1
|
An Y, Zhao W, Zuo L, Fan J, Chen Z, Jin X, Du P, Han P, Zhao W, Yu D. Body composition quantified by CT: chemotherapy toxicity and prognosis in patients with diffuse large B-cell lymphoma. Abdom Radiol (NY) 2024:10.1007/s00261-024-04608-x. [PMID: 39400587 DOI: 10.1007/s00261-024-04608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Yueming An
- Qilu Hospital of Shandong University, Jinan, China
| | - Weijia Zhao
- Qilu Hospital of Shandong University, Jinan, China
| | - Liping Zuo
- Qilu Hospital of Shandong University, Jinan, China
| | - Jinlei Fan
- Qilu Hospital of Shandong University, Jinan, China
| | - Zhiyu Chen
- Qilu Hospital of Shandong University, Jinan, China
| | - Xinjuan Jin
- Qilu Hospital of Shandong University, Jinan, China
| | - Peng Du
- Qilu Hospital of Shandong University, Jinan, China
| | - Pei Han
- Qilu Hospital of Shandong University, Jinan, China
| | - Wei Zhao
- Qilu Hospital of Shandong University, Jinan, China.
| | - Dexin Yu
- Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Goodarzi A, Valikhani M, Amiri F, Safari A. The mechanisms of mutual relationship between malignant hematologic cells and mesenchymal stem cells: Does it contradict the nursing role of mesenchymal stem cells? Cell Commun Signal 2022; 20:21. [PMID: 35236376 PMCID: PMC8889655 DOI: 10.1186/s12964-022-00822-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known as the issue in biology because of some unpredictable characteristics in the different microenvironments especially in their bone marrow niche. MSCs are used in the regenerative medicine because of their unique potentials for trans-differentiation, immunomodulation, and paracrine capacity. But, their pathogenic and pro-survival effects in tumors/cancers including hematologic malignancies are indisputable. MSCs and/or their derivatives might be involved in tumor growth, metastasis and drug resistance in the leukemias. One of important relationship is MSCs and hematologic malignancy-derived cells which affects markedly the outcome of disease. The communication between these two cells may be contact-dependent and/or contact-independent. In this review, we studied the crosstalk between MSCs and malignant hematologic cells which results the final feedback either the progression or suppression of blood cell malignancy. Video abstract.
Collapse
Affiliation(s)
- Alireza Goodarzi
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., The Opposite Side of Mardom Park, Hamadan, 6517838741, Iran
| | - Mohsen Valikhani
- Hematology Department, School of Allied Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd., The Opposite Side of Mardom Park, Hamadan, 6517838741, Iran.
| | - Armita Safari
- Student Research Committee, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
3
|
Chiu M, Taurino G, Dander E, Bardelli D, Fallati A, Andreoli R, Bianchi MG, Carubbi C, Pozzi G, Galuppo L, Mirandola P, Rizzari C, Tardito S, Biondi A, D’Amico G, Bussolati O. ALL blasts drive primary mesenchymal stromal cells to increase asparagine availability during asparaginase treatment. Blood Adv 2021; 5:5164-5178. [PMID: 34614505 PMCID: PMC9153005 DOI: 10.1182/bloodadvances.2020004041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Mechanisms underlying the resistance of acute lymphoblastic leukemia (ALL) blasts to l-asparaginase are still incompletely known. Here we demonstrate that human primary bone marrow mesenchymal stromal cells (MSCs) successfully adapt to l-asparaginase and markedly protect leukemic blasts from the enzyme-dependent cytotoxicity through an amino acid trade-off. ALL blasts synthesize and secrete glutamine, thus increasing extracellular glutamine availability for stromal cells. In turn, MSCs use glutamine, either synthesized through glutamine synthetase (GS) or imported, to produce asparagine, which is then extruded to sustain asparagine-auxotroph leukemic cells. GS inhibition prevents mesenchymal cells adaptation to l-asparaginase, lowers glutamine secretion by ALL blasts, and markedly hinders the protection exerted by MSCs on leukemic cells. The pro-survival amino acid exchange is hindered by the inhibition or silencing of the asparagine efflux transporter SNAT5, which is induced in mesenchymal cells by ALL blasts. Consistently, primary MSCs from ALL patients express higher levels of SNAT5 (P < .05), secrete more asparagine (P < .05), and protect leukemic blasts (P < .05) better than MSCs isolated from healthy donors. In conclusion, ALL blasts arrange a pro-leukemic amino acid trade-off with bone marrow mesenchymal cells, which depends on GS and SNAT5 and promotes leukemic cell survival during l-asparaginase treatment.
Collapse
Affiliation(s)
- Martina Chiu
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Erica Dander
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Donatella Bardelli
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Alessandra Fallati
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Roberta Andreoli
- Laboratory of Industrial Toxicology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Cecilia Carubbi
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Pozzi
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Galuppo
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Laboratory of Anatomy and Histology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carmelo Rizzari
- Pediatric Hematology-Oncology Unit, University of Milano-Bicocca, MBBM Foundation, ASST Monza, Monza, Italy
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; and
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrea Biondi
- Pediatric Hematology-Oncology Unit, University of Milano-Bicocca, MBBM Foundation, ASST Monza, Monza, Italy
| | - Giovanna D’Amico
- Centro Ricerca Tettamanti, Pediatric Department, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Leukemia-Induced Cellular Senescence and Stemness Alterations in Mesenchymal Stem Cells Are Reversible upon Withdrawal of B-Cell Acute Lymphoblastic Leukemia Cells. Int J Mol Sci 2021; 22:ijms22158166. [PMID: 34360930 PMCID: PMC8348535 DOI: 10.3390/ijms22158166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Leukemic cell growth in the bone marrow (BM) induces a very stressful condition. Mesenchymal stem cells (MSC), a key component of this BM niche, are affected in several ways with unfavorable consequences on hematopoietic stem cells favoring leukemic cells. These alterations in MSC during B-cell acute lymphoblastic leukemia (B-ALL) have not been fully studied. In this work, we have compared the modifications that occur in an in vitro leukemic niche (LN) with those observed in MSC isolated from B-ALL patients. MSC in this LN niche showed features of a senescence process, i.e., altered morphology, increased senescence-associated β-Galactosidase (SA-βGAL) activity, and upregulation of p53 and p21 (without p16 expression), cell-cycle arrest, reduced clonogenicity, and some moderated changes in stemness properties. Importantly, almost all of these features were found in MSC isolated from B-ALL patients. These alterations rendered B-ALL cells susceptible to the chemotherapeutic agent dexamethasone. The senescent process seems to be transient since when leukemic cells are removed, normal MSC morphology is re-established, SA-βGAL expression is diminished, and MSC are capable of re-entering cell cycle. In addition, few cells showed low γH2AX phosphorylation that was reduced to basal levels upon cultivation. The reversibility of the senescent process in MSC must impinge important biological and clinical significance depending on cell interactions in the bone marrow at different stages of disease progression in B-ALL.
Collapse
|
5
|
Ruan Y, Kim HN, Ogana H, Kim YM. Wnt Signaling in Leukemia and Its Bone Marrow Microenvironment. Int J Mol Sci 2020; 21:ijms21176247. [PMID: 32872365 PMCID: PMC7503842 DOI: 10.3390/ijms21176247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Leukemia is an aggressive hematologic neoplastic disease. Therapy-resistant leukemic stem cells (LSCs) may contribute to the relapse of the disease. LSCs are thought to be protected in the leukemia microenvironment, mainly consisting of mesenchymal stem/stromal cells (MSC), endothelial cells, and osteoblasts. Canonical and noncanonical Wnt pathways play a critical role in the maintenance of normal hematopoietic stem cells (HSC) and LSCs. In this review, we summarize recent findings on the role of Wnt signaling in leukemia and its microenvironment and provide information on the currently available strategies for targeting Wnt signaling.
Collapse
Affiliation(s)
- Yongsheng Ruan
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hye Na Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology, Oncology, Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90027, USA; (Y.R.); (H.N.K.); (H.O.)
- Correspondence:
| |
Collapse
|
6
|
Fiedler EC, Hemann MT. Aiding and Abetting: How the Tumor Microenvironment Protects Cancer from Chemotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disease recurrence following cancer therapy remains an intractable clinical problem and represents a major impediment to reducing the mortality attributable to malignant tumors. While research has traditionally focused on the cell-intrinsic mechanisms and mutations that render tumors refractory to both classical chemotherapeutics and targeted therapies, recent studies have begun to uncover myriad roles for the tumor microenvironment (TME) in modulating therapeutic efficacy. This work suggests that drug resistance is as much ecological as it is evolutionary. Specifically, cancers resident in organs throughout the body do not develop in isolation. Instead, tumor cells arise in the context of nonmalignant cellular components of a tissue. While the roles of these cell-extrinsic factors in cancer initiation and progression are well established, our understanding of the TME's influence on therapeutic outcome is in its infancy. Here, we focus on mechanisms by which neoplastic cells co-opt preexisting or treatment-induced signaling networks to survive chemotherapy.
Collapse
Affiliation(s)
- Eleanor C. Fiedler
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Michael T. Hemann
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
7
|
Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia 2019; 33:597-611. [PMID: 30705410 PMCID: PMC6756083 DOI: 10.1038/s41375-018-0373-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are known for being multi-potent. However, they also possess anticancer properties, which has prompted efforts to adapt MSCs for anticancer therapies. However, MSCs have also been widely implicated in pathways that contribute to tumor growth. Numerous studies have been conducted to adapt MSCs for further clinical use; however, the results have been inconclusive, possibly due to the heterogeneity of MSC populations. Moreover, the conflicting roles of MSCs in tumor inhibition and tumor growth impede their adaptation for anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in hematologic malignancies are not as well established as they are for solid malignancies, and data comparing them are still limited. Herein the effect of MSCs on hematologic malignancies, such as leukemia and lymphoma, their mechanisms, sources of MSCs, and their effects on different types of cancer, have been discussed. This review describes how MSCs preserve both antitumorigenic and protumorigenic effects, as they tend to not only inhibit tumor growth by suppressing tumor cell proliferation but also promote tumor growth by suppressing tumor cell apoptosis. Thus clinical studies trying to adapt MSCs for anticancer therapies should consider that MSCs could actually promote hematologic cancer progression. It is necessary to take extreme care while developing MSC-based cell therapies in order to boost anticancer properties while eliminating tumor-favoring effects. This review emphasizes that research on the therapeutic applications of MSCs must consider that they exert both antitumorigenic and protumorigenic effects on hematologic malignancies.
Collapse
|
8
|
Houshmand M, Soleimani M, Atashi A, Saglio G, Abdollahi M, Nikougoftar Zarif M. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening. Tissue Eng Part C Methods 2017; 23:72-85. [PMID: 28007011 DOI: 10.1089/ten.tec.2016.0404] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone marrow niche is a major contributing factor in leukemia development and drug resistance in acute myeloid leukemia (AML) patients. Although mimicking leukemic bone marrow niche relies on two-dimensional (2D) culture conditions, it cannot recapitulate complex bone marrow structure that causes introduction of different three-dimensional (3D) scaffolds. Simultaneously, microfluidic platform by perfusing medium culture mimic interstitial fluid flow, along with 3D scaffold would help for mimicking bone marrow microenvironment. In this study TF-1 cells were cocultured with bone marrow mesenchymal stem cells (BM-MSCs) in 2D and 3D microfluidic devices. Phenotype maintenance during cell culture and proliferation rate was assayed and confirmed by cell cycle analysis. Morphology of cells in 2D and 3D culture conditions was demonstrated by scanning electron microscopy. After these experiments, drug screening was performed by applying azacitidine and cytarabine and cytotoxicity assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for B cell lymphoma 2 (BCL2) were done to compare drug resistance in 2D and 3D culture conditions. Our result shows leukemic cells in 3D microfluidic device retaining their phenotype and proliferation rate was significantly higher in 3D culture condition in comparison to 2D culture condition (p < 0.05), which was confirmed by cell cycle analysis. Cytotoxicity assay also illustrated drug resistance in 3D culture condition and qRT-PCR demonstrated higher BCL2 expression in 3D microfluidic device in contrast to 2D microfluidic device (p < 0.05). On balance, mimicking bone marrow niche would help the target therapy and specify the role of niche in development of leukemia in AML patients.
Collapse
Affiliation(s)
- Mohammad Houshmand
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Masoud Soleimani
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Amir Atashi
- 3 Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences , Shahroud, Iran
| | - Giuseppe Saglio
- 4 Department of Clinical and Biological Sciences, "S. Luigi Gonzaga" Hospital, University of Turin , Orbassano, Italy
| | - Mohammad Abdollahi
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mahin Nikougoftar Zarif
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
9
|
Zhang C, Yang SJ, Wen Q, Zhong JF, Chen XL, Stucky A, Press MF, Zhang X. Human-derived normal mesenchymal stem/stromal cells in anticancer therapies. J Cancer 2017; 8:85-96. [PMID: 28123601 PMCID: PMC5264043 DOI: 10.7150/jca.16792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/18/2016] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis, but also has profound effects on therapeutic efficacy. Stromal cells of the TME are increasingly becoming a key consideration in the development of active anticancer therapeutics. However, dispute concerning the role of stromal cells to fight cancer continues because the use of mesenchymal stem/stromal cells (MSCs) as an anticancer agent is dependent on the specific MSCs subtype, in vitro or in vivo conditions, factors secreted by MSCs, types of cancer cell lines and interactions between MSCs, cancer cells and host immune cells. In this review, we mainly focus on the role of human-derived normal MSCs in anticancer therapies. We first discuss the use of different MSCs in the therapies for various cancers. We then focus on their anticancer mechanism and clinical application.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shi-Jie Yang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qin Wen
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jiang F Zhong
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xue-Lian Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Andres Stucky
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
10
|
Zhu N, Wang H, Wei J, Wang B, Shan W, Lai X, Zhao Y, Yu J, Huang H. NR2F2 regulates bone marrow-derived mesenchymal stem cell-promoted proliferation of Reh cells. Mol Med Rep 2016; 14:1351-6. [PMID: 27314877 DOI: 10.3892/mmr.2016.5389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 04/21/2016] [Indexed: 11/06/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are pivotal components of the leukemic microenvironment. BM-MSCs have been previously reported to promote the proliferation of leukemic cells. To further understand the molecular mechanisms of BM-MSC-induced proliferation of leukemic cells, the present study co-cultured acute lymphoblastic leukemia (ALL) Reh cells with BM-MSCs. The current study used methods including shRNA, flow cytometry, MTT, reverse transcription-quantitative polymerase chain reaction, ELISA and western blotting. The data of the present study demonstrated that BM‑MSCs promote the proliferation of Reh cells and the NR2F2 mRNA and protein levels were elevated in BM‑MSCs following co‑culture. Additionally, it was demonstrated that shRNA knockdown of NR2F2 inhibited BM‑MSC‑induced proliferation of Reh cells. Furthermore, following downregulation of NR2F2, vascular endothelial growth factor A (VEGFA) secretion by BM‑MSCs was reduced. The present study demonstrated that NR2F2 mediates BM‑MSC‑induced proliferation of Reh cells, partially via regulation of VEGFA. Disrupting microenvironmental support by targeting NR2F2 may be a potential therapeutic strategy for ALL.
Collapse
Affiliation(s)
- Ni Zhu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Huafang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jieping Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
11
|
Wu XB, Liu Y, Wang GH, Xu X, Cai Y, Wang HY, Li YQ, Meng HF, Dai F, Jin JD. Mesenchymal stem cells promote colorectal cancer progression through AMPK/mTOR-mediated NF-κB activation. Sci Rep 2016; 6:21420. [PMID: 26892992 PMCID: PMC4759824 DOI: 10.1038/srep21420] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/22/2016] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) exert a tumor-promoting effect in a variety of human cancers. This study was designed to identify the molecular mechanisms related to the tumor-promoting effect of MSCs in colorectal cancer. In vitro analysis of colorectal cancer cell lines cultured in MSC conditioned media (MSC-CM) showed that MSC-CM significantly promoted the progression of the cancer cells by enhancing cell proliferation, migration and colony formation. The tumorigenic effect of MSC-CM was attributed to altered expression of cell cycle regulatory proteins and inhibition of apoptosis. Furthermore, MSC-CM induced high level expression of a number of pluripotency factors in the cancer cells. ELISAs revealed MSC-CM contained higher levels of IL-6 and IL-8, which are associated with the progression of cancer. Moreover, MSC-CM downregulated AMPK mRNA and protein phosphorylation, but upregulated mTOR mRNA and protein phosphorylation. The NF-κB pathway was activated after addition of MSC-CM. An in vivo model in Balb/C mice confirmed the ability of MSC-CM to promote the invasion and proliferation of colorectal cancer cells. This study indicates that MSCs promote the progression of colorectal cancer via AMPK/mTOR-mediated NF-κB activation.
Collapse
Affiliation(s)
- Xiao-Bing Wu
- Department of Gastroenterology, the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P. R. China.,Institute of Radiation Medicine, Academy Military Medical Sciences, Beijing 100850, P. R. China
| | - Yang Liu
- The First Hospital Attached to Guiyang College of Traditional Chinese Medicine. Department of Clinical Laboratory, The First Hospital Attached to Guiyang College of Traditional Chinese Medicine, NO.71, Bao Shan North Road, Yunyan District, Guiyang City
| | - Gui-Hua Wang
- Institute of Radiation Medicine, Academy Military Medical Sciences, Beijing 100850, P. R. China
| | - Xiao Xu
- The General Hospital of Chinese Armed Force Police, Beijing 100039, P. R. China
| | - Yang Cai
- Institute of Radiation Medicine, Academy Military Medical Sciences, Beijing 100850, P. R. China
| | - Hong-Yi Wang
- Institute of Radiation Medicine, Academy Military Medical Sciences, Beijing 100850, P. R. China
| | - Yan-Qi Li
- Institute of Radiation Medicine, Academy Military Medical Sciences, Beijing 100850, P. R. China
| | - Hong-Fang Meng
- Institute of Radiation Medicine, Academy Military Medical Sciences, Beijing 100850, P. R. China
| | - Fu Dai
- Department of Gastroenterology, the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P. R. China
| | - Ji-De Jin
- Institute of Radiation Medicine, Academy Military Medical Sciences, Beijing 100850, P. R. China
| |
Collapse
|
12
|
Visceral adipose tissue is prognostic for survival of diffuse large B cell lymphoma treated with frontline R-CHOP. Ann Hematol 2015; 95:409-16. [PMID: 26658607 DOI: 10.1007/s00277-015-2571-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/01/2015] [Indexed: 01/21/2023]
Abstract
The potential role of visceral adipose tissue (VAT) as a prognostic factor in patients with diffuse large B cell lymphoma (DLBCL) treated with frontline rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) immunochemotherapy was explored. Total adipose tissue and VAT were measured by analyzing positron emission tomography (PET)/computed tomography (CT) images obtained during the initial staging of patients with DLBCL. The VAT ratio was calculated as follows: VAT ratio = VAT area/total adipose tissue area. Body mass index (BMI), sex, and International Prognostic Index (IPI) were also incorporated as co-variates in the final model of multivariate Cox regression analysis for survival. A total of 156 patients with DLBCL, who were treated with frontline R-CHOP, were enrolled in our study. The median patient age was 61 years, and 81 patients were male (51.9 %). The median cycle of R-CHOP was six. The IPI risk group was a strong prognostic factor for progression-free survival (PFS) and overall survival (OS) (p < 0.001). Obese BMIs were an independent prognostic factor for PFS, but not for OS in multivariate analyses, compared to patients with normal BMIs (HR = 0.43, 95 % CI = 0.19-0.98, and p = 0.046 for PFS). A high VAT ratio (third tertile) was an independent adverse prognostic factor for PFS and OS in multivariate analyses (HR = 2.87 and 2.66, 95 % CI = 1.30-6.32 and 1.30-5.44, and p = 0.009 and 0.007 for PFS and OS, respectively). VAT ratio was an independent prognostic factor for patients with DLBCL treated with first-line R-CHOP; thus, additional large prospective studies are warranted.
Collapse
|
13
|
Jones CL, Gearheart CM, Fosmire S, Delgado-Martin C, Evensen NA, Bride K, Waanders AJ, Pais F, Wang J, Bhatla T, Bitterman DS, de Rijk SR, Bourgeois W, Dandekar S, Park E, Burleson TM, Madhusoodhan PP, Teachey DT, Raetz EA, Hermiston ML, Müschen M, Loh ML, Hunger SP, Zhang J, Garabedian MJ, Porter CC, Carroll WL. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood 2015; 126:2202-12. [PMID: 26324703 PMCID: PMC4635116 DOI: 10.1182/blood-2015-04-639138] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease.
Collapse
Affiliation(s)
- Courtney L Jones
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Christy M Gearheart
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Susan Fosmire
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | | - Nikki A Evensen
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Karen Bride
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Angela J Waanders
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Faye Pais
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA
| | - Jinhua Wang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY; Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY
| | - Teena Bhatla
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Danielle S Bitterman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Simone R de Rijk
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Wallace Bourgeois
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Smita Dandekar
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Eugene Park
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Tamara M Burleson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | | - David T Teachey
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth A Raetz
- Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT
| | - Michelle L Hermiston
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Mignon L Loh
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA
| | - Stephen P Hunger
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN; and
| | - Michael J Garabedian
- Department of Microbiology, New York University Langone Medical Center, New York, NY
| | | | - William L Carroll
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| |
Collapse
|