic effects of a Chinook Salmon supplementation program. Evol Appl 2019; 12:456-469. [PMID: 30828367 PMCID: PMC6383734 DOI: 10.1111/eva.12725] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023] Open
Abstract
While the goal of supplementation programs is to provide positive, population-level effects for species of conservation concern, these programs can also present an inherent fitness risk when captive-born individuals are fully integrated into the natural population. In order to evaluate the long-term effects of a supplementation program and estimate the demographic and phenotypic factors influencing the fitness of a threatened population of Chinook Salmon (Oncorhynchus tshawytscha), we genotyped tissue samples spanning a 19-year period (1998-2016) to generate pedigrees from adult fish returning to Johnson Creek, Idaho, USA. We expanded upon previous estimates of relative reproductive success (RRS) to include grandparentage analyses and used generalized linear models to determine whether origin (hatchery or natural) or phenotypic traits (timing of arrival to spawning grounds, body length, and age) significantly predicted reproductive success (RS) across multiple years. Our results provide evidence that this supplementation program with 100% natural-origin broodstock provided a long-term demographic boost to the population (mean of 4.56 times in the first generation and mean of 2.52 times in the second generation). Overall, when spawning in nature, hatchery-origin fish demonstrated a trend toward lower RS compared to natural-origin fish (p < 0.05). However, when hatchery-origin fish successfully spawned with natural-origin fish, they had similar RS compared to natural by natural crosses (first-generation mean hatchery by natural cross RRS = 1.11 females, 1.13 males; second-generation mean hatchery by natural cross RRS = 1.03 females, 1.08 males). While origin, return year, and body length were significant predictors of fitness for both males and females (p < 0.05), return day was significant for males but not females (p > 0.05). These results indicate that supplementation programs that reduce the potential for genetic adaptation to captivity can be effective at increasing population abundance while limiting long-term fitness effects on wild populations.
Collapse
Affiliation(s)
| | - Craig Rabe
- Department of Fisheries Resources ManagementNez Perce TribeMcCall Field OfficeIdaho
| | - Ryan Kinzer
- Department of Fisheries Resources ManagementNez Perce TribeMcCall Field OfficeIdaho
| | - Doug Nelson
- Department of Fisheries Resources ManagementNez Perce TribeMcCall Field OfficeIdaho
| | | | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdaho
| |
Collapse
|
7
|
Aykanat T, Ozerov M, Vähä J, Orell P, Niemelä E, Erkinaro J, Primmer CR. Co‐inheritance of sea age at maturity and iteroparity in the Atlantic salmonvgll3genomic region. J Evol Biol 2019; 32:343-355. [DOI: 10.1111/jeb.13418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/03/2018] [Accepted: 01/24/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Tutku Aykanat
- Organismal and Evolutionary Biology Research ProgrammeUniversity of Helsinki Helsinki Finland
- Department of BiologyUniversity of Turku Turku Finland
| | - Mikhail Ozerov
- Department of BiologyUniversity of Turku Turku Finland
- Kevo Subarctic Research InstituteUniversity of Turku Turku Finland
| | - Juha‐Pekka Vähä
- Kevo Subarctic Research InstituteUniversity of Turku Turku Finland
- Association for Water and Environment of Western Uusimaa Lohja Finland
| | - Panu Orell
- Natural Resources Institute Finland (Luke) Oulu Finland
| | - Eero Niemelä
- Natural Resources Institute Finland (Luke) Oulu Finland
| | | | - Craig R. Primmer
- Organismal and Evolutionary Biology Research ProgrammeUniversity of Helsinki Helsinki Finland
- Institute of BiotechnologyUniversity of Helsinki Helsinki Finland
- Helsinki Institute of Sustainability ScienceUniversity of Helsinki Helsinki Finland
| |
Collapse
|
8
|
Life history variation is maintained by fitness trade-offs and negative frequency-dependent selection. Proc Natl Acad Sci U S A 2018; 115:4441-4446. [PMID: 29643072 DOI: 10.1073/pnas.1801779115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The maintenance of diverse life history strategies within and among species remains a fundamental question in ecology and evolutionary biology. By using a near-complete 16-year pedigree of 12,579 winter-run steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, we examined the continued maintenance of two life history traits: the number of lifetime spawning events (semelparous vs. iteroparous) and age at first spawning (2-5 years). We found that repeat-spawning fish had more than 2.5 times the lifetime reproductive success of single-spawning fish. However, first-time repeat-spawning fish had significantly lower reproductive success than single-spawning fish of the same age, suggesting that repeat-spawning fish forego early reproduction to devote additional energy to continued survival. For single-spawning fish, we also found evidence for a fitness trade-off for age at spawning: older, larger males had higher reproductive success than younger, smaller males. For females, in contrast, we found that 3-year-old fish had the highest mean lifetime reproductive success despite the observation that 4- and 5-year-old fish were both longer and heavier. This phenomenon was explained by negative frequency-dependent selection: as 4- and 5-year-old fish decreased in frequency on the spawning grounds, their lifetime reproductive success became greater than that of the 3-year-old fish. Using a combination of mathematical and individual-based models parameterized with our empirical estimates, we demonstrate that both fitness trade-offs and negative frequency-dependent selection observed in the empirical data can theoretically maintain the diverse life history strategies found in this population.
Collapse
|
9
|
Hughes PW. Between semelparity and iteroparity: Empirical evidence for a continuum of modes of parity. Ecol Evol 2017; 7:8232-8261. [PMID: 29075446 PMCID: PMC5648687 DOI: 10.1002/ece3.3341] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
The number of times an organism reproduces (i.e., its mode of parity) is a fundamental life-history character, and evolutionary and ecological models that compare the relative fitnesses of different modes of parity are common in life-history theory and theoretical biology. Despite the success of mathematical models designed to compare intrinsic rates of increase (i.e., density-independent growth rates) between annual-semelparous and perennial-iteroparous reproductive schedules, there is widespread evidence that variation in reproductive allocation among semelparous and iteroparous organisms alike is continuous. This study reviews the ecological and molecular evidence for the continuity and plasticity of modes of parity-that is, the idea that annual-semelparous and perennial-iteroparous life histories are better understood as endpoints along a continuum of possible strategies. I conclude that parity should be understood as a continuum of different modes of parity, which differ by the degree to which they disperse or concentrate reproductive effort in time. I further argue that there are three main implications of this conclusion: (1) that seasonality should not be conflated with parity; (2) that mathematical models purporting to explain the general evolution of semelparous life histories from iteroparous ones (or vice versa) should not assume that organisms can only display either an annual-semelparous life history or a perennial-iteroparous one; and (3) that evolutionary ecologists should base explanations of how different life-history strategies evolve on the physiological or molecular basis of traits underlying different modes of parity.
Collapse
Affiliation(s)
- Patrick William Hughes
- Department of Plant Breeding and GeneticsMax Planck Institute for Plant Breeding ResearchKölnGermany
| |
Collapse
|
10
|
Willoughby JR, Christie MR. Captive Ancestry Upwardly Biases Estimates of Relative Reproductive Success. J Hered 2017; 108:583-587. [PMID: 28499014 DOI: 10.1093/jhered/esx046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
Abstract
Supplementation programs, which release captive-born individuals into the wild, are commonly used to demographically bolster declining populations. In order to evaluate the effectiveness of these programs, the reproductive success of captive-born individuals released into the wild is often compared to the reproductive success of wild-born individuals in the recipient population (relative reproductive success, RRS). However, if there are heritable reductions in fitness associated with captive breeding, gene flow from captive-born individuals into the wild population can reduce the fitness of the wild population. Here, we show that when captive ancestry in the wild population reduces mean population fitness, estimates of RRS are upwardly biased, meaning that the relative fitness of captive-born individuals is over-estimated. Furthermore, the magnitude of this bias increases with the length of time that a supplementation program has been releasing captive-born individuals. This phenomenon has long-term conservation impacts since management decisions regarding the design of a supplementation program and the number of individuals to release can be based, at least in part, on RRS estimates. Therefore, we urge caution in the interpretation of relative fitness measures when the captive ancestry of the wild population cannot be precisely measured.
Collapse
Affiliation(s)
- Janna R Willoughby
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, IN
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN
| |
Collapse
|
11
|
Moore JW, Yeakel JD, Peard D, Lough J, Beere M. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds. J Anim Ecol 2014; 83:1035-46. [DOI: 10.1111/1365-2656.12212] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 02/03/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan W. Moore
- Earth to Ocean Research Group; Simon Fraser University; 8888 University Drive Burnaby BC Canada V5A 1S6
| | - Justin D. Yeakel
- Earth to Ocean Research Group; Simon Fraser University; 8888 University Drive Burnaby BC Canada V5A 1S6
| | - Dean Peard
- Ministry of Environment; 3726 Alfred Avenue Smithers BC Canada V0J 2N0
| | - Jeff Lough
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; 3726 Alfred Avenue Smithers BC Canada V0J 2N0
| | - Mark Beere
- British Columbia Ministry of Forests, Lands and Natural Resource Operations; 3726 Alfred Avenue Smithers BC Canada V0J 2N0
| |
Collapse
|
12
|
Abadía-Cardoso A, Anderson EC, Pearse DE, Carlos Garza J. Large-scale parentage analysis reveals reproductive patterns and heritability of spawn timing in a hatchery population of steelhead (Oncorhynchus mykiss). Mol Ecol 2013; 22:4733-46. [DOI: 10.1111/mec.12426] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Alicia Abadía-Cardoso
- Fisheries Ecology Division; Southwest Fisheries Science Center; National Marine Fisheries Service; 110 Shaffer Rd. Santa Cruz CA 95060 USA
- University of California; 110 Shaffer Rd Santa Cruz CA 95060 USA
| | - Eric C. Anderson
- Fisheries Ecology Division; Southwest Fisheries Science Center; National Marine Fisheries Service; 110 Shaffer Rd. Santa Cruz CA 95060 USA
- University of California; 110 Shaffer Rd Santa Cruz CA 95060 USA
| | - Devon E. Pearse
- Fisheries Ecology Division; Southwest Fisheries Science Center; National Marine Fisheries Service; 110 Shaffer Rd. Santa Cruz CA 95060 USA
- University of California; 110 Shaffer Rd Santa Cruz CA 95060 USA
| | - John Carlos Garza
- Fisheries Ecology Division; Southwest Fisheries Science Center; National Marine Fisheries Service; 110 Shaffer Rd. Santa Cruz CA 95060 USA
- University of California; 110 Shaffer Rd Santa Cruz CA 95060 USA
| |
Collapse
|
13
|
Jones NE, Petreman IC. The capacity to detect change stream fish communities characteristics at the site-level in the Lake Ontario basin. ENVIRONMENTAL MANAGEMENT 2012; 50:77-88. [PMID: 22525993 DOI: 10.1007/s00267-012-9859-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 03/27/2012] [Indexed: 05/31/2023]
Abstract
We investigate natural inter-annual variability of fish community measures within streams of the Lake Ontario basin. Given this variability, we examined coefficients of variation (CV) among the community measures and three scenarios pertaining to the capacity of biologists to detect changes in the fish community at the stream site level. Results indicate that Ontario's stream fish communities are highly variable in time. Young-of-the-year rainbow trout growth was the least variable whereas biomass density scored the highest CV of 0.50 among streams (range 0.22-0.99). Given the CVs and relatively equal sample sizes, our measures of the fish community can be ranked from least to most powerful: biomass, density, richness, diversity, and growth of young-of-the-year rainbow trout. Only large changes in measures can typically be detected. For instance, it would take 4-6 years of monitoring before and after a pulse perturbation to detect a 50 % change in species richness or diversity. We suggest that monitoring abundance is unlikely to result in the detection of small impacts within a short period of time and that large effects can be masked by low statistical power. This evidence voices the need for more research into better sampling methods, experimental designs, and choice of indicators to support monitoring programs for flowing waters.
Collapse
Affiliation(s)
- Nicholas Edward Jones
- River and Stream Ecology Lab, Ontario Ministry of Natural Resources, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
| | | |
Collapse
|
14
|
DuVal EH. Variation in annual and lifetime reproductive success of lance-tailed manakins: alpha experience mitigates effects of senescence on siring success. Proc Biol Sci 2011; 279:1551-9. [PMID: 22090386 DOI: 10.1098/rspb.2011.1840] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The causes of variation in individual reproductive success over a lifetime are not well understood. In long-lived vertebrates, reproductive output usually increases during early adulthood, but it is difficult to disentangle the roles of development and learning on this gain of reproductive success. Lekking lance-tailed manakins provide an opportunity to separate these processes, as the vast majority of male reproduction occurs after a bird obtains alpha status and maintains a display area in the lek, but the age at which males achieve alpha status varies widely. Using 11 years of longitudinal data on age, social status and genetic siring success, I assessed the factors influencing variation in siring success by individuals over their lifetimes. The data show increases in annual reproductive success with both age and alpha experience. At advanced ages, these gains were offset by senescence in fecundity. Individual ontogeny, rather than compositional change of the population, generated a nonlinear relationship of breeding tenure with lifetime success; age of assuming alpha status was unrelated to tenure as a breeder, or success in the alpha role. Importantly, these findings suggest that social experience can mitigate the negative effects of senescence in older breeders.
Collapse
Affiliation(s)
- Emily H DuVal
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
15
|
Davis RA, Roberts JD. Survival and Population Size of the Frog Heleioporus albopunctatus in a Highly Modified, Agricultural Landscape. COPEIA 2011. [DOI: 10.1643/ce-09-133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
One clutch or two clutches? Fitness correlates of coexisting alternative female life-histories in the European earwig. Evol Ecol 2011. [DOI: 10.1007/s10682-011-9510-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Fisher DO, Blomberg SP. Costs of reproduction and terminal investment by females in a semelparous marsupial. PLoS One 2011; 6:e15226. [PMID: 21249185 PMCID: PMC3020937 DOI: 10.1371/journal.pone.0015226] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/01/2010] [Indexed: 11/19/2022] Open
Abstract
Evolutionary explanations for life history diversity are based on the idea of costs of reproduction, particularly on the concept of a trade-off between age-specific reproduction and parental survival, and between expenditure on current and future offspring. Such trade-offs are often difficult to detect in population studies of wild mammals. Terminal investment theory predicts that reproductive effort by older parents should increase, because individual offspring become more valuable to parents as the conflict between current versus potential future offspring declines with age. In order to demonstrate this phenomenon in females, there must be an increase in maternal expenditure on offspring with age, imposing a fitness cost on the mother. Clear evidence of both the expenditure and fitness cost components has rarely been found. In this study, we quantify costs of reproduction throughout the lifespan of female antechinuses. Antechinuses are nocturnal, insectivorous, forest-dwelling small (20–40 g) marsupials, which nest in tree hollows. They have a single synchronized mating season of around three weeks, which occurs on predictable dates each year in a population. Females produce only one litter per year. Unlike almost all other mammals, all males, and in the smaller species, most females are semelparous. We show that increased allocation to current reproduction reduces maternal survival, and that offspring growth and survival in the first breeding season is traded-off with performance of the second litter in iteroparous females. In iteroparous females, increased allocation to second litters is associated with severe weight loss in late lactation and post-lactation death of mothers, but increased offspring growth in late lactation and survival to weaning. These findings are consistent with terminal investment. Iteroparity did not increase lifetime reproductive success, indicating that terminal investment in the first breeding season at the expense of maternal survival (i.e. semelparity) is likely to be advantageous for females.
Collapse
Affiliation(s)
- Diana O Fisher
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia.
| | | |
Collapse
|