1
|
Dos Santos UR, Dos Santos JL. Trichoderma after crossing kingdoms: infections in human populations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:97-126. [PMID: 36748123 DOI: 10.1080/10937404.2023.2172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Trichoderma is a saprophytic fungus that is used worldwide as a biocontrol and biofertilizer agent. Although considered nonpathogenic until recently, reports of human infections produced by members of the Trichoderma genus are increasing. Numerous sources of infection were proposed based upon patient data and phylogenetic analysis, including air, agriculture, and healthcare facilities, but the deficit of knowledge concerning Trichoderma infections makes patient treatment difficult. These issues are compounded by isolates that present profiles which exhibit high minimum inhibitory concentration values to available antifungal drugs. The aim of this review is to present the global distribution and sources of infections that affect both immunocompetent and immunocompromised hosts, clinical features, therapeutic strategies that are used to treat patients, as well as highlighting treatments with the best responses. In addition, the antifungal susceptibility profiles of Trichoderma isolates that have emerged in recent decades were examined and which antifungal drugs need to be further evaluated as potential candidates to treat Trichoderma infections are also indicated.
Collapse
Affiliation(s)
- Uener Ribeiro Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | - Jane Lima Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
2
|
Non- Aspergillus Hyaline Molds: A Host-Based Perspective of Emerging Pathogenic Fungi Causing Sinopulmonary Diseases. J Fungi (Basel) 2023; 9:jof9020212. [PMID: 36836326 PMCID: PMC9964096 DOI: 10.3390/jof9020212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The incidence of invasive sino-pulmonary diseases due to non-Aspergillus hyaline molds is increasing due to an enlarging and evolving population of immunosuppressed hosts as well as improvements in the capabilities of molecular-based diagnostics. Herein, we review the following opportunistic pathogens known to cause sinopulmonary disease, the most common manifestation of hyalohyphomycosis: Fusarium spp., Scedosporium spp., Lomentospora prolificans, Scopulariopsis spp., Trichoderma spp., Acremonium spp., Paecilomyces variotii, Purpureocillium lilacinum, Rasamsonia argillacea species complex, Arthrographis kalrae, and Penicillium species. To facilitate an understanding of the epidemiology and clinical features of sino-pulmonary hyalohyphomycoses in the context of host immune impairment, we utilized a host-based approach encompassing the following underlying conditions: neutropenia, hematologic malignancy, hematopoietic and solid organ transplantation, chronic granulomatous disease, acquired immunodeficiency syndrome, cystic fibrosis, and healthy individuals who sustain burns, trauma, or iatrogenic exposures. We further summarize the pre-clinical and clinical data informing antifungal management for each pathogen and consider the role of adjunctive surgery and/or immunomodulatory treatments to optimize patient outcome.
Collapse
|
3
|
Burzio C, Balzani E, Montrucchio G, Trompeo AC, Corcione S, Brazzi L. Trichoderma spp.-Related Pneumonia: A Case Report in Heart-Lung Transplantation Recipient and a Systematic Literature Review. J Fungi (Basel) 2023; 9:195. [PMID: 36836310 PMCID: PMC9961996 DOI: 10.3390/jof9020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Opportunistic and hospital-acquired infections are common among recipients of solid organ transplantation. New pathogens are increasingly reported in the intensive care unit (ICU) population. We report a case of a patient who developed Trichoderma spp.-related pneumonia (TRP) after heart-lung transplantation. In the absence of antifungal susceptibility testing, TRP was confirmed by histological examination, and empirical therapy with voriconazole and caspofungin was swiftly initiated. Complete resolution of pneumonia was obtained after prolonged combination therapy. Given the lack of guidelines, we conducted a systematic review to elucidate the diagnostic and therapeutic strategies to apply during Trichoderma infection. After deduplication and selection of full texts, we found 42 articles eligible for the systematic review. Pneumonia seems to be the most common clinical manifestation (31.8%). The most used antifungal therapy was amphotericin B, while combination therapy was also reported (27.3%). All the patients were immunocompromised except for one case. Despite the rarity of Trichoderma spp. infection, the increase in invasive fungal infections is of growing importance in ICU, considering their impact on mortality and the emergence of antifungal resistance. In the absence of prospective and multicenter studies, a review can provide useful insight regarding the epidemiology, clinical manifestations, and management of these unexpected challenges.
Collapse
Affiliation(s)
- Carlo Burzio
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy
| | - Eleonora Balzani
- Department of Surgical Science, University of Turin, 10124 Torino, Italy
| | - Giorgia Montrucchio
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy
- Department of Surgical Science, University of Turin, 10124 Torino, Italy
| | - Anna Chiara Trompeo
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10124 Turin, Italy
- School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Luca Brazzi
- Department of Anesthesia, Intensive Care and Emergency, Città della Salute e della Scienza di Torino Hospital, 10126 Torino, Italy
- Department of Surgical Science, University of Turin, 10124 Torino, Italy
| |
Collapse
|
4
|
Trichodermosis: Human Infections Caused by Trichoderma Species. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zhou YB, Zhang GJ, Song YG, Sun LN, Chen YH, Sun TT, Li RY, Liu W, Li DM. Application of laser capture microdissection and polymerase chain reaction in the diagnosis of Trichoderma longibrachiatum infection: a promising diagnostic tool for 'fungal contaminants' infection. Med Mycol 2020; 58:315-321. [PMID: 31127839 DOI: 10.1093/mmy/myz055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/13/2019] [Accepted: 05/20/2019] [Indexed: 12/29/2022] Open
Abstract
Although Trichoderma species are usually considered to be culture contaminants, an increasing number of case reports have demonstrated their pathogenicity. Current diagnostic tools, including fungal culture, radiology, histopathology, and direct microscopy examination, are often unable to differentiate the pathogenicity of 'fungal contaminants' such as Trichoderma species in patients. Accurate diagnostic tools for 'fungal contaminants' infection have become the urgent needs. To that end, we applicated laser capture microdissection (LCM) and polymerase chain reaction (PCR) to confirm T. longibrachiatum infection for the first time. A 57-year-old man presented with a cough and hemoptysis lasting for more than 40 days. Computed tomography scan revealed a mass at the left hilum. In addition to pulmonary spindle cell carcinoma, fungal hyphae were also detected in histopathological examination. The cultured fungus was identified as T. longibrachiatum using molecular procedures. The results from DNA sequencing of DNA obtained by LCM revealed the identical result. Antifungal susceptibility testing revealed resistance to itraconazole, fluconazole and flucytosine. The patient was managed with oral voriconazole for 4 months. No relapse of Trichoderma infection was observed at a year follow-up visit. Although there are potential disadvantages, LCM-based molecular biology technology is a promising diagnostic tool for 'fungal contaminants' infection.
Collapse
Affiliation(s)
- Ya Bin Zhou
- Department of Dermatology, Peking University First Hospital; Research Center for Medical Mycology, Peking University; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China.,Department of Dermatology and Mycological Lab., Peking University Third Hospital, Beijing 100191, China
| | - Gong Jie Zhang
- Department of Dermatology and Mycological Lab., Peking University Third Hospital, Beijing 100191, China
| | - Ying Gai Song
- Department of Dermatology, Peking University First Hospital; Research Center for Medical Mycology, Peking University; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
| | - Li Na Sun
- Department of Respiratory, Peking University Third Hospital, Beijing 100191, China
| | - Ya Hong Chen
- Department of Respiratory, Peking University Third Hospital, Beijing 100191, China
| | - Ting Ting Sun
- Department of Dermatology and Mycological Lab., Peking University Third Hospital, Beijing 100191, China
| | - Ruo Yu Li
- Department of Dermatology, Peking University First Hospital; Research Center for Medical Mycology, Peking University; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
| | - Wei Liu
- Department of Dermatology, Peking University First Hospital; Research Center for Medical Mycology, Peking University; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
| | - Dong Ming Li
- Department of Dermatology and Mycological Lab., Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
6
|
Holý O, Matoušková I, Kubátová A, Hamal P, Svobodová L, Jurásková E, Raida L. Monitoring of Microscopic Filamentous Fungi in Indoor Air of Transplant Unit. Cent Eur J Public Health 2016; 23:331-4. [PMID: 26841147 DOI: 10.21101/cejph.a4062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 05/15/2015] [Indexed: 11/15/2022]
Abstract
AIM The aim of the study was to control the microbial contamination of indoor air monitored monthly at the Transplant Unit of the University Hospital Olomouc from August 2010 to July 2011. METHODS The unit is equipped with a three-stage air filtration system with HEPA filters. The MAS-100 air sampler (Merck, GER) was used. Twenty locations were singled out for the purposes of collecting a total of 720 samplings of the indoor air. Swabs of the HVAC diffusers at the sampling locations were always carried out after the sampling of the indoor air. RESULTS In total, 480 samples of the indoor air were taken for Sabouraud chloramphenicol agar. In 11 cases (2.29%) the cultivation verified the presence of microscopic filamentous fungi. Only two cases involved the sanitary facilities of a patient isolation box; the other positive findings were from the facilities. The most frequent established genus was Aspergillus spp. (4x), followed by Trichoderma spp. (2x) and Penicillium spp. (2x), Paecilomyces spp., Eurotium spp., and Chrysonilia spp. (1x each). In 2 cases the cultivation established sterile aerial mycelium, unfortunately no further identification was possible. A total of 726 swabs of HVAC diffusers were collected (2 positive-0.28%). The study results demonstrated the efficacy of the HVAC equipment. CONCLUSIONS With the continuing increase in the number of severely immunocompromised patients, hospitals are faced with the growing problem of invasive aspergillosis and other opportunistic infections. Preventive monitoring of microbial air contaminants is of major importance for the control of invasive aspergillosis.
Collapse
Affiliation(s)
- Ondřej Holý
- Department of Preventive Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Ivanka Matoušková
- Department of Preventive Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Alena Kubátová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Hamal
- Department of Microbiology, Faculty of Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lucie Svobodová
- Department of Microbiology, Faculty of Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Eva Jurásková
- Department of Dentistry and Oral Sciences, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Luděk Raida
- Department of Haemato-Oncology, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|