1
|
Whitmee S, Green R, Belesova K, Hassan S, Cuevas S, Murage P, Picetti R, Clercq-Roques R, Murray K, Falconer J, Anton B, Reynolds T, Sharma Waddington H, Hughes RC, Spadaro J, Aguilar Jaber A, Saheb Y, Campbell-Lendrum D, Cortés-Puch M, Ebi K, Huxley R, Mazzucato M, Oni T, de Paula N, Peng G, Revi A, Rockström J, Srivastava L, Whitmarsh L, Zougmoré R, Phumaphi J, Clark H, Haines A. Pathways to a healthy net-zero future: report of the Lancet Pathfinder Commission. Lancet 2024; 403:67-110. [PMID: 37995741 DOI: 10.1016/s0140-6736(23)02466-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/24/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Sarah Whitmee
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK.
| | - Rosemary Green
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Kristine Belesova
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Syreen Hassan
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Soledad Cuevas
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Peninah Murage
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Roberto Picetti
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Romain Clercq-Roques
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Kris Murray
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Jane Falconer
- Library, Archive & Open Research Services, London School of Hygiene & Tropical Medicine, London, UK
| | - Blanca Anton
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Tamzin Reynolds
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Hugh Sharma Waddington
- Environmental Health Group, Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK; London International Development Centre, London, UK
| | - Robert C Hughes
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Joseph Spadaro
- Spadaro Environmental Research Consultants (SERC), Philadelphia, PA, USA
| | | | | | | | | | - Kristie Ebi
- Center for Health and the Global Environment, Hans Rosling Center, University of Washington, Seattle, WA, USA
| | - Rachel Huxley
- C40 Cities Climate Leadership Group, New York, NY, USA
| | - Mariana Mazzucato
- Institute for Innovation and Public Purpose, University College London, London, UK
| | - Tolu Oni
- Global Diet and Activity Research Group, MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicole de Paula
- Food and Agriculture Organization of the United Nations, Rome, Italy; Women Leaders for Planetary Health, Berlin, Germany
| | - Gong Peng
- University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Aromar Revi
- Indian Institute for Human Settlements Tharangavana, Bengaluru, India
| | - Johan Rockström
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - Leena Srivastava
- Ashoka Centre for a People-centric Energy Transition, New Delhi, India
| | | | - Robert Zougmoré
- AICCRA, International Crops Research for the Semi-Arid Tropics, Bamako, Mali
| | - Joy Phumaphi
- African Leaders Malaria Alliance (ALMA), Dar es Salaam, Tanzania
| | - Helen Clark
- Helen Clark Foundation, Auckland, New Zealand
| | - Andy Haines
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
2
|
Hannah E, Etter-Phoya R, Lopez M, Hall S, O’Hare B. Impact of higher-income countries on child health in lower-income countries from a climate change perspective. A case study of the UK and Malawi. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002721. [PMID: 38175830 PMCID: PMC10766172 DOI: 10.1371/journal.pgph.0002721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
Climate change is the number one threat to child health according to the World Health Organisation. It increases existing inequalities, and lower-income countries are disproportionately affected. This is unjust. Higher-income countries have contributed and continue to contribute more to climate change than lower-income countries. This has been recognised by the United Nations Committee on the Rights of the Child, which has ruled that states can be held responsible if their carbon emissions harm child rights both within and outside their jurisdiction. Nevertheless, there are few analyses of the bilateral relationship between higher- and lower-income countries concerning climate change. This article uses the UK and Malawi as a case study to illustrate higher-income countries' impact on child health in lower-income countries. It aims to assist higher-income countries in developing more targeted policies. Children in Malawi can expect more food insecurity and reduced access to clean water, sanitation, and education. They will be more exposed to heat stress, droughts, floods, air pollution and life-threatening diseases, such as malaria. In 2019, 5,000 Malawian children died from air pollution (17% of under-five deaths). The UK needs to pay its 'fair share' of climate finance and ensure adaptation is prioritised for lower-income countries. It can advocate for more equitable and transparent allocation of climate finance to support the most vulnerable countries. Additionally, the UK can act domestically to curtail revenue losses in Malawi and other lower-income countries, which would free up resources for adaptation. In terms of mitigation, the UK must increase its nationally determined commitments by 58% to reach net zero and include overseas emissions. Land use, heating systems and renewable energy must be reviewed. It must mandate comprehensive scope three emission reporting for companies to include impacts along their value chain, and support businesses, multinational corporations, and banks to reach net zero.
Collapse
Affiliation(s)
- Eilish Hannah
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Rachel Etter-Phoya
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
- Tax Justice Network, Lilongwe, Malawi
| | - Marisol Lopez
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Stephen Hall
- School of Economics, University of Leicester, Leicester, United Kingdom
- University of Pretoria, Pretoria, South Africa
| | - Bernadette O’Hare
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
3
|
Farooq MS, Uzair M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan Khan M. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:927535. [PMID: 35903229 PMCID: PMC9315450 DOI: 10.3389/fpls.2022.927535] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 05/05/2023]
Abstract
Climatic variability has been acquiring an extensive consideration due to its widespread ability to impact food production and livelihoods. Climate change has the potential to intersperse global approaches in alleviating hunger and undernutrition. It is hypothesized that climate shifts bring substantial negative impacts on food production systems, thereby intimidating food security. Vast developments have been made addressing the global climate change, undernourishment, and hunger for the last few decades, partly due to the increase in food productivity through augmented agricultural managements. However, the growing population has increased the demand for food, putting pressure on food systems. Moreover, the potential climate change impacts are still unclear more obviously at the regional scales. Climate change is expected to boost food insecurity challenges in areas already vulnerable to climate change. Human-induced climate change is expected to impact food quality, quantity, and potentiality to dispense it equitably. Global capabilities to ascertain the food security and nutritional reasonableness facing expeditious shifts in biophysical conditions are likely to be the main factors determining the level of global disease incidence. It can be apprehended that all food security components (mainly food access and utilization) likely be under indirect effect via pledged impacts on ménage, incomes, and damages to health. The corroboration supports the dire need for huge focused investments in mitigation and adaptation measures to have sustainable, climate-smart, eco-friendly, and climate stress resilient food production systems. In this paper, we discussed the foremost pathways of how climate change impacts our food production systems as well as the social, and economic factors that in the mastery of unbiased food distribution. Likewise, we analyze the research gaps and biases about climate change and food security. Climate change is often responsible for food insecurity issues, not focusing on the fact that food production systems have magnified the climate change process. Provided the critical threats to food security, the focus needs to be shifted to an implementation oriented-agenda to potentially cope with current challenges. Therefore, this review seeks to have a more unprejudiced view and thus interpret the fusion association between climate change and food security by imperatively scrutinizing all factors.
Collapse
Affiliation(s)
- Muhammad Shahbaz Farooq
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Yinlong Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | | | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | | |
Collapse
|
4
|
Coates SJ, Enbiale W, Davis MDP, Andersen LK. The effects of climate change on human health in Africa, a dermatologic perspective: a report from the International Society of Dermatology Climate Change Committee. Int J Dermatol 2020; 59:265-278. [PMID: 31970754 DOI: 10.1111/ijd.14759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Throughout much of the African continent, healthcare systems are already strained in their efforts to meet the needs of a growing population using limited resources. Climate change threatens to undermine many of the public health gains that have been made in this region in the last several decades via multiple mechanisms, including malnutrition secondary to drought-induced food insecurity, mass human displacement from newly uninhabitable areas, exacerbation of environmentally sensitive chronic diseases, and enhanced viability of pathogenic microbes and their vectors. We reviewed the literature describing the various direct and indirect effects of climate change on diseases with cutaneous manifestations in Africa. We included non-communicable diseases such as malignancies (non-melanoma skin cancers), inflammatory dermatoses (i.e. photosensitive dermatoses, atopic dermatitis), and trauma (skin injury), as well as communicable diseases and neglected tropical diseases. Physicians should be aware of the ways in which climate change threatens human health in low- and middle-income countries in general, and particularly in countries throughout Africa, the world's lowest-income and second most populous continent.
Collapse
Affiliation(s)
- Sarah J Coates
- Department of Dermatology, The University of California San Francisco, San Francisco, CA, USA
| | | | - Mark D P Davis
- Division of Clinical Dermatology, Mayo Clinic, Rochester, MN, USA
| | - Louise K Andersen
- Department of Dermato-Venereology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|