1
|
Hay AN, Aycock KN, Lorenzo MF, David K, Coutermarsh-Ott S, Salameh Z, Campelo SN, Arroyo JP, Ciepluch B, Daniel G, Davalos RV, Tuohy J. Investigation of High Frequency Irreversible Electroporation for Canine Spontaneous Primary Lung Tumor Ablation. Biomedicines 2024; 12:2038. [PMID: 39335552 PMCID: PMC11428908 DOI: 10.3390/biomedicines12092038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, the feasibility of treating canine primary lung tumors with high-frequency irreversible electroporation (H-FIRE) was investigated as a novel lung cancer treatment option. H-FIRE is a minimally invasive tissue ablation modality that delivers bipolar pulsed electric fields to targeted cells, generating nanopores in cell membranes and rendering targeted cells nonviable. In the current study, canine patients (n = 5) with primary lung tumors underwent H-FIRE treatment with an applied voltage of 2250 V using a 2-5-2 µs H-FIRE waveform to achieve partial tumor ablation prior to the surgical resection of the primary tumor. Surgically resected tumor samples were evaluated histologically for tumor ablation, and with immunohistochemical (IHC) staining to identify cell death (activated caspase-3) and macrophages (IBA-1, CD206, and iNOS). Changes in immunity and inflammatory gene signatures were also evaluated in tumor samples. H-FIRE ablation was evident by the microscopic observation of discrete foci of acute hemorrhage and necrosis, and in a subset of tumors (n = 2), we observed a greater intensity of cleaved caspase-3 staining in tumor cells within treated tumor regions compared to adjacent untreated tumor tissue. At the study evaluation timepoint of 2 h post H-FIRE, we observed differential gene expression changes in the genes IDO1, IL6, TNF, CD209, and FOXP3 in treated tumor regions relative to paired untreated tumor regions. Additionally, we preliminarily evaluated the technical feasibility of delivering H-FIRE percutaneously under CT guidance to canine lung tumor patients (n = 2). Overall, H-FIRE treatment was well tolerated with no adverse clinical events, and our results suggest H-FIRE potentially altered the tumor immune microenvironment.
Collapse
Affiliation(s)
- Alayna N Hay
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia Maryland College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Kenneth N Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Melvin F Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kailee David
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30318, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Zaid Salameh
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30318, USA
| | - Sabrina N Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30318, USA
| | - Julio P Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30318, USA
| | - Brittany Ciepluch
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia Maryland College of Veterinary Medicine, Roanoke, VA 24016, USA
| | - Gregory Daniel
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30318, USA
| | - Joanne Tuohy
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
- Virginia Tech Animal Cancer Care and Research Center, Virginia Maryland College of Veterinary Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
2
|
Lachkar S, Guisier F, Dantoing E, Thiberville L, Salaün M. [The role of endoscopy in the management of peripheral pulmonary nodules, part 2: Treatment]. Rev Mal Respir 2024; 41:390-398. [PMID: 38580585 DOI: 10.1016/j.rmr.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The management of peripheral lung nodules is challenging, requiring specialized skills and sophisticated technologies. The diagnosis now appears accessible to advanced endoscopy (see Part 1), which can also guide treatment of these nodules; this second part provides an overview of endoscopy techniques that can enhance surgical treatment through preoperative marking, and stereotactic radiotherapy treatment through fiduciary marker placement. Finally, we will discuss how, in the near future, these advanced endoscopic techniques will help to implement ablation strategy.
Collapse
Affiliation(s)
- S Lachkar
- Department of Pneumology, CHU de Rouen, 76000 Rouen, France.
| | - F Guisier
- Department of Pneumology and Inserm CIC-CRB 1404, UNIROUEN, LITIS Lab QuantIF team EA4108, CHU de Rouen, Normandie University, 76000 Rouen, France
| | - E Dantoing
- Department of Pneumology, CHU de Rouen, 76000 Rouen, France
| | - L Thiberville
- Department of Pneumology and Inserm CIC-CRB 1404, UNIROUEN, LITIS Lab QuantIF team EA4108, CHU de Rouen, Normandie University, 76000 Rouen, France
| | - M Salaün
- Department of Pneumology and Inserm CIC-CRB 1404, UNIROUEN, LITIS Lab QuantIF team EA4108, CHU de Rouen, Normandie University, 76000 Rouen, France
| |
Collapse
|
3
|
de Baere T, Bonnet B, Tselikas L, Deschamps F. The percutaneous management of pulmonary metastases. J Med Imaging Radiat Oncol 2023; 67:870-875. [PMID: 37742316 DOI: 10.1111/1754-9485.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023]
Abstract
Local treatment of lung metastases has been in the front scene since late 90s when an international registry of thoracic surgery reported a median overall survival of 35 months in resected patients versus 15 months in non-resected patients. Today, other local therapies are available for patients with oligometastatic lung disease, including image guided thermal ablation, such as ablation, microwave ablation, and cryoablation. Image-guided ablation is increasingly offered, and now recommended in guidelines as option to surgery. Today, the size of the target tumour remains the main driver of success and selection of patients with limited tumour size allowing for local tumour control in the range of 90% in most recent and larger series targeting lung metastases up to 3.5 cm. Overall survival exceeding five-years in large series of thermal ablation for lung metastases from colorectal origin are align with outcome of same patients treated with surgical resection. Moreover, thermal ablation in such population allows for one-year chemotherapy holidays in all comers and over 18 months in lung only metastatic patients, allowing for improved patient quality of life and preserving further lines of systemic treatment when needed. Tolerance of thermal ablation is excellent and better than surgery with no lost in respiratory function, allowing for repeated treatment when needed. In the future, it is likely that practice of lung surgery for small oligometastatic lung disease will decrease, and that minimally invasive techniques will replace surgery in such indications. Randomized study will be difficult to obtain as demonstrated by discontinuation of many studies testing the hypothesis of surgery versus observation, or surgery versus SBRT.
Collapse
Affiliation(s)
- Thierry de Baere
- Department of Interventional Radiology, Gustave Roussy, Villejuif, France
- University of Paris-Saclay, UFR Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, France
- Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
| | - Baptiste Bonnet
- Department of Interventional Radiology, Gustave Roussy, Villejuif, France
| | - Lambros Tselikas
- Department of Interventional Radiology, Gustave Roussy, Villejuif, France
- University of Paris-Saclay, UFR Médecine Le Kremlin-Bicêtre, Le Kremlin-Bicêtre, France
- Centre d'Investigation Clinique BIOTHERIS, INSERM CIC1428, Villejuif, France
| | - Frederic Deschamps
- Department of Interventional Radiology, Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Nezami N, Khorshidi F, Mansur A, Habibollahi P, Camacho JC. Primary and Metastatic Lung Cancer: Rationale, Indications, and Outcomes of Thermal Ablation. Clin Lung Cancer 2023:S1525-7304(23)00055-4. [PMID: 37127487 DOI: 10.1016/j.cllc.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
The widespread use of imaging as well as the efforts conducted through screening campaigns has dramatically increased the early detection rate of lung cancer. Historically, the management of lung cancer has heavily relied on surgery. However, the increased proportion of patients with comorbidities has given significance to less invasive therapeutic options like minimally invasive surgery and image-guided thermal ablation, which could precisely target the tumor without requiring general anesthesia or a thoracotomy. Thermal ablation is considered low-risk for lung tumors smaller than 3 cm that are located in peripheral lung and do not involve major blood vessels or airways. The rationale for ablative therapies relies on the fact that focused delivery of energy induces cell death and pathologic necrosis. Image-guided percutaneous thermal ablation therapies are established techniques in the local treatment of hepatic, renal, bone, thyroid and uterine lesions. In the lung, and specifically in the setting of metastatic disease, the 3 main indications for lung ablation are to serve as (1) curative intent, (2) as a strategy to achieve a chemo-holiday in oligometastatic disease, and (3) in oligoprogressive disease. Following these premises, the current paper aims to review the rationale, indications, and outcomes of thermal ablation as a form of local therapy in the treatment of primary and metastatic lung disease.
Collapse
|
5
|
Novickij V, Rembiałkowska N, Kasperkiewicz-Wasilewska P, Baczyńska D, Rzechonek A, Błasiak P, Kulbacka J. Pulsed electric fields with calcium ions stimulate oxidative alternations and lipid peroxidation in human non-small cell lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184055. [PMID: 36152727 DOI: 10.1016/j.bbamem.2022.184055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Pulsed electric fields (PEFs) are commonly used to facilitate the delivery of various molecules, including pharmaceuticals, into living cells. However, the applied protocols still require optimization regarding the conditions of the permeabilization process, i.e., pulse waveform, voltage, duration, and the number of pulses in a burst. This study highlights the importance of electrochemical processes involved in the electropermeabilization process, known as electroporation. This research investigated the effects of electroporation on human non-small cell lung cancer cells (A549) in potassium (SKM) and HEPES-based buffers (SHM) using sub-microsecond and microsecond range pulses. The experiments were performed using 100 ns - 100 μs (0.6-15 kV/cm) bursts with 8 pulses in a sequence. It was shown that depending on the buffer composition, the susceptibility of cells to PEF varies, while calcium enhances the cytotoxic effects of PEF, if high cell membrane permeabilization is triggered. It was also determined that electroporation with calcium ions induces oxidative stress in cells, including lipid peroxidation (LPO), generation of reactive oxygen species (ROS), and neutral lipid droplets. Here, we demonstrated that calcium ions and optimized pulse parameters could potentiate PEF efficacy and oxidative alternations in lung cancer cells. Thus, the anticancer efficacy of PEF in lung cancers in combination with standard cytostatic drugs or calcium ions should be considered, but this issue still requires in-depth detailed studies with in vivo models.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Rzechonek
- Department of Thoracic Surgery, Wroclaw Medical University, Grabiszynska 105, 53-430 Wroclaw, Poland
| | - Piotr Błasiak
- Department of Thoracic Surgery, Wroclaw Medical University, Grabiszynska 105, 53-430 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
6
|
Tasu JP, Tougeron D, Rols MP. Irreversible electroporation and electrochemotherapy in oncology: State of the art. Diagn Interv Imaging 2022; 103:499-509. [DOI: 10.1016/j.diii.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023]
|
7
|
Onafowokan OO, de Liguori Carino N. Needle tract seeding following percutaneous irreversible electroporation for hepatocellular carcinoma. BMJ Case Rep 2022; 15:e251880. [PMID: 36223977 PMCID: PMC9562748 DOI: 10.1136/bcr-2022-251880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Irreversible electroporation (IRE) is a non-thermal ablative technique for unresectable liver malignancies deemed unsuitable for traditional thermal ablation due to proximity to biliary and/or vascular structures. Needle tract tumour seeding is a well-recognised complication following thermal ablation, while little is known about its risk with IRE use. We present a case of tumour seeding after IRE for unresectable hepatocellular carcinoma in a man in his 70s. The procedure was complicated by bleeding from a pseudoaneurysm, which required coil embolisation and blood transfusion. He initially progressed well, however, imaging at 12 months indicated a new tumour in the right intercostal space along the tract of one of the IRE needles; consistent with seeding. Although the patient subsequently underwent systemic therapy with sorafenib, his disease progressed, and unfortunately he passed away 20 months following IRE. This report adds to mounting evidence of needle tract tumour seeding as a complication following IRE.
Collapse
Affiliation(s)
- Oluwatobi O Onafowokan
- Department of Hepato-Pancreato-Biliary surgery, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nicola de Liguori Carino
- Department of Hepato-Pancreato-Biliary surgery, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
8
|
Folch E, Guo Y, Senitko M. Therapeutic Bronchoscopy for Lung Nodules: Where Are We Now? Semin Respir Crit Care Med 2022; 43:480-491. [PMID: 36104025 DOI: 10.1055/s-0042-1749368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Lobar resection has been the established standard of care for peripheral early-stage non-small cell lung cancer (NSCLC). Over the last few years, surgical lung sparing approach (sublobar resection [SLR]) has been compared with lobar resection in T1N0 NSCLC. Three nonsurgical options are available in those patients who have a prohibitive surgical risk, and those who refuse surgery: stereotactic body radiotherapy (SBRT), percutaneous ablation, and bronchoscopic ablation. Local ablation involves placement of a probe into a tumor, and subsequent application of either heat or cold energy, pulsing electrical fields, or placement of radioactive source under an image guidance to create a zone of cell death that encompasses the targeted lesion and an ablation margin. Despite being in their infancy, the bronchoscopic ablative techniques are undergoing rapid research, as they extrapolate a significant knowledge-base from the percutaneous techniques that have been in the radiologist's armamentarium since 2000. Here, we discuss selected endoscopic and percutaneous thermal and non-thermal therapies with the focus on their efficacy and safety.
Collapse
Affiliation(s)
- Erik Folch
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yanglin Guo
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michal Senitko
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Division of Cardiothoracic Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
9
|
Lau KK, Steinke K, Reis S, Cherukuri SP, Cejna M. Current trends in image-guided chest interventions. Respirology 2022; 27:581-599. [PMID: 35758539 PMCID: PMC9545252 DOI: 10.1111/resp.14315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023]
Abstract
Interventional radiology (IR) is a rapidly expanding medical subspecialty and refers to a range of image‐guided procedural techniques. The image guidance allows real‐time visualization and precision placement of a needle, catheter, wire and device to deep body structures through small incisions. Advantages include reduced risks, faster recovery and shorter hospital stays, lower costs and less patient discomfort. The range of chest interventional procedures keeps on expanding due to improved imaging facilities, better percutaneous assess devices and advancing ablation and embolization techniques. These advances permit procedures to be undertaken safely, simultaneously and effectively, hence escalating the role of IR in the treatment of chest disorders. This review article aims to cover the latest developments in some image‐guided techniques of the chest, including thermal ablation therapy of lung malignancy, targeted therapy of pulmonary embolism, angioplasty and stenting of mediastinal venous/superior vena cava occlusion, pulmonary arteriovenous malformation treatment and bronchial artery embolization for haemoptysis.
Collapse
Affiliation(s)
- Kenneth K Lau
- Monash Imaging, Monash Health, Clayton, Victoria, Australia.,School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Karin Steinke
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,University of Queensland School of Medicine, St Lucia, Queensland, Australia
| | - Stephen Reis
- Division of Interventional Radiology, Department of Radiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Srinivas P Cherukuri
- Division of Interventional Radiology, Department of Radiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Manfred Cejna
- Institute for Diagnostic and Interventional Radiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| |
Collapse
|
10
|
Update on Image-Guided Thermal Lung Ablation: Society Guidelines, Therapeutic Alternatives, and Postablation Imaging Findings. AJR Am J Roentgenol 2022; 219:471-485. [PMID: 35319908 DOI: 10.2214/ajr.21.27099] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Percutaneous image-guided thermal ablation (IGTA) has been endorsed by multiple societies as a safe and effective lung-preserving treatment for primary lung cancer and metastases involving the lung and chest wall. This article reviews the role of IGTA in the care continuum of patients with thoracic neoplasms and discusses strategies to identify the optimal local therapy considering patient and tumor characteristics. The advantages and disadvantages of percutaneous thermal ablation compared to surgical resection and stereotactic body radiotherapy are summarized. Principles of radiofrequency ablation, microwave ablation, and cryoablation, as well as the emerging use of transbronchial thermal ablation, are described. Specific considerations are presented regarding the role of thermal ablation for early-stage non-small cell lung cancer (NSCLC), multifocal primary NSCLC, pulmonary metastases, salvage of recurrent NSCLC after surgery or radiation, and pain palliation for tumors involving the chest wall. Recent changes to professional society guidelines regarding the role of thermal ablation in the lung, including for treatment of oligometastatic disease, are highlighted. Finally, recommendations are provided for imaging follow-up after thermal ablation of lung tumors, accompanied by examples of expected postoperative findings and patterns of disease recurrence.
Collapse
|
11
|
Zhang N, Li Z, Han X, Zhu Z, Li Z, Zhao Y, Liu Z, Lv Y. Irreversible Electroporation: An Emerging Immunomodulatory Therapy on Solid Tumors. Front Immunol 2022; 12:811726. [PMID: 35069599 PMCID: PMC8777104 DOI: 10.3389/fimmu.2021.811726] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Irreversible electroporation (IRE), a novel non-thermal ablation technique, is utilized to ablate unresectable solid tumors and demonstrates favorable safety and efficacy in the clinic. IRE applies electric pulses to alter the cell transmembrane voltage and causes nanometer-sized membrane defects or pores in the cells, which leads to loss of cell homeostasis and ultimately results in cell death. The major drawbacks of IRE are incomplete ablation and susceptibility to recurrence, which limit its clinical application. Recent studies have shown that IRE promotes the massive release of intracellular concealed tumor antigens that become an “in-situ tumor vaccine,” inducing a potential antitumor immune response to kill residual tumor cells after ablation and inhibiting local recurrence and distant metastasis. Therefore, IRE can be regarded as a potential immunomodulatory therapy, and combined with immunotherapy, it can exhibit synergistic treatment effects on malignant tumors, which provides broad application prospects for tumor treatment. This work reviewed the current status of the clinical efficacy of IRE in tumor treatment, summarized the characteristics of local and systemic immune responses induced by IRE in tumor-bearing organisms, and analyzed the specific mechanisms of the IRE-induced immune response. Moreover, we reviewed the current research progress of IRE combined with immunotherapy in the treatment of solid tumors. Based on the findings, we present deficiencies of current preclinical studies of animal models and analyze possible reasons and solutions. We also propose possible demands for clinical research. This review aimed to provide theoretical and practical guidance for the combination of IRE with immunotherapy in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Han
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziyu Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhujun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
12
|
Alzubaidi SJ, Liou H, Saini G, Segaran N, Scott Kriegshauser J, Naidu SG, Patel IJ, Oklu R. Percutaneous Image-Guided Ablation of Lung Tumors. J Clin Med 2021; 10:5783. [PMID: 34945082 PMCID: PMC8707332 DOI: 10.3390/jcm10245783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Tumors of the lung, including primary cancer and metastases, are notoriously common and difficult to treat. Although surgical resection of lung lesions is often indicated, many conditions disqualify patients from being surgical candidates. Percutaneous image-guided lung ablation is a relatively new set of techniques that offers a promising treatment option for a variety of lung tumors. Although there have been no clinical trials to definitively compare its efficacy to those of traditional treatments, lung ablation is widely practiced and generally accepted to be safe and effective. Especially encouraging results have recently emerged for cryoablation, one of the newer ablative techniques. This article reviews the indications, techniques, contraindications, and complications of percutaneous image-guided ablation of lung tumors with special attention to cryoablation and its recent developments in protocol optimization.
Collapse
Affiliation(s)
- Sadeer J. Alzubaidi
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (J.S.K.); (S.G.N.); (I.J.P.); (R.O.)
| | - Harris Liou
- Alix School of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Gia Saini
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Phoenix, AZ 85054, USA; (G.S.); (N.S.)
| | - Nicole Segaran
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Phoenix, AZ 85054, USA; (G.S.); (N.S.)
| | - J. Scott Kriegshauser
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (J.S.K.); (S.G.N.); (I.J.P.); (R.O.)
| | - Sailendra G. Naidu
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (J.S.K.); (S.G.N.); (I.J.P.); (R.O.)
| | - Indravadan J. Patel
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (J.S.K.); (S.G.N.); (I.J.P.); (R.O.)
| | - Rahmi Oklu
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (J.S.K.); (S.G.N.); (I.J.P.); (R.O.)
- Division of Vascular and Interventional Radiology, Laboratory for Patient Inspired Engineering, Mayo Clinic, Phoenix, AZ 85054, USA; (G.S.); (N.S.)
| |
Collapse
|
13
|
Recurrent Colorectal Liver Metastases in the Liver Remnant After Major Liver Surgery-IRE as a Salvage Local Treatment When Resection and Thermal Ablation are Unsuitable. Cardiovasc Intervent Radiol 2021; 45:182-189. [PMID: 34757483 PMCID: PMC8807435 DOI: 10.1007/s00270-021-02981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/18/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE To examine the safety and short-term oncologic outcomes of computer-tomography-guided (CT-guided) irreversible electroporation (IRE) of recurrent, irresectable colorectal liver metastases (CRLM) after major hepatectomy deemed unsuitable for thermal ablation. PATIENTS AND METHODS Twenty-three patients undergoing CT-guided IRE of recurrent CRLM after major hepatectomy were included in this study. All tumors were located adjacent to sole remaining intrahepatic blood vessels and bile ducts, precluding thermal ablation. Patients underwent systematic clinical and imaging follow-up, including magnetic resonance imaging of the liver at 1-month and 3-month intervals thereafter. Time to local and intrahepatic tumor progression within 12 and 36 months and associated risk factors were assessed using Kaplan Meier and Cox regression analysis, respectively. RESULTS Complete ablation with a safety margin of at least 0.5 cm was achieved in 22/23 (95.6%) patients. No vessel injury or thrombosis occurred. Five patients developed moderate biliary stenosis after a median of 4 weeks, without requiring treatment. Local tumor-progression-free rates within 12/36 months were 64%/57.4%, respectively. Intrahepatic-progression-free rate within 12/36 months was 36.4%/19.5%, respectively. Five (23%) patients were tumor-free at the end of follow-up. Multivariate Cox regression analysis did not show any association between local tumor-progression-free rates and patient age, target tumor size, primary tumor side or synchronicity of liver metastases. CONCLUSION In this highly selected patient population with local recurrences of CRLM after major surgery, IRE was shown to be a safe salvage treatment option when thermal ablation is unsuitable.
Collapse
|
14
|
Fujimori M, Kimura Y, Ueshima E, Dupuy DE, Adusumilli PS, Solomon SB, Srimathveeravalli G. Lung Ablation with Irreversible Electroporation Promotes Immune Cell Infiltration by Sparing Extracellular Matrix Proteins and Vasculature: Implications for Immunotherapy. Bioelectricity 2021; 3:204-214. [PMID: 34734168 DOI: 10.1089/bioe.2021.0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: This study investigated the sparing of the extracellular matrix (ECM) and blood vessels at the site of lung irreversible electroporation (IRE), and its impact on postablation T cell and macrophage populations. Materials and Methods: Normal swine (n = 8) lung was treated with either IRE or microwave ablation (MWA), followed by sacrifice at 2 and 28 days (four animals/timepoint) after treatment. En bloc samples of ablated lung were stained for blood vessels (CD31), ECM proteins (Collagen, Heparan sulfate, and Decorin), T cells (CD3), and macrophages (Iba1). Stained slides were analyzed with an image processing software (ImageJ) to count the number of positive staining cells or the percentage area of tissue staining for ECM markers, and the statistical difference was evaluated with Student's t-test. Results: Approximately 50% of the blood vessels and collagen typically seen in healthy lung were evident in IRE treated samples at Day 2, with complete destruction within MWA treated lung. These levels increased threefold by Day 28, indicative of post-IRE tissue remodeling and regeneration. Decorin and Heparan sulfate levels were reduced, and it remained so through the duration of observation. Concurrently, numbers of CD3+ T cells and macrophages were not different from healthy lung at Day 2 after IRE, subsequently increasing by 2.5 and 1.5-fold by Day 28. Similar findings were restricted to the peripheral inflammatory rim of MWA samples, wherein the central necrotic regions remained acellular through Day 28. Conclusion: Acute preservation of blood vessels and major ECM components was observed in IRE treated lung at acute time points, and it was associated with the increased infiltration and presence of T cells and macrophages, features that were spatially restricted in MWA treated lung.
Collapse
Affiliation(s)
- Masashi Fujimori
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Mie University, Mie, Japan
| | - Yasushi Kimura
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Damian E Dupuy
- Department of Radiology, Cape Cod Healthcare, Hyannis, Massachusetts, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stephen B Solomon
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Mie University, Mie, Japan
| | - Govindarajan Srimathveeravalli
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA.,Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
15
|
Olive G, Yung R, Marshall H, Fong KM. Alternative methods for local ablation-interventional pulmonology: a narrative review. Transl Lung Cancer Res 2021; 10:3432-3445. [PMID: 34430378 PMCID: PMC8350102 DOI: 10.21037/tlcr-20-1185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To discuss and summarise the background and recent advances in the approach to bronchoscopic ablative therapies for lung cancer, focusing on focal parenchymal lesions. BACKGROUND This series focusses on the challenges highlighted by increasing recognition of the prognostically more favourable oligometastatic disease rather than the more frequent, but prognostically poor, high tumour burden metastatic disease. While surgery, stereotactic body radiation therapy (SBRT), and trans-thoracic percutaneous ablative techniques such as microwave (MWA) and radiofrequency ablation (RFA) are well recognised options for selected cases of pulmonary oligometastasis, bronchoscopic approaches to pulmonary tumour ablation are becoming realistic alternatives. An underlying tenet driving research and implementation in this domain is that percutaneous ablative techniques are obliged to traverse the pleura leading to a high rate of pneumothorax, and risks also goes up for peri-vascular lesions. Historically low yield bronchoscopic targeting of isolated peripheral tumors have significantly improved by incorporating multi-modality high resolution imaging and processing, including navigation planning and real-time image guidances (ultrasound, electromagnetic navigation, cone-beam CT). Combining advanced image guidance with ablative technology adaptations for bronchoscopic delivery opens up the options for high dose local ablative therapies that may reduce transthoracic complications and provide palliative to curative options for limited stage primary and oligometastatic diseases. METHODS We conduct a narrative review of the literature summarizing the history of bronchoscopic tumor ablation approaches, technical details including biologic rational for their uses, and current evidence for each modality, as well as investigations into future applications. Because of the relative paucity of prospective studies, we have been very inclusive in our inclusion of experiences from the published clinical databases. CONCLUSIONS Whilst surgical resection and SBRT remain the current mainstay of curative therapies for peripheral cancers, in the foreseeable future, developments and further research will see bronchoscopic ablative therapies become viable lung sparing alternatives in those deemed suitable. The future is bright.
Collapse
Affiliation(s)
- Gerard Olive
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
- University of Queensland Thoracic Research Centre, Queensland, Australia
| | - Rex Yung
- Chief Medical Officer – IONIQ (ProLung) Inc., Salt Lake City, UT, USA
| | - Henry Marshall
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
- University of Queensland Thoracic Research Centre, Queensland, Australia
| | - Kwun M. Fong
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
- University of Queensland Thoracic Research Centre, Queensland, Australia
| |
Collapse
|
16
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Chen M, Zhang F, Song J, Weng Q, Li P, Li Q, Qian K, Ji H, Pietrini S, Ji J, Yang X. Image-Guided Peri-Tumoral Radiofrequency Hyperthermia-Enhanced Direct Chemo-Destruction of Hepatic Tumor Margins. Front Oncol 2021; 11:593996. [PMID: 34235070 PMCID: PMC8255807 DOI: 10.3389/fonc.2021.593996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose To validate the feasibility of using peri-tumoral radiofrequency hyperthermia (RFH)-enhanced chemotherapy to obliterate hepatic tumor margins. Method and Materials This study included in vitro experiments with VX2 tumor cells and in vivo validation experiments using rabbit models of liver VX2 tumors. Both in vitro and in vivo experiments received different treatments in four groups (n=6/group): (i) RFH-enhanced chemotherapy consisting of peri-tumoral injection of doxorubicin plus RFH at 42°C; (ii) RFH alone; (iii) doxorubicin alone; and (iv) saline. Therapeutic effect on cells was evaluated using different laboratory examinations. For in vivo experiments, orthotopic hepatic VX2 tumors in 24 rabbits were treated by using a multipolar radiofrequency ablation electrode, enabling simultaneous delivery of both doxorubicin and RFH within the tumor margins. Ultrasound imaging was used to follow tumor growth overtime, correlated with subsequent histopathological analysis. Results In in vitro experiments, MTS assay demonstrated the lowest cell proliferation, and apoptosis analysis showed the highest apoptotic index with RFH-enhanced chemotherapy, compared with the other three groups (p<0.01). In in vivo experiments, ultrasound imaging detected the smallest relative tumor volume with RFH-enhanced chemotherapy (p<0.01). The TUNEL assay further confirmed the significantly increased apoptotic index and decreased cell proliferation in the RFH-enhanced therapy group (p<0.01). Conclusion This study demonstrates that peri-tumoral RFH can specifically enhance the destruction of tumor margins in combination with peri-tumoral injection of a chemotherapeutic agent. This new interventional oncology technique may address the critical clinical problem of frequent marginal tumor recurrence/persistence following thermal ablation of large (>3 cm) hepatic cancers.
Collapse
Affiliation(s)
- Minjiang Chen
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, China
| | - Feng Zhang
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jingjing Song
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, China
| | - Qiaoyou Weng
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.,Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, China
| | - Peicheng Li
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Qiang Li
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kun Qian
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Hongxiu Ji
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pathology, Overlake Medical Center and Incyte Diagnostics, Bellevue, WA, United States
| | - Sean Pietrini
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Department of Radiology, Zhejiang University Lishui Hospital, Lishui, China
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Interventions Research & Division of Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
18
|
Rangamuwa K, Leong T, Weeden C, Asselin-Labat ML, Bozinovski S, Christie M, John T, Antippa P, Irving L, Steinfort D. Thermal ablation in non-small cell lung cancer: a review of treatment modalities and the evidence for combination with immune checkpoint inhibitors. Transl Lung Cancer Res 2021; 10:2842-2857. [PMID: 34295682 PMCID: PMC8264311 DOI: 10.21037/tlcr-20-1075] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with approximately 1.6 million cancer related deaths each year. Prognosis is best in patients with early stage disease, though even then five-year survival is only 55% in some groups. Median survival for advanced non-small cell lung cancer (NSCLC) is 8–12 months with conventional treatment. Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of NSCLC with significant long-term improvements in survival demonstrated in some patients with advanced NSCLC. However, only a small proportion of patients respond to ICI, suggesting the need for further techniques to harness the potential of ICI therapy. Thermal ablation utilizes the extremes of temperature to cause tumour destruction. Commonly used modalities are radiofrequency ablation (RFA), cryoablation and microwave ablation (MWA). At present thermal ablation is reserved for curative-intent therapy in patients with localized NSCLC who are unable to undergo surgical resection or stereotactic ablative body radiotherapy (SABR). Limited evidence suggests that thermal ablative modalities can upregulate an anticancer immune response in NSCLC. It is postulated that thermal ablation can increase tumour antigen release, which would initiate and upregulated steps in the cancer immunity cycle required to elicit an anticancer immune response. This article will review the current thermal ablative techniques and their ability to modulate an anti-cancer immune response with a view of using thermal ablation in conjunction with ICI therapy.
Collapse
Affiliation(s)
- Kanishka Rangamuwa
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Tracy Leong
- Department of Respiratory Medicine, Austin Hospital, Heidelberg, Victoria, Australia
| | - Clare Weeden
- Personalised Oncology Division, Walter Eliza Hall institute, Melbourne, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
| | - Tom John
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Antippa
- Department of Thoracic Surgery, Royal Melbourne Hospital, Melbourne, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| |
Collapse
|
19
|
Páez-Carpio A, Gómez FM, Isus Olivé G, Paredes P, Baetens T, Carrero E, Sánchez M, Vollmer I. Image-guided percutaneous ablation for the treatment of lung malignancies: current state of the art. Insights Imaging 2021; 12:57. [PMID: 33914187 PMCID: PMC8085189 DOI: 10.1186/s13244-021-00997-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
Image-guided percutaneous lung ablation has proven to be a valid treatment alternative in patients with early-stage non-small cell lung carcinoma or oligometastatic lung disease. Available ablative modalities include radiofrequency ablation, microwave ablation, and cryoablation. Currently, there are no sufficiently representative studies to determine significant differences between the results of these techniques. However, a common feature among them is their excellent tolerance with very few complications. For optimal treatment, radiologists must carefully select the patients to be treated, perform a refined ablative technique, and have a detailed knowledge of the radiological features following lung ablation. Although no randomized studies comparing image-guided percutaneous lung ablation with surgery or stereotactic radiation therapy are available, the current literature demonstrates equivalent survival rates. This review will discuss image-guided percutaneous lung ablation features, including available modalities, approved indications, possible complications, published results, and future applications.
Collapse
Affiliation(s)
- Alfredo Páez-Carpio
- Department of Radiology, CDI, Hospital Clínic, University of Barcelona, Barcelona, Spain.
| | - Fernando M Gómez
- Department of Radiology, CDI, Hospital Clínic, University of Barcelona, Barcelona, Spain.,Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gemma Isus Olivé
- Department of Radiology, CDI, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pilar Paredes
- Department of Nuclear Medicine, CDI, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Tarik Baetens
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Enrique Carrero
- Department of Anesthesiology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Marcelo Sánchez
- Department of Radiology, CDI, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Ivan Vollmer
- Department of Radiology, CDI, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Abstract
Delivery of genetic material to tissues in vivo is an important technique used in research settings and is the foundation upon which clinical gene therapy is built. The lung is a prime target for gene delivery due to a host of genetic, acquired, and infectious diseases that manifest themselves there, resulting in many pathologies. However, the in vivo delivery of genetic material to the lung remains a practical problem clinically and is considered the major obstacle needed to be overcome for gene therapy. Currently there are four main strategies for in vivo gene delivery to the lung: viral vectors, liposomes, nanoparticles, and electroporation. Viral delivery uses several different genetically modified viruses that enter the cell and express desired genes that have been inserted to the viral genome. Liposomes use combinations of charged and neutral lipids that can encapsulate genetic cargo and enter cells through endogenous mechanisms, thereby delivering their cargoes. Nanoparticles are defined by their size (typically less than 100 nm) and are made up of many different classes of building blocks, including biological and synthetic polymers, cell penetrant and other peptides, and dendrimers, that also enter cells through endogenous mechanisms. Electroporation uses mild to moderate electrical pulses to create pores in the cell membrane through which delivered genetic material can enter a cell. An emerging fifth category, exosomes and extracellular vesicles, may have advantages of both viral and non-viral approaches. These extracellular vesicles bud from cellular membranes containing receptors and ligands that may aid cell targeting and which can be loaded with genetic material for efficient transfer. Each of these vectors can be used for different gene delivery applications based on mechanisms of action, side-effects, and other factors, and their use in the lung and possible clinical considerations is the primary focus of this review.
Collapse
Affiliation(s)
- Uday K Baliga
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - David A Dean
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
21
|
Rai N, Shihan M, Seeger W, Schermuly RT, Novoyatleva T. Genetic Delivery and Gene Therapy in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031179. [PMID: 33503992 PMCID: PMC7865388 DOI: 10.3390/ijms22031179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive complex fatal disease of multiple etiologies. Hyperproliferation and resistance to apoptosis of vascular cells of intimal, medial, and adventitial layers of pulmonary vessels trigger excessive pulmonary vascular remodeling and vasoconstriction in the course of pulmonary arterial hypertension (PAH), a subgroup of PH. Multiple gene mutation/s or dysregulated gene expression contribute to the pathogenesis of PAH by endorsing the proliferation and promoting the resistance to apoptosis of pulmonary vascular cells. Given the vital role of these cells in PAH progression, the development of safe and efficient-gene therapeutic approaches that lead to restoration or down-regulation of gene expression, generally involved in the etiology of the disease is the need of the hour. Currently, none of the FDA-approved drugs provides a cure against PH, hence innovative tools may offer a novel treatment paradigm for this progressive and lethal disorder by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. Here, we review the effectiveness and limitations of the presently available gene therapy approaches for PH. We provide a brief survey of commonly existing and currently applicable gene transfer methods for pulmonary vascular cells in vitro and describe some more recent developments for gene delivery existing in the field of PH in vivo.
Collapse
Affiliation(s)
- Nabham Rai
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Mazen Shihan
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Tatyana Novoyatleva
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Correspondence:
| |
Collapse
|
22
|
Abstract
Lung ablation has been introduced into lung cancer treatment for about two decades. Currently, 3 main choices of thermal energy for lung ablation are radiofrequency ablation (RFA), microwave ablation (MWA), and cryoablation. As a mostly palliative, occasionally curative intent local treatment, the feasibility and safety of lung ablation have been validated in small size lung cancer treatment, especially in lung tumor ≤3 cm. Improved techniques and experience in recent years help render outcomes much better than before for lung cancer patients who are medically inoperable with early stage primary lung cancer, and patients with oligometastasis or local recurrence. For stage IA non-small cell lung cancer (NSCLC) patients underwent RFA, 1- and 2-year overall survival rate were reported as 86.3% and 69.8%. And 1- and 2-year local recurrence rate were reported as 68.9% and 59.8%. Limitations, including heat sink, skin burn, and inconsistent heat conduction, are observed in the first applied ablation technique, RFA. MWA and cryoablation are developed to overcome these limitations and achieve the goal of less morbidity. Generally, imaged guided thermal ablation has a good safety profile, with pneumothorax as the most common morbidity. This article will mainly discuss the current features and application of these ablation techniques in lung cancer treatment.
Collapse
Affiliation(s)
- Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pat Eiken
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Shanda Blackmon
- Department of Surgery, Division of Thoracic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
23
|
Thakore S, Perez Lozada JC. Percutaneous Ablation of Intrathoracic Malignancy. CURRENT PULMONOLOGY REPORTS 2020. [DOI: 10.1007/s13665-020-00262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Helmberger T. The evolution of interventional oncology in the 21st century. Br J Radiol 2020; 93:20200112. [PMID: 32706978 PMCID: PMC7465871 DOI: 10.1259/bjr.20200112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Interventional oncology (IO) has proven to be highly efficient in the local therapy of numerous malignant tumors in addition to surgery, chemotherapy, and radiotherapy. Due to the advent of immune-oncology with the possibility of tumor control at the molecular and cellular levels, a system change is currently emerging. This will significantly rule oncology in the coming decades. Therefore, one cannot think about IO in the 21st century without considering immunology. For IO, this means paying much more attention to the immunomodulatory effects of the interventional techniques, which have so far been neglected, and to explore the synergistic possibilities with immuno-oncology. It can be expected that the combined use of IO and immuno-oncology will help to overcome the limitations of the latter, such as limited local effects and a high rate of side-effects. To do this, however, sectoral boundaries must be removed and interdisciplinary research efforts must be strengthened. In case of success, IO will face an exciting future.
Collapse
Affiliation(s)
- Thomas Helmberger
- Department of Radiology, Neuroradiology, and minimal-invasive Therapy, Munich Klinik Bogenhausen Englschalkingerstr. 77 81925, Munich, Germany
| |
Collapse
|
25
|
Steinfort DP, Herth FJF. Bronchoscopic treatments for early-stage peripheral lung cancer: Are we ready for prime time? Respirology 2020; 25:944-952. [PMID: 32643221 DOI: 10.1111/resp.13903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide and surgical lobectomy remains the preferred therapy for patients with early-stage NSCLC. Medical comorbidities and advanced age preclude resection in many patients and minimally invasive ablative therapies are needed for treatment. Stereotactic ablative radiation is established as an effective modality in this patient group, although may be contraindicated in some patients with prior radiation exposure, comorbidities or centrally positioned tumours. Percutaneous ablative methods are available, although are frequently associated with significant complications. Numerous endoscopic ablative techniques are under evaluation. With a more favourable safety profile and the ability to provide diagnosis and staging information potentially within a single procedure, there is a strong rationale for development of bronchoscopic ablative modalities. In the following article, the authors aim to explore the role bronchoscopic ablation may play in treatment of peripheral lung tumours, and to describe a pathway to establishing these modalities as part of routine care. The current status of several bronchoscopic ablative options is discussed in detail.
Collapse
Affiliation(s)
- Daniel P Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Felix J F Herth
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRCH), German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
26
|
O'Neill CH, Martin RCG. Cardiac synchronization and arrhythmia during irreversible electroporation. J Surg Oncol 2020; 122:407-411. [PMID: 32483842 DOI: 10.1002/jso.26041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Irreversible electroporation (IRE) is a nonthermal electrical tumor ablative strategy for unresectable tumors. IRE is relatively safe around critical structures but may induce cardiac arrhythmia when its delivery is not synchronized to the cardiac cycle. We performed a systematic literature review to determine rates of arrhythmia when IRE was utilized with or without cardiac synchronization. METHODS An online literature search was conducted with additional hand selection of articles. Data were extracted and pooled analyses were performed. RESULTS Twelve articles were included in analysis. IRE was performed for 481 patients; 46% hepatic tumors (n = 223), 36% pancreatic lesions (n = 168), and multiple other locations including prostate. Synchronization was performed on 422 patients. Arrhythmias were noted in 3.7% of cases (n = 18/481); cardiac synchronization: 1.2% (n = 5/422) vs unsynchronized: 22.0% (n = 13/59), P < .0001. These events occurred in every organ except the prostate. CONCLUSIONS IRE remains a potent technology for unresectable tumors, but arrhythmia is a clinical concern. This literature review confirms that cardiac gating should be used in all cases outside of prostate to prevent this potentially serious adverse event.
Collapse
Affiliation(s)
- Conor H O'Neill
- Division of Surgical Oncology, Department of Surgery, University of Louisville, Louisville, Kentucky
| | - Robert C G Martin
- Division of Surgical Oncology, Department of Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
27
|
Hossain S, Abdelgawad A. Analysis of membrane permeability due to synergistic effect of controlled shock wave and electric field application. Electromagn Biol Med 2019; 39:20-29. [DOI: 10.1080/15368378.2019.1706553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shadeeb Hossain
- School of Science and Technology, Central Michigan University, Mount Pleasant, MI, USA
| | - Ahmed Abdelgawad
- School of Science and Technology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
28
|
Beitel-White N, Bhonsle S, Martin RCG, Davalos RV. Electrical Characterization of Human Biological Tissue for Irreversible Electroporation Treatments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4170-4173. [PMID: 30441274 DOI: 10.1109/embc.2018.8513341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Irreversible electroporation (IRE) is a cancer therapy that uses short, high-voltage electrical pulses to treat tumors. Due to its predominantly non-thermal mechanism and ability to ablate unresectable tumors, IRE has gained popularity in clinical treatments of both liver and pancreatic cancers. Existing computational models use electrical properties of animal tissue that are quantified a priori to predict the area of treatment in three dimensions. However, the changes in the electrical properties of human tissue during IRE treatment are so far unexplored. This work aims to improve models by characterizing the dynamic electrical behavior of human liver and pancreatic tissue. Fresh patient samples of each tissue type, both normal and tumor, were collected and IRE pulses were applied between two parallel metal plates at various voltages. The electrical conductivity was determined from the resistance using simple relations applicable to cylindrical samples. The results indicate that the percent change in conductivity during IRE treatments varies significantly with increasing electric field magnitudes. This percent change versus applied electric field behavior can be fit to a sigmoidal curve, as proposed in prior studies. The generic conductivity data from human patients from this work can be input to computational software using patient-specific geometry, giving clinicians a more accurate and personalized prediction of a given IRE treatment.
Collapse
|
29
|
Moussa AM, Ziv E, Solomon SB, Camacho JC. Microwave Ablation in Primary Lung Malignancies. Semin Intervent Radiol 2019; 36:326-333. [PMID: 31680724 DOI: 10.1055/s-0039-1700567] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Eighty-five percent of cases correspond to non-small cell lung cancer (NSCLC) and pivotal nonsurgical options for early-stage disease include percutaneous ablation and stereotactic body radiation therapy (SBRT). Microwave Ablation (MWA) is a locoregional treatment option that has many advantages over radiofrequency ablation and has been able to overcome the limitations of this technique in the treatment of early-stage NSCLC. In this review article, we highlight the current evidence supporting the use of MWA in patients with early-stage NSCLC and discuss the technical considerations of the procedure, including optimal patient selection and planning strategies, as well as the potential complications and reported outcomes. Finally, we mention future trends involving ablation in NSCLC, including its role in combination with SBRT in central tumors, management of post-SBRT local recurrence, and its potential as an adjuvant treatment option for patients with resistance to systemic therapy or in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Amgad M Moussa
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Etay Ziv
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen B Solomon
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan C Camacho
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
30
|
Abstract
Conventional approaches to the treatment of early-stage lung cancer have focused on the use of surgical methods to remove the tumor. Recent progress in radiation therapy techniques and in the field of interventional oncology has seen the development of several novel ablative therapies that have gained widespread acceptance as alternatives to conventional surgical options in appropriately selected patients. Local control rates with stereotactic body radiation therapy for early-stage lung cancer now approach those of surgical resection, while percutaneous ablation is in widespread use for the treatment of lung cancer and oligometastatic disease for selected other malignancies. Tumors treated with targeted medical and ablative therapies can respond to treatment differently when compared with conventional therapies. For example, after stereotactic body radiation therapy, radiologic patterns of posttreatment change can mimic disease progression, and, following percutaneous ablation, the expected initial increase in the size of a treated lesion limits the utility of conventional size-based response assessment criteria. In addition, numerous treatment-related side effects have been described that are important to recognize, both to ensure appropriate treatment and to avoid misclassification as worsening tumor. Imaging plays a vital role in the assessment of patients receiving targeted ablative therapy, and it is essential that thoracic radiologists become familiar with these findings.
Collapse
|
31
|
Auloge P, Cazzato RL, Koch G, Caudrelier J, De Marini P, Garnon J, Gangi A. Destruction tumorale percutanée. Presse Med 2019; 48:1146-1155. [DOI: 10.1016/j.lpm.2019.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
|
32
|
Prud’homme C, Deschamps F, Moulin B, Hakime A, Al-Ahmar M, Moalla S, Roux C, Teriitehau C, de Baere T, Tselikas L. Image-guided lung metastasis ablation: a literature review. Int J Hyperthermia 2019; 36:37-45. [DOI: 10.1080/02656736.2019.1647358] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Clara Prud’homme
- Interventional Radiology Unit, Medical Imaging Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Frederic Deschamps
- Interventional Radiology Unit, Medical Imaging Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Benjamin Moulin
- Interventional Radiology Unit, Medical Imaging Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Antoine Hakime
- Interventional Radiology Unit, Medical Imaging Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Marc Al-Ahmar
- Interventional Radiology Unit, Medical Imaging Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Salma Moalla
- Interventional Radiology Unit, Medical Imaging Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charles Roux
- Interventional Radiology Unit, Medical Imaging Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christophe Teriitehau
- Interventional Radiology Unit, Medical Imaging Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Thierry de Baere
- Interventional Radiology Unit, Medical Imaging Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lambros Tselikas
- Interventional Radiology Unit, Medical Imaging Department, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
33
|
Palussière J, Catena V, Lagarde P, Cousin S, Cabart M, Buy X, Chomy F. Primary tumors of the lung: should we consider thermal ablation as a valid therapeutic option? Int J Hyperthermia 2019; 36:46-52. [DOI: 10.1080/02656736.2019.1647351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
| | | | | | - Sophie Cousin
- Oncology Department, Institut Bergonié, Bordeaux, France
| | | | - Xavier Buy
- Imaging Department, Institut Bergonié, Bordeaux, France
| | - François Chomy
- Oncology Department, Institut Bergonié, Bordeaux, France
| |
Collapse
|
34
|
|
35
|
Tafti BA, Genshaft S, Suh R, Abtin F. Lung Ablation: Indications and Techniques. Semin Intervent Radiol 2019; 36:163-175. [PMID: 31435124 DOI: 10.1055/s-0039-1693981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lung ablation is ever more recognized since its initial report and use almost two decades ago. With technological advancements in thermal modalities, particularly microwave ablation and cryoablation, better identification of the cohort of patients who best benefit from ablation, and understanding the role of imaging after ablation, image-guided thermal ablation for primary and secondary pulmonary malignancies is increasingly recognized and accepted as a cogent form of local therapy.
Collapse
Affiliation(s)
- Bashir Akhavan Tafti
- Divisions of Interventional Radiology, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
| | - Scott Genshaft
- Thoracic Imaging at the Department of Radiological Sciences, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
| | - Robert Suh
- Divisions of Interventional Radiology, David Geffen School of Medicine, UCLA Health System, Los Angeles, California.,Thoracic Imaging at the Department of Radiological Sciences, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
| | - Fereidoun Abtin
- Divisions of Interventional Radiology, David Geffen School of Medicine, UCLA Health System, Los Angeles, California.,Thoracic Imaging at the Department of Radiological Sciences, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
| |
Collapse
|
36
|
Hoffer EK, Shelton TW, Ring NY. Pulmonary Hemorrhage during Irreversible Electroporation of Hepatocellular Carcinoma. J Vasc Interv Radiol 2019; 30:970-972.e1. [PMID: 31126611 DOI: 10.1016/j.jvir.2019.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/08/2019] [Accepted: 02/17/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Eric K Hoffer
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03755; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | - Natalie Y Ring
- Department of Radiology, Johns Hopkins Medical Center, Baltimore, Maryland
| |
Collapse
|
37
|
Ritter A, Bruners P, Isfort P, Barabasch A, Pfeffer J, Schmitz J, Pedersoli F, Baumann M. Electroporation of the Liver: More Than 2 Concurrently Active, Curved Electrodes Allow New Concepts for Irreversible Electroporation and Electrochemotherapy. Technol Cancer Res Treat 2019; 17:1533033818809994. [PMID: 30411673 PMCID: PMC6259055 DOI: 10.1177/1533033818809994] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation and electrochemotherapy are 2 innovative electroporation-based minimally invasive therapies for the treatment of cancer. Combining nonthermal effects of irreversible electroporation with local application of chemotherapy, electrochemotherapy is an established treatment modality for skin malignancies. Since the application of electrochemotherapy in solid organs is a promising approach, this article describes a novel electrode configuration and field generating method. For the treatment of hepatic malignancies, the shape of the electric field should resemble a spherical 3-dimensional geometry around the target tissue inside the liver. To adapt the actual shape of the field, the probe is designed in computer-aided design with a live link to a computer simulation software: Changes in design can be revalued quickly, regarding different quality criteria for field strength inside and outside the tumor. To rate these criteria, a set of formulas with weighting coefficients has been included. As a result of this design process, a needle-shaped prototype applicator has been built, designed for an intracorporal electroporation-based treatment. It can be used as percutaneous, image-guided, minimally invasive treatment option for malignant liver tumors. The shaft of the probe is used as central electrode and fitted with additional 4 expandable electrodes. These satellite electrodes are hollow, thus serving as injectors for chemotherapeutic agents within the area of the electric field. This configuration can be used for electrochemotherapy as well as irreversible electroporation. By placing 5 electrodes with just one needle, the procedure duration as well as the radiation dose can be reduced tremendously. Additionally, the probe offers an option to adapt the field geometry to the tumor geometry by connecting the 5 electrodes to 5 individually chosen electric potentials: By fine-tuning the ablation zone via the potentials instead of adjusting the location of the electrode(s), the procedure duration as well as the radiation dose will decrease further.
Collapse
Affiliation(s)
- Andreas Ritter
- 1 Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany.,2 Institute of Applied Medical Engineering (AME), Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Philipp Bruners
- 1 Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Peter Isfort
- 1 Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Alexandra Barabasch
- 1 Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Joachim Pfeffer
- 1 Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jula Schmitz
- 1 Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Federico Pedersoli
- 1 Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Martin Baumann
- 2 Institute of Applied Medical Engineering (AME), Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Beermann M, Lindeberg J, Engstrand J, Galmén K, Karlgren S, Stillström D, Nilsson H, Harbut P, Freedman J. 1000 consecutive ablation sessions in the era of computer assisted image guidance - Lessons learned. Eur J Radiol Open 2018; 6:1-8. [PMID: 30547062 PMCID: PMC6282637 DOI: 10.1016/j.ejro.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Computer assisted targeting techniques are simple to use and improve results in ablative tumour treatments. The indications for ablative soft tissue tumour ablation are increasing. Treatments are superior to resective surgery in terms of complications and hospitalization, oncological non-inferiority remains to be proven. An incomplete ablation can be retreated without negative effects on survival. Jet ventilation is an effective technique to minimize organ displacement during percutaneous or laparoscopic ablation.
Background Ablation therapies for tumours are becoming more used as ablation modalities evolve and targeting solutions are getting better. There is an increasing body of long-term results challenging resection and proving lower morbidities and costs. The aim of this paper is to share the experiences from a high-volume centre in introducing computer assisted targeting solutions and efficient ablation modalities like microwave generators and irreversible electroporation. Material and methods One thousand consecutive treatments in one high-volume centre were evaluated retrospectively from prospectively collected data. Results The purpose of this paper is to present the benefits of going into computer assisted targeting techniques and microwave technology; pitfalls and overview of outcomes. The main target organ was the liver and the main indications were ablation of hepatocellular carcinomas and colorectal liver metastases. With the assistance of computer assisted targeting the local recurrence rate within 6 months has dropped from 30 to near 10%. The survival of patients with hepatocellular carcinoma and colorectal liver metastases is not worse if the tumour can be retreated after a local recurrence. Multiple colorectal liver metastases can be treated successfully. Discussion The incorporation of computer assisted targeting technologies for ultrasound-, ct guided- and laparoscopic tumour ablation has been very successful and without a noticeable learning curve. The same is true for switching from radiofrequency energies to microwave generators and irreversible electroporation. Conclusion It is well worthwhile upgrading ablation and targeting technologies to achieve excellent and reproducible results and minimizing operator dependency.
Collapse
Key Words
- Ablation
- CAS, computer assisted surgery
- Colorectal liver metastases
- Fused ultrasound
- HFJV, high frequency jet ventilation
- HIFU, high intensity focused ultrasound
- Hepatocellular carcinoma
- IRE
- IRE, irreversible electroporation
- Jet ventilation
- Kidney
- Liver
- Lung
- MWA, microwave ablation
- Microwave
- Pancreas
- RF
- RFA, radio-frequency ablation
- Renal cell carcinoma
- SBRT, stereotactic body radiation therapy
- Stereotactic navigation
- TAE, TACE, trans-arterial embolization or chemo-embolization
- TIVA, total intravenous anaesthesia
- Ultrasound
Collapse
Affiliation(s)
- Marie Beermann
- Dept of Radiology, Danderyd University Hospital, Stockholm, Sweden
| | - Johan Lindeberg
- Dept of Radiology, Danderyd University Hospital, Stockholm, Sweden
| | - Jennie Engstrand
- Dept of Surgery and Urology, Danderyd University Hospital, Stockholm, Sweden
| | - Karolina Galmén
- Dept of Anaesthesiology, Danderyd University Hospital, Stockholm, Sweden
| | - Silja Karlgren
- Dept of Surgery and Urology, Danderyd University Hospital, Stockholm, Sweden
| | - David Stillström
- Dept of Surgery and Urology, Danderyd University Hospital, Stockholm, Sweden
| | - Henrik Nilsson
- Dept of Surgery and Urology, Danderyd University Hospital, Stockholm, Sweden
| | - Piotr Harbut
- Dept of Anaesthesiology, Danderyd University Hospital, Stockholm, Sweden
| | - Jacob Freedman
- Dept of Surgery and Urology, Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Rashid MF, Hecht EM, Steinman JA, Kluger MD. Irreversible electroporation of pancreatic adenocarcinoma: a primer for the radiologist. Abdom Radiol (NY) 2018; 43:457-466. [PMID: 29051982 DOI: 10.1007/s00261-017-1349-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Irreversible electroporation (IRE) is increasingly used for the ablation of unresectable locally advanced pancreatic adenocarcinoma. Unlike other ablation technologies that cannot be safely used around critical vasculature or ducts for risk of thermal damage, IRE uses high-voltage pulses to disrupt cellular membranes. This causes cell death by apoptosis and inflammation. IRE has been deployed by both open and percutaneous approaches. Generator parameters are the same for both approaches, and settings are pancreas specific. Variations in settings, probe placement, and probe exposure can result in thermal damage or reversible electroporation and resultant treatment failure, morbidity, or mortality. When used properly, IRE appears to improve overall survival and local recurrence, but does not influence the rate of distant recurrence. However, studies of both open and percutaneous approaches have been relatively small, non-controlled, and without appropriate comparisons. It is challenging for the radiologist to interpret treatment effects after IRE because of a dearth of guiding literature and pathologic correlates. This primer describes technical aspects, pathology correlates, post-IRE imaging, and outcomes for percutaneous and open approaches.
Collapse
Affiliation(s)
- M Farzan Rashid
- Division of Gastrointestinal and Endocrine Surgery, Department of Surgery, Columbia University College of Physicians and Surgeons, 161 Fort Washington Ave - 8th Floor, New York, NY, USA
| | - Elizabeth M Hecht
- Division of Abdominal Imaging, Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Jonathan A Steinman
- Division of Abdominal Imaging, Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Michael D Kluger
- Division of Gastrointestinal and Endocrine Surgery, Department of Surgery, Columbia University College of Physicians and Surgeons, 161 Fort Washington Ave - 8th Floor, New York, NY, USA.
| |
Collapse
|
40
|
Management of Progressive Pulmonary Nodules Found during and outside of CT Lung Cancer Screening Studies. J Thorac Oncol 2017; 12:1755-1765. [DOI: 10.1016/j.jtho.2017.09.1956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
|
41
|
The Role of Percutaneous Image-Guided Thermal Ablation for the Treatment of Pulmonary Malignancies. AJR Am J Roentgenol 2017; 209:740-751. [DOI: 10.2214/ajr.17.18368] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Irreversible electroporation and thermal ablation of tumors in the liver, lung, kidney and bone: What are the differences? Diagn Interv Imaging 2017; 98:609-617. [DOI: 10.1016/j.diii.2017.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022]
|
43
|
Distelmaier M, Barabasch A, Heil P, Kraemer NA, Isfort P, Keil S, Kuhl CK, Bruners P. Midterm Safety and Efficacy of Irreversible Electroporation of Malignant Liver Tumors Located Close to Major Portal or Hepatic Veins. Radiology 2017; 285:1023-1031. [PMID: 28799842 DOI: 10.1148/radiol.2017161561] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose To investigate the efficacy and safety of irreversible electroporation (IRE) in the treatment of hepatic tumors not suitable for thermal ablation (radiofrequency ablation [RFA] or microwave ablation). Materials and Methods This was an institutional review board-approved prospective study in 29 patients (15 men, 14 women; mean age, 63 years ± 12 [standard deviation]) with 43 primary (n = 8) or secondary (n = 35) malignant liver tumors who underwent computed tomography (CT)-guided IRE. All target tumors were located immediately adjacent to major hepatic veins, portal veins, or both; thus, they were not considered suitable for RFA or microwave ablation. Patients underwent postinterventional CT and magnetic resonance (MR) imaging. Systematic follow-up MR imaging was performed for 24 months on average to assess complete ablation, intrahepatic tumor recurrence, and complications. The 95% confidence intervals (CIs) were determined for the rate of bile duct strictures, incomplete ablation, and tumor recurrence. Results Complete ablation was achieved in 40 (93%; 95% CI: 85, 100) of 43 target tumors, with a safety margin of 5-10 mm, and was confirmed at immediate postinterventional CT and MR imaging. In 13 (33%; 95% CI: 18, 47) of 40 completely ablated tumors, intrahepatic tumor recurrence was observed at 2-18 months. However, only two (15%; 95% CI: 0, 35) of these 13 tumors were observed within the ablation zone. In the remaining 11 (85%; 95% CI: 65, 100), tumor growth was observed alongside the needle tract. None of the two true local recurrences occurred at the site of the vessel. All adjacent vessels remained perfused at follow-up. Five (24%; 95% CI: 5, 39) of 21 patients with target tumors adjacent to portal veins developed mild to moderate cholestasis 2-6 weeks after IRE. Conclusion IRE is useful to avoid incomplete ablation secondary to heat-sink effects and damage to major blood vessels; however, needle tract seeding is observed in 26% of treated tumors, and IRE induces sufficient local heating to bile ducts in 24% of ablations. © RSNA, 2017.
Collapse
Affiliation(s)
- Martina Distelmaier
- From the Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexandra Barabasch
- From the Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Philipp Heil
- From the Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Nils A Kraemer
- From the Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Peter Isfort
- From the Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Sebastian Keil
- From the Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Christiane K Kuhl
- From the Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Philipp Bruners
- From the Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
44
|
Lung ablation: Best practice/results/response assessment/role alongside other ablative therapies. Clin Radiol 2017; 72:657-664. [DOI: 10.1016/j.crad.2017.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/26/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023]
|
45
|
叶 欣, 范 卫, 王 徽, 王 俊, 古 善, 冯 威, 庄 一, 刘 宝, 李 晓, 李 玉, 杨 坡, 杨 霞, 杨 武, 陈 俊, 张 嵘, 林 征, 孟 志, 胡 凯, 柳 晨, 彭 忠, 韩 玥, 靳 勇, 雷 光, 翟 博, 黄 广, 中国抗癌协会肿瘤微创治疗专业委员会肺癌微创治疗分会. [Expert Consensus for Thermal Ablation of Primary and Metastatic Lung Tumors
(2017 Edition)]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:433-445. [PMID: 28738958 PMCID: PMC5972946 DOI: 10.3779/j.issn.1009-3419.2017.07.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- 欣 叶
- 250014 济南, 山东大学附属省立医院肿瘤科Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250014, China
| | - 卫君 范
- 510060 广州, 中山大学肿瘤医院影像与微创介入中心Imaging and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - 徽 王
- 130012 长春, 吉林省肿瘤医院介入治疗中心Interventional Treatment Center, Jilin Provincial Tumor Hospital, Changchun 130012, China
| | - 俊杰 王
- 100191 北京, 北京大学第三医院放射治疗科Department of Radiation Oncology, Peking University 3rd Hospital, Beijing 100191, China
| | - 善智 古
- 410013 长沙, 湖南省肿瘤医院放射介入科Department of Interventional Therapy, Hunan Provincial Tumor Hospital, Changsha 410013, China
| | - 威健 冯
- 100045 北京, 首都医科大学附属复兴医院肿瘤科Department of Oncology, Fuxing Hospital Affiliated to the Capital University of Medical Sciences, Beijing 100045, China
| | - 一平 庄
- 210009 南京, 江苏省肿瘤医院介入科Department of Interventional Therapy, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - 宝东 刘
- 100053 北京, 首都医科大学宣武医院胸外科Department of Thoracic Surgery, Xuanwu Hospital Affiliated to the Capital University of Medical Sciences, Beijing 100053, China
| | - 晓光 李
- 100005 北京, 北京医院肿瘤微创中心Department of Tumor Minimally Invasive Therapy, Beijing Hospital, Beijing 100005, China
| | - 玉亮 李
- 250033 济南, 山东大学第二医院介入治疗中心Interventional Treatment Center, Shandong University Second Hospital, Ji'nan 250033, China
| | - 坡 杨
- 150001 哈尔滨, 哈尔滨医科大学第四人民医院介入放射科Department of Interventional Radiology, The Fourth Hospital of Harbin Medical University, Harbin 150001, China
| | - 霞 杨
- 250014 济南, 山东大学附属省立医院肿瘤科Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250014, China
| | - 武威 杨
- 100071 北京, 解放军307医院肿瘤微创治疗科Department of Tumor Minimally Invasive Therapy, 307 Hospital, Beijing 100071, China
| | - 俊辉 陈
- 510060 广州, 中山大学肿瘤医院影像与微创介入中心Imaging and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - 嵘 张
- 518036 深圳, 北京大学深圳医院微创介入科Department of Minimally Invasive Interventional Therapy, Shenzhen Hospital of Beijing University, Shenzhen 518036, China
| | - 征宇 林
- 350005 福州, 福建医科大学附属第一医院介入科Department of Interventional Therapy, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - 志强 孟
- 200032 上海, 复旦大学肿瘤医院微创治疗科Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - 凯文 胡
- 100078 北京, 北京中医药大学东方医院肿瘤科Department of Oncology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100078, China
| | - 晨 柳
- 100083 北京, 北京肿瘤医院介入治疗科Department of Interventional Therapy, Beijing Cancer Hospital, Beijing 100083, China
| | - 忠民 彭
- 250014 济南, 山东省立医院胸外科Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250014, China
| | - 玥 韩
- 100021 北京, 中国医学科学院肿瘤医院介入治疗科Department of Interventional Therapy, Tumor Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - 勇 靳
- 215004 苏州, 苏州大学第二附属医院介入治疗科Department of Interventional Therapy, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - 光焰 雷
- 710061 西安, 陕西省肿瘤医院胸外科Department of Thoracic Surgery, Shanxi Provincial Tumor Hospital, Xi'an 710061, China
| | - 博 翟
- 200127 上海, 上海交通大学仁济医院肿瘤介入治疗科Tumor Interventional Therapy Center, Shanghai Renji Hospital, Shanghai 200127, China
| | - 广慧 黄
- 250014 济南, 山东大学附属省立医院肿瘤科Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan 250014, China
| | | |
Collapse
|
46
|
A Comprehensive Characterization of Parameters Affecting High-Frequency Irreversible Electroporation Lesions. Ann Biomed Eng 2017; 45:2524-2534. [DOI: 10.1007/s10439-017-1889-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
|
47
|
Abstract
Lung cancer had an estimated incidence of 221,200 in 2015, making up 13% of all cancer diagnoses. Tumor ablation is an important treatment option for nonsurgical lung cancer and pulmonary metastatic patients. Radiofrequency ablation has been used for over a decade with newer modalities, microwave ablation, cryoablation, and irreversible electroporation presenting as additional and possibly improved treatment options for patients. This minimally invasive therapy is best for small primary lesions or favorably located metastatic tumors. These technologies can offer palliation and sometimes cure of thoracic malignancies. This article discusses the current available technologies and techniques available for tumor ablation.
Collapse
|
48
|
Chen X, Ren Z, Yin S, Xu Y, Guo D, Xie H, Zhou L, Wu L, Jiang J, Li H, Sun J, Zheng S. The local liver ablation with pulsed electric field stimulate systemic immune reaction against hepatocellular carcinoma (HCC) with time-dependent cytokine profile. Cytokine 2017; 93:44-50. [PMID: 28506570 DOI: 10.1016/j.cyto.2017.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/06/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
Abstract
AIM How irreversible electroporation (IRE) affect immune status is still kept unknown. This preclinical study is to investigate its local and systemic immune reaction both on tumor-bearing and tumor free animals. METHODS Liver ablation was performed by a standard IRE instrument and proposal. Altogether 57 tumor bearing mice and 10 tumor-free porcine livers were ablated. The reaction of survival, radiology image, pathologically and immunologically were followed up. The detailed cytokines and chemokines responses were recorded dynamically post IRE ablation. RESULTS IRE ablation induced coagulation and necrosis in liver. It caused macrophages infiltration, in ablation zone. IRE ablation caused cellular inflammation. It, corrected the abnormal drifted Th2 in HCC back to Th1 status, promoting tumor eradication and host survival. The quantified cytokines and chemokines indicate IRE can stimulate both local immune reaction and systemic immune reaction. CONCLUSION Local IRE ablation changes the abnormal drifted Th2 in HCC back to Th1 status, facilitating tumor eradication and host survival.
Collapse
Affiliation(s)
- Xinhua Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shengyong Yin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Yuning Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Danjing Guo
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Haiyang Xie
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Lin Zhou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Liming Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Jianwen Jiang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Hongchun Li
- Key Laboratory of Hepatobiliary Disease in Shenzhen, Shenzhen 518112, China.
| | - Junhui Sun
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Shusen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
49
|
Percutaneous thermal ablation of primary lung cancer. Diagn Interv Imaging 2016; 97:1019-1024. [DOI: 10.1016/j.diii.2016.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022]
|
50
|
Su C, Meyer M, Pirker R, Voigt W, Shi J, Pilz L, Huber RM, Wu Y, Wang J, He Y, Wang X, Zhang J, Zhi X, Shi M, Zhu B, Schoenberg SS, Henzler T, Manegold C, Zhou C, Roessner ED. From diagnosis to therapy in lung cancer: management of CT detected pulmonary nodules, a summary of the 2015 Chinese-German Lung Cancer Expert Panel. Transl Lung Cancer Res 2016; 5:377-88. [PMID: 27652202 DOI: 10.21037/tlcr.2016.07.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The first Chinese-German Lung Cancer Expert Panel was held in November 2015 one day after the 7th Chinese-German Lung Cancer Forum, Shanghai. The intention of the meeting was to discuss strategies for the diagnosis and treatment of lung cancer within the context of lung cancer screening. Improved risk classification criteria and novel imaging approaches for screening populations are highly required as more than half of lung cancer cases are false positive during the initial screening round if the National Lung Screening Trial (NLST) demographic criteria [≥30 pack years (PY) of cigarettes, age ≥55 years] are applied. Moreover, if the NLST criteria are applied to the Chinese population a high number of lung cancer patients are not diagnosed due to non-smoking related risk factors in China. The primary goal in the evaluation of pulmonary nodules (PN) is to determine whether they are malignant or benign. Volumetric based screening concepts such as investigated in the Dutch-Belgian randomized lung cancer screening trial (NELSON) seem to achieve higher specificity. Chest CT is the best imaging technique to identify the origin and location of the nodule since 20% of suspected PN found on chest X-ray turn out to be non-pulmonary lesions. Moreover, novel state-of-the-art CT systems can reduce the radiation dose for lung cancer screening acquisitions down to a level of 0.1 mSv with improved image quality to novel reconstruction techniques and thus reduce concerns related to chest CT as the primary screening technology. The aim of the first part of this manuscript was to summarize the current status of novel diagnostic techniques used for lung cancer screening and minimally invasive treatment techniques for progressive PNs that were discussed during the first Chinese-German Lung Cancer. This part should serve as an educational part for the readership of the techniques that were discussed during the Expert Panel. The second part summarizes the consensus recommendations that were interdisciplinary discussed by the Expert Panel.
Collapse
Affiliation(s)
- Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Mathias Meyer
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert Pirker
- Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Wieland Voigt
- Medical Innovation and Management, Steinbeis University Berlin, Germany
| | - Jingyun Shi
- Radiology Department, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Lothar Pilz
- Division of Thoracic Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rudolf M Huber
- Division of Respiratory Medicine and Thoracic Oncology, Ludwig-Maximilians-University of Munich Thoracic Oncology Centre, Munich, Germany
| | - Yilong Wu
- Guangdong General Hospital, Lung Cancer Institute, Guangzhou 510080, China
| | - Jinghong Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yonglan He
- Department of Radiology, Beijing Union Medical College Hospital, Beijing 100730, China
| | - Xuan Wang
- Department of Radiology, Beijing Union Medical College Hospital, Beijing 100730, China
| | - Jian Zhang
- Department of Respiratory, the Fourth Military Medical University Xijing Hospital, Xi'an 710032, China
| | - Xiuyi Zhi
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Meiqi Shi
- Department of Oncology, Tumor Hospital of Jiangsu Province, Nanjing 210000, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital of Third Military Medical University, Chongqing 400037, China
| | - Stefan S Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Manegold
- Division of Thoracic Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Eric Dominic Roessner
- Division of Surgical Oncology and Thoracic Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|