1
|
Detrait MY, Warnon S, Lagasse R, Dumont L, De Prophétis S, Hansenne A, Raedemaeker J, Robin V, Verstraete G, Gillain A, Depasse N, Jacmin P, Pranger D. A machine learning approach in a monocentric cohort for predicting primary refractory disease in Diffuse Large B-cell lymphoma patients. PLoS One 2024; 19:e0311261. [PMID: 39352921 PMCID: PMC11444388 DOI: 10.1371/journal.pone.0311261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Primary refractory disease affects 30-40% of patients diagnosed with DLBCL and is a significant challenge in disease management due to its poor prognosis. Predicting refractory status could greatly inform treatment strategies, enabling early intervention. Various options are now available based on patient and disease characteristics. Supervised machine-learning techniques, which can predict outcomes in a medical context, appear highly suitable for this purpose. DESIGN Retrospective monocentric cohort study. PATIENT POPULATION Adult patients with a first diagnosis of DLBCL admitted to the hematology unit from 2017 to 2022. AIM We evaluated in our Center five supervised machine-learning (ML) models as a tool for the prediction of primary refractory DLBCL. MAIN RESULTS One hundred and thirty patients with Diffuse Large B-cell lymphoma (DLBCL) were included in this study between January 2017 and December 2022. The variables used for analysis included demographic characteristics, clinical condition, disease characteristics, first-line therapy and PET-CT scan realization after 2 cycles of treatment. We compared five supervised ML models: support vector machine (SVM), Random Forest Classifier (RFC), Logistic Regression (LR), Naïve Bayes (NB) Categorical classifier and eXtreme Gradient Boost (XGboost), to predict primary refractory disease. The performance of these models was evaluated using the area under the receiver operating characteristic curve (ROC-AUC), accuracy, false positive rate, sensitivity, and F1-score to identify the best model. After a median follow-up of 19.5 months, the overall survival rate was 60% in the cohort. The Overall Survival at 3 years was 58.5% (95%CI, 51-68.5) and the 3-years Progression Free Survival was 63% (95%CI, 54-71) using Kaplan-Meier method. Of the 124 patients who received a first line treatment, primary refractory disease occurred in 42 patients (33.8%) and 2 patients (1.6%) experienced relapse within 6 months. The univariate analysis on refractory disease status shows age (p = 0.009), Ann Arbor stage (p = 0.013), CMV infection (p = 0.012), comorbidity (p = 0.019), IPI score (p<0.001), first line of treatment (p<0.001), EBV infection (p = 0.008) and socio-economics status (p = 0.02) as influencing factors. The NB Categorical classifier emerged as the top-performing model, boasting a ROC-AUC of 0.81 (95% CI, 0.64-0.96), an accuracy of 83%, a F1-score of 0.82, and a low false positive rate at 10% on the validation set. The eXtreme Gradient Boost (XGboost) model and the Random Forest Classifier (RFC) followed with a ROC-AUC of 0.74 (95%CI, 0.52-0.93) and 0.67 (95%CI, 0.46-0.88) respectively, an accuracy of 78% and 72% respectively, a F1-score of 0.75 and 0.67 respectively, and a false positive rate of 10% for both. The other two models performed worse with ROC-AUC of 0.65 (95%CI, 0.40-0.87) and 0.45 (95%CI, 0.29-0.64) for SVM and LR respectively, an accuracy of 67% and 50% respectively, a f1-score of 0.64 and 0.43 respectively, and a false positive rate of 28% and 37% respectively. CONCLUSION Machine learning algorithms, particularly the NB Categorical classifier, have the potential to improve the prediction of primary refractory disease in DLBCL patients, thereby providing a novel decision-making tool for managing this condition. To validate these results on a broader scale, multicenter studies are needed to confirm the results in larger cohorts.
Collapse
Affiliation(s)
- Marie Y Detrait
- Department of Technology and Information Systems, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Stéphanie Warnon
- Department of Clinical Research, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Raphaël Lagasse
- Department of Technology and Information Systems, Grand Hôpital de Charleroi, Charleroi, Belgium
- Department of Medico-Economic Information, Grand Hôpital de Charleroi, Charleroi, Belgium
- School of Public Health, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Laurent Dumont
- Department of Technology and Information Systems, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Stéphanie De Prophétis
- Division of Hematology, Hematology and oncology Department, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Amandine Hansenne
- Division of Hematology, Hematology and oncology Department, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Juliette Raedemaeker
- Division of Hematology, Hematology and oncology Department, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Valérie Robin
- Division of Hematology, Hematology and oncology Department, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Géraldine Verstraete
- Division of Hematology, Hematology and oncology Department, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Aline Gillain
- Department of Clinical Research, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Nicolas Depasse
- Department of Technology and Information Systems, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Pierre Jacmin
- Department of Technology and Information Systems, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Delphine Pranger
- Division of Hematology, Hematology and oncology Department, Grand Hôpital de Charleroi, Charleroi, Belgium
| |
Collapse
|
2
|
Qian C, Jiang C, Xie K, Ding C, Teng Y, Sun J, Gao L, Zhou Z, Ni X. Prognosis Prediction of Diffuse Large B-Cell Lymphoma in 18F-FDG PET Images Based on Multi-Deep-Learning Models. IEEE J Biomed Health Inform 2024; 28:4010-4023. [PMID: 38635387 DOI: 10.1109/jbhi.2024.3390804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), a cancer of B cells, has been one of the most challenging and complicated diseases because of its considerable variation in clinical behavior, response to therapy, and prognosis. Radiomic features from medical images, such as PET images, have become one of the most valuable features for disease classification or prognosis prediction using learning-based methods. In this paper, a new flexible ensemble deep learning model is proposed for the prognosis prediction of the DLBCL in 18F-FDG PET images. This study proposes the multi-R-signature construction through selected pre-trained deep learning models for predicting progression-free survival (PFS) and overall survival (OS). The proposed method is trained and validated on two datasets from different imaging centers. Through analyzing and comparing the results, the prediction models, including Age, Ann abor stage, Bulky disease, SUVmax, TMTV, and multi-R-signature, achieve the almost best PFS prediction performance (C-index: 0.770, 95% CI: 0.705-0.834, with feature adding fusion method and C-index: 0.764, 95% CI: 0.695-0.832, with feature concatenate fusion method) and OS prediction (C-index: 0.770 (0.692-0.848) and 0.771 (0.694-0.849)) on the validation dataset. The developed multiparametric model could achieve accurate survival risk stratification of DLBCL patients. The outcomes of this study will be helpful for the early identification of high-risk DLBCL patients with refractory relapses and for guiding individualized treatment strategies.
Collapse
|
3
|
Ip A, Mutebi A, Wang T, Jun M, Kalsekar A, Navarro FR, Wang A, Kamalakar R, Sacchi M, Elliott B. Treatment Outcomes with Standard of Care in Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Real-World Data Analysis. Adv Ther 2024; 41:1226-1244. [PMID: 38302846 PMCID: PMC10879405 DOI: 10.1007/s12325-023-02775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Despite new therapies for relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL), treatments with chemotherapy, single-agent rituximab/obinutuzumab, single-agent lenalidomide, or combinations of these agents continue to be commonly used. METHODS This retrospective study utilized longitudinal data from 4226 real-world electronic health records to characterize outcomes in patients with R/R DLBCL. Eligible patients were diagnosed with DLBCL between January 2010 and March 2022 and had R/R disease treated with ≥ 1 prior systemic line of therapy (LOT), including ≥ 1 anti-CD20-containing regimen. RESULTS A total of 573 patients treated with ≥ 1 prior LOT were included (31.2% and 13.4% with ≥ 2 and ≥ 3 prior LOTs, respectively). Median duration of follow-up was 7.7 months. Most patients (57.1%) were male; mean standard deviation (SD) age was 63 (14.7) years. Overall and complete response rates (95% confidence interval (CI) were 52% (48-56) and 23% (19-27). Median duration of response and duration of complete response were 3.5 and 18.4 months. Median progression-free and overall survival (95% CI) was 3.0 (2.8-3.3) and 12.9 (10.1-16.9) months, respectively. Patients with a higher number of prior LOTs, primary refractoriness, refractoriness to last LOT, refractoriness to last anti-CD20-containing regimen, and prior CAR T exposure had worse outcomes (i.e., challenging-to-treat R/R DLBCL) compared with those without these characteristics. CONCLUSIONS Outcomes in patients with R/R DLBCL treated with chemotherapy, single-agent rituximab/obinutuzumab, single-agent lenalidomide, or combinations of these agents remain poor, especially for those with challenging-to-treat R/R DLBCL. These findings underscore the unmet need for new, safe, and effective therapies, especially for challenging-to-treat R/R DLBCL populations.
Collapse
Affiliation(s)
- Andrew Ip
- Hackensack Meridian Health, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Alex Mutebi
- Genmab US, Inc., 777 Scudders Mill Road, Plainsboro, NJ, 08536, USA.
| | - Tongsheng Wang
- Genmab US, Inc., 777 Scudders Mill Road, Plainsboro, NJ, 08536, USA
| | - Monika Jun
- Genmab US, Inc., 777 Scudders Mill Road, Plainsboro, NJ, 08536, USA
| | - Anupama Kalsekar
- Genmab US, Inc., 777 Scudders Mill Road, Plainsboro, NJ, 08536, USA
| | | | | | | | - Mariana Sacchi
- Genmab US, Inc., 777 Scudders Mill Road, Plainsboro, NJ, 08536, USA
| | - Brian Elliott
- Genmab US, Inc., 777 Scudders Mill Road, Plainsboro, NJ, 08536, USA
| |
Collapse
|
4
|
Butterworth JW, Brooker-Thompson C, Qureshi YA, Mohammadi B, Dawas K. Emergency laparotomy for abdominal catastrophes secondary to lymphoma: A systematic review. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:107268. [PMID: 38043361 DOI: 10.1016/j.ejso.2023.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Intestinal lymphomas can rarely present as abdominal catastrophes with perforation or small bowel obstruction. There is little data regarding their optimal surgical management and associated outcomes. We aimed to systematically review relevant published literature to assess the presentation, diagnosis, optimal surgical approach and associated post-operative outcomes. A systematic on-line literature search of Embase and Medline identified 1485 articles of which 34 relevant studies were selected, including 7 retrospective studies, 1 case series and 26 case reports. Selected articles were assessed by two reviewers to extract data. 95 patients with abdominal catastrophes secondary to lymphoma (predominately Burkitt (28 %) and Diffuse Large B-cell lymphoma (29 %)) were identified with a median age of 52 years, 40 % were female. Of the small bowel resections 25% (n = 18) suffered post-operative complications with a 13.8 % (n = 10) 30-day mortality. Ileocolonic resections had a 27 % complication rate with 18 % mortality and primary repair had a 25 % complications rate and 25 % mortality. Median follow-up was 8 days (range 1-96). Notable points of differences in the presentations between these different lymphomas included the majority of Burkitt's lymphoma were younger, had a known diagnosis, were on chemotherapy and presented with perforation in contrast to those with B cell lymphoma who were predominately older, had new diagnoses and presented with a balanced proportion of obstruction and perforation. Abdominal catastrophes secondary to intestinal lymphomas most commonly present with perforation. Aggressive surgical management, including small bowel resection, may offer similar remission rates for lymphoma patients presenting with abdominal catastrophes as those without such emergency complications.
Collapse
Affiliation(s)
| | | | | | | | - Khaled Dawas
- Department of Upper GI Surgery, University College Hospital London, UK
| |
Collapse
|
5
|
Jun MP, Mutebi A, Chhibber A, Liang C, Keshishian A, Wang A, Rivas Navarro F, Kalsekar A, He J, Wang T. Treatment patterns, healthcare resource utilization, and costs in Medicare patients with diffuse large B-cell lymphoma: a retrospective claims analysis (2015-2020). J Med Econ 2024; 27:1157-1167. [PMID: 39254695 DOI: 10.1080/13696998.2024.2399435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
AIMS To understand treatment patterns, healthcare resource utilization (HCRU), and the economic burden of diffuse large B-cell lymphoma (DLBCL) in elderly adults in the US. MATERIALS AND METHODS This retrospective database analysis utilized US Centers for Medicare and Medicaid Services Medicare fee-for-service administrative claims data from 2015 to 2020 to describe DLBCL patient characteristics, treatment patterns, HCRU, and costs among patients aged ≥66 years. Patients were indexed at DLBCL diagnosis and required to have continuous enrollment from 12 months pre-index until 3 months post-index. HCRU and costs (USD 2022) are reported as per-patient per-month (PPPM) estimates. RESULTS A total of 11,893 patients received ≥1-line (L) therapy; 1,633 and 391 received ≥2 L and ≥3 L therapies, respectively. Median (Q1, Q3) age at 1 L, 2 L, and 3 L initiation, respectively, was 76 (71, 81), 77 (72, 82), and 77 (72, 82) years. The most common therapy was R-CHOP (70.9%) for 1 L and bendamustine ± rituximab for 2 L (18.7%) and 3 L (17.4%). CAR T was used by 14.8% of patients in 3 L. Overall, 39.6% (1 L), 42.1% (2 L), and 47.8% (3 L) of patients had all-cause hospitalizations. All-cause mean (median [Q1-Q3]) costs PPPM during each line were $22,060 ($20,121 [$16,676-$24,597]) in 1 L, $30,027 ($20,868 [$13,416-$31,016]) in 2 L, and $47,064 ($25,689 [$15,555-$44,149]) in 3 L, with increasing costs driven primarily by inpatient expenses. Total all-cause 3 L mean (median [Q1-Q3]) costs PPPM for patients with and without CAR T were $153,847 ($100,768 [$26,534-$253,630]) and $28,466 ($23,696 [$15,466-$39,107]), respectively. CONCLUSIONS No clear standard of care exists in 3 L therapy for older adults with relapsed/refractory DLBCL. The economic burden of DLBCL intensifies with each progressing line of therapy, thus underscoring the need for additional therapeutic options.
Collapse
|
6
|
Jacobson CA, Munoz J, Sun F, Kanters S, Limbrick-Oldfield EH, Spooner C, Mignone K, Ayuk F, Sanderson R, Whitmore J, Wang Y, Xu H, Dickinson M. Real-World Outcomes with Chimeric Antigen Receptor T Cell Therapies in Large B Cell Lymphoma: A Systematic Review and Meta-Analysis. Transplant Cell Ther 2024; 30:77.e1-77.e15. [PMID: 37890589 DOI: 10.1016/j.jtct.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapies, including axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel), are innovative treatments for patients with relapsed or refractory (r/r) large B cell lymphoma (LBCL). Following initial regulatory approvals, real-world evidence (RWE) of clinical outcomes with these therapies has been accumulating rapidly. Notably, several large registry studies have been published recently. Here we comprehensively describe clinical outcomes with approved CAR-T therapies in patients with r/r LBCL using available RWE. We systematically searched Embase, MEDLINE, and 15 conference proceedings to identify studies published between 2017 and July 2022 that included ≥10 patients with r/r LBCL treated with commercially available CAR-T therapies. Eligible study designs were retrospective or prospective observational studies. Key outcomes of interest were objective response rate (ORR), complete response (CR) rate, overall survival (OS), progression-free survival (PFS), cytokine release syndrome (CRS), and immune effector cell-associated neurotoxicity syndrome (ICANS). Random-effects meta-analyses were used to compare real-world outcomes with those of pivotal clinical trials and to compare clinical outcomes associated with axi-cel and tisa-cel. Study cohort mapping was conducted to avoid including patients more than once. Of 76 cohorts we identified, 46 reported patients treated specifically with either axi-cel or tisa-cel, with 39 cohorts (n = 2754 patients) including axi-cel and 20 (n = 1649) including tisa-cel. No studies of liso-cel that met the inclusion criteria were identified during the search period. One-half of the tisa-cel cohorts were European, compared with 33% of the axi-cel cohorts. Among studies with available data, axi-cel had a significantly shorter median time from apheresis to CAR-T infusion than tisa-cel. Despite including broader patient populations, real-world effectiveness and safety of both axi-cel and tisa-cel were consistent with data from the pivotal clinical trials. Comparative meta-analysis of axi-cel versus tisa-cel demonstrated adjusted hazard ratios for OS and PFS of .60 (95% confidence interval [CI], .47 to .77) and .67 (95% CI, .57 to .78), respectively, both in favor of axi-cel. Odds ratios (ORs) for ORR and CR rate, both favoring axi-cel over tisa-cel, were 2.05 (95% CI, 1.76 to 2.40) and 1.70 (95% CI, 1.46 to 1.96), respectively. The probability of grade ≥3 CRS was comparable with axi-cel and tisa-cel, whereas axi-cel was associated with a higher incidence of grade ≥3 ICANS (OR, 3.95; 95% CI, 3.05 to 5.11). Our meta-analysis indicates that CAR-T therapies have manageable safety profiles and are effective in a wide range of patients with r/r LBCL, and that axi-cel is associated with improved OS and PFS and increased risk of grade ≥3 ICANS compared with tisa-cel. Limitations of this study include nonrandomized treatments, potential unknown prognostic factors, and the lack of available real-world data for liso-cel.
Collapse
Affiliation(s)
| | | | - Fang Sun
- Kite, a Gilead Company, Santa Monica, California
| | | | | | | | | | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Sanderson
- King's College London NHS Foundation Trust, London, United Kingdom
| | | | | | - Hairong Xu
- Kite, a Gilead Company, Santa Monica, California
| | - Michael Dickinson
- Clinical Haematology, Peter MacCallum Cancer Centre, and the Sir Peter MacCallum Department of Oncology at the University of Melbourne, Melbourne, Australia.
| |
Collapse
|
7
|
Zhou J, Xu M, Chen Z, Huang L, Wu Z, Huang Z, Liu L. circ_SPEF2 Regulates the Balance of Treg Cells by Regulating miR-16-5p/BACH2 in Lymphoma and Participates in the Immune Response. Tissue Eng Regen Med 2023; 20:1145-1159. [PMID: 37801226 PMCID: PMC10645944 DOI: 10.1007/s13770-023-00585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND This study aims to explore the potential mechanism of action of the newly discovered hsa_circ_0128899 (circSPEF2) in diffuse large B-cell lymphoma (DLBCL). METHODS circSPEF2, miR-16-5p and BTB and CNC homologue 2 (BACH2) expression patterns in DLBCL patients and cell lines were studied by RT-qPCR. The biological function of circSPEF2 in vitro and in vivo was investigated by function acquisition experiments. The proliferation activity of lymphoma cells was detected by MTT. Bax, Caspase-3, and Bcl-2 were determined by Western Blot. Apoptosis and the ratio of CD4 to Treg of immune cells in the co-culture system were analyzed by flow cytometry. The mechanism of action of circSPEF2 in DLBCL progression was further investigated by RIP and dual luciferase reporter experiments. RESULTS circSPEF2 was a circRNA with abnormally down-regulated expression in DLBCL. Increasing circSPEF2 expression inhibited the proliferative activity and induced apoptosis of lymphoma cells in vitro and in vivo, as well as increased CD4+T cells and decreased Treg cell proportion of immune cells in the tumor microenvironment. Mechanically, circSPEF2 was bound to miR-16-5p expression, while BACH2 was targeted by miR-16-5p. circSPEF2 overexpression-mediated effects on lymphoma progression were reversible by upregulating miR-16-5p or downregulating BACH2. CONCLUSIONS circSPEF2 can influence DLBCL progression by managing cellular proliferation and apoptosis and the proportion of immune cells Treg and CD4 through the miR-16-5p/BACH2 axis.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Hematology, Huazhong University of Science and Technology Tongji Medical College Affiliated Union Hospital, No. 1277 Jiefang Avenue, Jianghan District, Wuhan City, 430022, Hubei Province, China
| | - Min Xu
- Department of Hematology, Huazhong University of Science and Technology Tongji Medical College Affiliated Union Hospital, No. 1277 Jiefang Avenue, Jianghan District, Wuhan City, 430022, Hubei Province, China
| | - ZhaoZhao Chen
- Department of Hematology, Huazhong University of Science and Technology Tongji Medical College Affiliated Union Hospital, No. 1277 Jiefang Avenue, Jianghan District, Wuhan City, 430022, Hubei Province, China
| | - LinLin Huang
- Department of Hematology, Huazhong University of Science and Technology Tongji Medical College Affiliated Union Hospital, No. 1277 Jiefang Avenue, Jianghan District, Wuhan City, 430022, Hubei Province, China
| | - ZhuoLin Wu
- Department of Hematology, Huazhong University of Science and Technology Tongji Medical College Affiliated Union Hospital, No. 1277 Jiefang Avenue, Jianghan District, Wuhan City, 430022, Hubei Province, China
| | - ZhongPei Huang
- Department of Hematology, Huazhong University of Science and Technology Tongji Medical College Affiliated Union Hospital, No. 1277 Jiefang Avenue, Jianghan District, Wuhan City, 430022, Hubei Province, China
| | - Lin Liu
- Department of Hematology, Huazhong University of Science and Technology Tongji Medical College Affiliated Union Hospital, No. 1277 Jiefang Avenue, Jianghan District, Wuhan City, 430022, Hubei Province, China.
| |
Collapse
|
8
|
Brem EA, Sehn LH. Looking to achieve cure the first time around for DLBCL patients who are older and/or with co-morbidities. Semin Hematol 2023; 60:285-290. [PMID: 38368147 DOI: 10.1053/j.seminhematol.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive but often curable malignancy. Older patients, especially those 80 years and older, have poor outcomes compared to those < 60, likely due to a number of reasons including disease biology, comorbidities, and treatment intolerance. Prospective data informing the treatment of older patients and those with multiple co-morbidities is limited. Here, we intend to review available data for regimens other than standard R-CHOP (rituximab, cyclophosphamide, adriamycin, prednisone) or R-pola-CHP (rituximab, polatuzumab vedotin [pola], cyclophosphamide, adriamycin, prednisone), tools available that may aid in treatment selection, and future directions, including the incorporation of newer treatment modalities into therapy for more vulnerable patients.
Collapse
Affiliation(s)
- Elizabeth A Brem
- Department of Medicine, Division of Hematology/Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA
| | - Laurie H Sehn
- BC Cancer Centre for Lymphoid Cancer, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Hilton LK, Ngu HS, Collinge B, Dreval K, Ben-Neriah S, Rushton CK, Wong JC, Cruz M, Roth A, Boyle M, Meissner B, Slack GW, Farinha P, Craig JW, Gerrie AS, Freeman CL, Villa D, Rodrigo JA, Song K, Crump M, Shepherd L, Hay AE, Kuruvilla J, Savage KJ, Kridel R, Karsan A, Marra MA, Sehn LH, Steidl C, Morin RD, Scott DW. Relapse Timing Is Associated With Distinct Evolutionary Dynamics in Diffuse Large B-Cell Lymphoma. J Clin Oncol 2023; 41:4164-4177. [PMID: 37319384 PMCID: PMC10852398 DOI: 10.1200/jco.23.00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL) is cured in more than 60% of patients, but outcomes remain poor for patients experiencing disease progression or relapse (refractory or relapsed DLBCL [rrDLBCL]), particularly if these events occur early. Although previous studies examining cohorts of rrDLBCL have identified features that are enriched at relapse, few have directly compared serial biopsies to uncover biological and evolutionary dynamics driving rrDLBCL. Here, we sought to confirm the relationship between relapse timing and outcomes after second-line (immuno)chemotherapy and determine the evolutionary dynamics that underpin that relationship. PATIENTS AND METHODS Outcomes were examined in a population-based cohort of 221 patients with DLBCL who experienced progression/relapse after frontline treatment and were treated with second-line (immuno)chemotherapy with an intention-to-treat with autologous stem-cell transplantation (ASCT). Serial DLBCL biopsies from a partially overlapping cohort of 129 patients underwent molecular characterization, including whole-genome or whole-exome sequencing in 73 patients. RESULTS Outcomes to second-line therapy and ASCT are superior for late relapse (>2 years postdiagnosis) versus primary refractory (<9 months) or early relapse (9-24 months). Diagnostic and relapse biopsies were mostly concordant for cell-of-origin classification and genetics-based subgroup. Despite this concordance, the number of mutations exclusive to each biopsy increased with time since diagnosis, and late relapses shared few mutations with their diagnostic counterpart, demonstrating a branching evolution pattern. In patients with highly divergent tumors, many of the same genes acquired new mutations independently in each tumor, suggesting that the earliest mutations in a shared precursor cell constrain tumor evolution toward the same genetics-based subgroups at both diagnosis and relapse. CONCLUSION These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease and have implications for optimal patient management.
Collapse
Affiliation(s)
- Laura K. Hilton
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Henry S. Ngu
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Brett Collinge
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Christopher K. Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jasper C.H. Wong
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Manuela Cruz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Barbara Meissner
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey W. Craig
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alina S. Gerrie
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ciara L. Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Diego Villa
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith A. Rodrigo
- Department of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Leukemia/BMT Program of BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Kevin Song
- Department of Hematology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Leukemia/BMT Program of BC, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Michael Crump
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
- Department of Medicine, Queens University, Kingston, Ontario, Canada
| | - Annette E. Hay
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
- Department of Medicine, Queens University, Kingston, Ontario, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Aly Karsan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Marco A. Marra
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan D. Morin
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, British Columbia, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Mandić D, Nežić L, Amdžić L, Vojinović N, Gajanin R, Popović M, Đeri J, Balint MT, Dumanović J, Milovanović Z, Grujić-Milanović J, Škrbić R, Jaćević V. Overexpression of MRP1/ABCC1, Survivin and BCRP/ABCC2 Predicts the Resistance of Diffuse Large B-Cell Lymphoma to R-CHOP Treatment. Cancers (Basel) 2023; 15:4106. [PMID: 37627134 PMCID: PMC10452886 DOI: 10.3390/cancers15164106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Approximately 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience treatment resistance to the first-line R-CHOP regimen. ATP binding cassette (ABC) transporters and survivin might play a role in multidrug resistance (MDR) in various tumors. The aim was to investigate if the coexpression of ABC transporters and survivin was associated with R-CHOP treatment response. METHODS The expression of Bcl-2, survivin, P-glycoprotein/ABCB1, MRP1/ABCC1, and BCRP/ABCC2 was analyzed using immunohistochemistry in tumor specimens obtained from patients with DLBCL, and classified according to the treatment response as Remission, Relapsed, and (primary) Refractory groups. All patients received R-CHOP or equivalent treatment. RESULTS Bcl-2 was in strong positive correlation with clinical parameters and all biomarkers except P-gp/ABCB1. The overexpression of MRP1/ABCC1, survivin, and BCRP/ABCC2 presented as high immunoreactive scores (IRSs) was detected in the Refractory and Relapsed groups (p < 0.05 vs. Remission), respectively, whereas the IRS of P-gp/ABCB1 was low. Significant correlations were found among either MRP1/ABCC1 and survivin or BCRP/ABCC2 in the Refractory and Relapsed groups, respectively. In multiple linear regression analysis, ECOG status along with MRP1/ABCC1 or survivin and BRCP/ABCG2 was significantly associated with the prediction of the R-CHOP treatment response. CONCLUSIONS DLBCL might harbor certain molecular signatures such as MRP1/ABCC1, survivin, and BCRP/ABCC2 overexpression that can predict resistance to R-CHOP.
Collapse
Affiliation(s)
- Danijela Mandić
- Department of Hematology, Clinic of Internal Medicine, University Clinical Center Republic of Srpska, 12 Beba, 78000 Banja Luka, Bosnia and Herzegovina;
- Department of Internal Medicine, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.N.); (R.Š.)
| | - Ljiljana Amdžić
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.)
| | - Nataša Vojinović
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.)
| | - Radoslav Gajanin
- Department of Pathology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Miroslav Popović
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Jugoslav Đeri
- Department of Surgery, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Milena Todorović Balint
- Department of Hematology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic of Hematology, University Clinical Center of Serbia, 2 Pasterova, 11000 Belgrade, Serbia
| | - Jelena Dumanović
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studenski trg 16, 11000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11030 Belgrade, Serbia;
| | - Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, University of Belgrade, Dr. Subotića 4, 11000 Belgrade, Serbia;
| | - Ranko Škrbić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.N.); (R.Š.)
- Center for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; (L.A.); (N.V.)
| | - Vesna Jaćević
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Lu T, Zhang J, Xu-Monette ZY, Young KH. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma. Exp Hematol Oncol 2023; 12:72. [PMID: 37580826 PMCID: PMC10424456 DOI: 10.1186/s40164-023-00432-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) can be cured with standard front-line immunochemotherapy, whereas nearly 30-40% of patients experience refractory or relapse. For several decades, the standard treatment strategy for fit relapsed/refractory (R/R) DLBCL patients has been high-dose chemotherapy followed by autologous hematopoietic stem cell transplant (auto-SCT). However, the patients who failed in salvage treatment or those ineligible for subsequent auto-SCT have dismal outcomes. Several immune-based therapies have been developed, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engaging antibodies, chimeric antigen receptor T-cells, immune checkpoint inhibitors, and novel small molecules. Meanwhile, allogeneic SCT and radiotherapy are still necessary for disease control for fit patients with certain conditions. In this review, to expand clinical treatment options, we summarize the recent progress of immune-related therapies and prospect the future indirections in patients with R/R DLBCL.
Collapse
Affiliation(s)
- Tingxun Lu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Durham, NC, 27710, USA.
| |
Collapse
|
12
|
Welslau M, Kubuschok B, Topaly J, Otremba B, Wolff T, Bryn G. REFLECT: prospective multicenter non-interventional study evaluating the effectiveness and safety of Sandoz rituximab (SDZ-RTX; Rixathon ®) in combination with CHOP for the treatment of patients with previously untreated CD20-positive diffuse large B-cell lymphoma. Ther Adv Hematol 2023; 14:20406207231183765. [PMID: 37492394 PMCID: PMC10363888 DOI: 10.1177/20406207231183765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 06/06/2023] [Indexed: 07/27/2023] Open
Abstract
Background REFLECT is the first prospective study of Sandoz biosimilar rituximab (SDZ-RTX) in patients with diffuse large B-cell lymphoma (DLBCL). Objective To evaluate the 2-year effectiveness and safety of SDZ-RTX as first-line treatment for DLBCL. Design Real-world, multicenter, open-label, single-arm, non-interventional, post-approval study of SDZ-RTX in combination with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in patients with treatment-naïve CD20‑positive DLBCL. Methods Treatment-naïve, CD20-positive adult patients (⩾18 years) with DLBCL eligible for therapy with R-CHOP were treated with SDZ-RTX-CHOP every 2 or 3 weeks for 6-8 cycles. The effectiveness of SDZ-RTX was measured by the complete response (CR) rate at the end of R-CHOP treatment, as assessed by the treating physician. Progression-free survival (PFS) was assessed at 24 months. Results A total of 169 patients [52.1% female, median (range) age 70 (24-94) years] with DLBCL were included in the full analysis set. At baseline, 19.5% and 24.3% of patients had Ann Arbor disease stage III or IV, respectively, and most patients (80.5%) had Eastern Cooperative Oncology Group Performance Status of 0 or 1. A total of 100 (59.2%) patients completed the 24-month observation period. In total, 110 [65.1%; 95% confidence interval (CI): 57.4-72.3] patients achieved CR as best response and 50 (29.6%; 95% CI: 22.8-37.1) patients achieved partial response. Overall best response rate was 94.7% (95% CI: 90.1-97.5). One-year PFS was 84.9% (95% CI: 78.2-89.6), while 2-year PFS was 78.5% (95% CI: 70.9-84.4); median PFS was not reached within the observational period. A total of 143 (84.6%) patients experienced ⩾1 adverse event, 53 (31.4%) of which were suspected to be related to study drug. Conclusion This real-world, 2-year study reconfirms that first-line treatment of CD20-positive DLBCL with R-CHOP using SDZ-RTX is effective and well tolerated. Registration N/A.
Collapse
Affiliation(s)
| | - Boris Kubuschok
- Department of Hematology and Oncology, Augsburg University Medical Centre, Augsburg, Germany
| | - Julian Topaly
- Klinik für Hämatologie und Onkologie, CaritasKlinikum Saarbrücken, Saarbrücken, Germany
| | | | | | | |
Collapse
|
13
|
Meng S, Xia Y, Li M, Wu Y, Wang D, Zhou Y, Ma D, Ye J, Sun T, Ji C. NCBP1 enhanced proliferation of DLBCL cells via METTL3-mediated m6A modification of c-Myc. Sci Rep 2023; 13:8606. [PMID: 37244946 DOI: 10.1038/s41598-023-35777-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is malignant hyperplasia of B lymphocytes and standard care cannot satisfactorily meet clinical needs. Potential diagnostic and prognostic DLBCL biomarkers are needed. NCBP1 could bind to the 5'-end cap of pre-mRNAs to participate in RNA processing, transcript nuclear export and translation. Aberrant NCBP1 expression is involved in the pathogenesis of cancers, but little is known about NCBP1 in DLBCL. We proved that NCBP1 is significantly elevated in DLBCL patients and is associated with their poor prognosis. Then, we found that NCBP1 is important for the proliferation of DLBCL cells. Moreover, we verified that NCBP1 enhances the proliferation of DLBCL cells in a METTL3-dependent manner and found that NCBP1 enhances the m6A catalytic function of METTL3 by maintaining METTL3 mRNA stabilization. Mechanistically, the expression of c-MYC is regulated by NCBP1-enhanced METTL3, and the NCBP1/METTL3/m6A/c-MYC axis is important for DLBCL progression. We identified a new pathway for DLBCL progression and suggest innovative ideas for molecular targeted therapy of DLBCL.
Collapse
Affiliation(s)
- Sibo Meng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Heifei Road, Qingdao, 266035, Shandong, People's Republic of China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yuyan Wu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Dongmei Wang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Ying Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Karmali R, St-Pierre F, Gordon LI. The SYK inhibitor: a novel agent for improved outcomes in relapsed/refractory diffuse large B-cell lymphoma. Future Oncol 2023; 19:737-738. [PMID: 37128997 DOI: 10.2217/fon-2022-1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Affiliation(s)
- Reem Karmali
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frederique St-Pierre
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leo I Gordon
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Michot JM, Quivoron C, Sarkozy C, Danu A, Lazarovici J, Saleh K, El-Dakdouki Y, Goldschmidt V, Bigenwald C, Dragani M, Bahleda R, Baldini C, Arfi-Rouche J, Martin-Romano P, Tselikas L, Gazzah A, Hollebecque A, Lacroix L, Ghez D, Vergé V, Marzac C, Cotteret S, Rahali W, Soria JC, Massard C, Bernard OA, Dartigues P, Camara-Clayette V, Ribrag V. Sequence analyses of relapsed or refractory diffuse large B-cell lymphomas unravel three genetic subgroups of patients and the GNA13 mutant as poor prognostic biomarker, results of LNH-EP1 study. Am J Hematol 2023; 98:645-657. [PMID: 36606708 DOI: 10.1002/ajh.26835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Advances in molecular profiling of newly diagnosed diffuse large B-cell lymphoma (DLBCL) have recently refine genetic subgroups. Genetic subgroups remain undetermined at the time of relapse or refractory (RR) disease. This study aims to decipher genetic subgroups and search for prognostic molecular biomarkers in patients with RR-DLBCL. From 2015 to 2021, targeted next-generation sequencing analyses of germline-matched tumor samples and fresh tissue from RR-DLBCL patients were performed. Unsupervised clustering of somatic mutations was performed and correlations with patient outcome were sought. A number of 120 patients with RR-DLBCL were included in LNH-EP1 study and a molecular tumor landscape was successfully analyzed in 87% of patients (104/120 tumor samples). The median age was 67.5 years (range 27.4-87.4), median number of previous treatments was 2 (range 1-9). The most frequently mutated genes were TP53 (n = 53 mutations; 42% of samples), CREBBP (n = 39; 32%), BCL2 (n = 86; 31%), KMT2D (n = 39; 28%) and PIM1 (n = 54; 22%). Unsupervised clustering separated three genetic subgroups entitled BST (enriched in BCL2, SOCS1, and TNFRSF14 mutations); TKS (enriched in TP53, KMT2D, and STAT6 mutations); and PCM (enriched in PIM1, CD79B, and MYD88 mutations). Median overall survival (OS) was 11.0 (95% confidence interval [CI]: 8.1-12.6) months. OS was not significantly different between the three genetic subgroups. GNA13 mutant was significantly associated with an increased risk of death (hazard ratio: 6.6 [95% CI: 2.1-20.6]; p = .0011) and shorter OS (p = .0340). At the time of relapse or refractory disease, three genetic subgroups of DLBCL patients were delineated, which could help advance precision molecular medicine programs.
Collapse
Affiliation(s)
- Jean-Marie Michot
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Cyril Quivoron
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Clémentine Sarkozy
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Alina Danu
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Khalil Saleh
- Hematology Department, Gustave Roussy, Villejuif, France
| | | | - Vincent Goldschmidt
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | - Matteo Dragani
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Rastislav Bahleda
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Capucine Baldini
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | | | | | | | - Anas Gazzah
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Antoine Hollebecque
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Ludovic Lacroix
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - David Ghez
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Veronique Vergé
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Sophie Cotteret
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Wassila Rahali
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Jean-Charles Soria
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Christophe Massard
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Peggy Dartigues
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Valérie Camara-Clayette
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Ribrag
- Département d'Innovation Thérapeutique et d'Essais Précoces, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Translational Research Hematological Laboratory, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
16
|
Yoon DH, Koh Y, Jung M, Kwak JE, Shin EC, Hwang YK, Kim WS. Phase I Study: Safety and Efficacy of an Ex Vivo-Expanded Allogeneic Natural Killer Cell (MG4101) with Rituximab for Relapsed/Refractory B Cell Non-Hodgkin Lymphoma. Transplant Cell Ther 2023; 29:253.e1-253.e9. [PMID: 36610490 DOI: 10.1016/j.jtct.2022.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/01/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The prognosis of non-Hodgkin lymphoma (NHL) remains poor, with an unmet need for novel therapies. MG4101, an ex vivo-expanded allogeneic natural killer (NK) cell, can enhance rituximab antibody-dependent cytotoxicity in relapsed/refractory (r/r) B cell non-Hodgkin lymphoma. This study assessed the safety and efficacy of MG4101 plus rituximab for patients with r/r NHL. Patients received escalating doses of i.v. MG4101 plus rituximab every 2 weeks. IL-2 was administered s.c. after MG4101 treatment. Fludarabine plus cyclophosphamide was administered i.v. before rituximab treatment in cycles 1, 3, and 5. A 3+3 design was used to determine the maximum tolerated dose (MTD) and maximum feasible dose. Assessments were performed over a 6-cycle period, with an extended maintenance period of up to 8 cycles. Nine patients received 3 different doses of MG4101 and rituximab. MTD could not be determined because of the absence of dose-limiting toxicity. Treatment-related adverse events, mostly grade 1 or 2, occurred in 89% of patients. Only 1 patient experienced grade 1 cytokine release syndrome. MG4101 persisted for at least 7 days in 7 patients. Four patients achieved a partial response and 1 patient attained a complete response, for an overall response rate of 55.6%. Two patients showed prolonged responses and low exhaustion marker levels in T cells. For allogeneic NK cell therapy, strategies including the use of the high-affinity hFcγRIIIaV158 variant of the KIR B/x haplotype with lymphodepleting chemotherapy may be promising options for improving clinical efficacy in the antibody combination therapeutic setting as an off-the-shelf product. MG4101 plus rituximab presented a favorable safety profile and overall response rate in patients with r/r NHL.
Collapse
Affiliation(s)
- Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Miyoung Jung
- Cell Therapy Research Center, GC Cell, Yongin, South Korea
| | - Jeong-Eun Kwak
- Cell Therapy Research Center, GC Cell, Yongin, South Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | | | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
17
|
Bewicke-Copley F, Korfi K, Araf S, Hodkinson B, Kumar E, Cummin T, Ashton-Key M, Barrans S, van Hoppe S, Burton C, Elshiekh M, Rule S, Crosbie N, Clear A, Calaminici M, Runge H, Hills RK, Scott DW, Rimsza LM, Menon G, Sha C, Davies JR, Nagano A, Davies A, Painter D, Smith A, Gribben J, Naresh KN, Westhead DR, Okosun J, Steele A, Hodson DJ, Balasubramanian S, Johnson P, Wang J, Fitzgibbon J. Longitudinal expression profiling identifies a poor risk subset of patients with ABC-type diffuse large B-cell lymphoma. Blood Adv 2023; 7:845-855. [PMID: 35947123 PMCID: PMC9986713 DOI: 10.1182/bloodadvances.2022007536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the effectiveness of immuno-chemotherapy, 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience relapse or refractory disease. Longitudinal studies have previously focused on the mutational landscape of relapse but fell short of providing a consistent relapse-specific genetic signature. In our study, we have focused attention on the changes in GEP accompanying DLBCL relapse using archival paired diagnostic/relapse specimens from 38 de novo patients with DLBCL. COO remained stable from diagnosis to relapse in 80% of patients, with only a single patient showing COO switching from activated B-cell-like (ABC) to germinal center B-cell-like (GCB). Analysis of the transcriptomic changes that occur following relapse suggest ABC and GCB relapses are mediated via different mechanisms. We developed a 30-gene discriminator for ABC-DLBCLs derived from relapse-associated genes that defined clinically distinct high- and low-risk subgroups in ABC-DLBCLs at diagnosis in datasets comprising both population-based and clinical trial cohorts. This signature also identified a population of <60-year-old patients with superior PFS and OS treated with ibrutinib-R-CHOP as part of the PHOENIX trial. Altogether this new signature adds to the existing toolkit of putative genetic predictors now available in DLBCL that can be readily assessed as part of prospective clinical trials.
Collapse
Affiliation(s)
- Findlay Bewicke-Copley
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Koorosh Korfi
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Shamzah Araf
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Brendan Hodkinson
- Oncology Translational Research, Janssen Research & Development, Spring House, PA
| | - Emil Kumar
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Thomas Cummin
- Cancer Research UK Centre, University of Southampton, Southampton, UK
| | - Margaret Ashton-Key
- Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sharon Barrans
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, UK
| | - Suzan van Hoppe
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, UK
| | - Cathy Burton
- Haematological Malignancy Diagnostic Service, St. James’s Institute of Oncology, Leeds, UK
| | - Mohamed Elshiekh
- Cellular & Molecular Pathology, Imperial College NHS Trust & Imperial College London, London, UK
| | - Simon Rule
- Department of Haematology, Derriford Hospital, University of Plymouth, Plymouth, UK
| | - Nicola Crosbie
- Department of Haematology, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Maria Calaminici
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Hendrik Runge
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Robert K. Hills
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David W. Scott
- BC Cancer Centre for Lymphoid Cancer and Department of Medicine, University of British Columbia, Vancouver, BC Canada
| | - Lisa M. Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix AZ
| | - Geetha Menon
- Haemato-Oncology Diagnostic Service, Liverpool Clinical Laboratories, Liverpool, UK
| | - Chulin Sha
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - John R. Davies
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Ai Nagano
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Andrew Davies
- Cancer Research UK Centre, University of Southampton, Southampton, UK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Kikkeri N. Naresh
- Cellular & Molecular Pathology, Imperial College NHS Trust & Imperial College London, London, UK
| | - David R. Westhead
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Andrew Steele
- Oncology Translational Research, Janssen Research & Development, San Diego, CA
| | - Daniel J. Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Peter Johnson
- Cancer Research UK Centre, University of Southampton, Southampton, UK
| | - Jun Wang
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| | - Jude Fitzgibbon
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University, London, UK
| |
Collapse
|
18
|
Hilton LK, Ngu HS, Collinge B, Dreval K, Ben-Neriah S, Rushton CK, Wong JC, Cruz M, Roth A, Boyle M, Meissner B, Slack GW, Farinha P, Craig JW, Gerrie AS, Freeman CL, Villa D, Crump M, Shepherd L, Hay AE, Kuruvilla J, Savage KJ, Kridel R, Karsan A, Marra MA, Sehn LH, Steidl C, Morin RD, Scott DW. Relapse timing is associated with distinct evolutionary dynamics in DLBCL. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286584. [PMID: 36945587 PMCID: PMC10029038 DOI: 10.1101/2023.03.06.23286584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is cured in over 60% of patients, but outcomes are poor for patients with relapsed or refractory disease (rrDLBCL). Here, we performed whole genome/exome sequencing (WGS/WES) on tumors from 73 serially-biopsied patients with rrDLBCL. Based on the observation that outcomes to salvage therapy/autologous stem cell transplantation are related to time-to-relapse, we stratified patients into groups according to relapse timing to explore the relationship to genetic divergence and sensitivity to salvage immunochemotherapy. The degree of mutational divergence increased with time between biopsies, yet tumor pairs were mostly concordant for cell-of-origin, oncogene rearrangement status and genetics-based subgroup. In patients with highly divergent tumors, several genes acquired exclusive mutations independently in each tumor, which, along with concordance of genetics-based subgroups, suggests that the earliest mutations in a shared precursor cell constrain tumor evolution. These results suggest that late relapses commonly represent genetically distinct and chemotherapy-naïve disease.
Collapse
Affiliation(s)
- Laura K. Hilton
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Henry S. Ngu
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Brett Collinge
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Susana Ben-Neriah
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Christopher K. Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Jasper C.H. Wong
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Manuela Cruz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew Roth
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Barbara Meissner
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey W. Craig
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alina S. Gerrie
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ciara L. Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Diego Villa
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael Crump
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queens University, Kingston, ON, Canada
- Department of Medicine, Queens University, Kingston, ON, Canada
| | - Annette E. Hay
- Canadian Cancer Trials Group, Queens University, Kingston, ON, Canada
- Department of Medicine, Queens University, Kingston, ON, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robert Kridel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Aly Karsan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Marco A. Marra
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan D. Morin
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer Research Institute, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Karmali R, St‐Pierre F, Ma S, Foster KD, Kaplan J, Mi X, Pro B, Winter JN, Gordon LI. Phase I study of novel SYK inhibitor TAK-659 (mivavotinib) in combination with R-CHOP for front-line treatment of high-risk diffuse large B-cell lymphoma. EJHAEM 2023; 4:108-114. [PMID: 36819145 PMCID: PMC9928783 DOI: 10.1002/jha2.625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 05/20/2023]
Abstract
Background: TAK-659, a novel oral SYK inhibitor, has demonstrated efficacy in heavily pretreated diffuse large B-cell lymphoma (DLBCL). We report results of a phase I single-institution escalation study of front-line treatment with R-CHOP and TAK-659 in treatment-naïve high-risk DLBCL. Methods: Patients with high-risk DLBCL were treated with R-CHOP for 1 cycle, followed by combined R-CHOP and TAK-659 for an additional five cycles, with TAK-659 dosing escalated from 60 mg, to 80 mg, to 100 mg daily, based on a 3 + 3 design. The primary objective was to determine the safety and establish the maximum tolerated dose (MTD) of TAK-659 in this setting. Results: Twelve patients were enrolled. Dose level 3 (100 mg) was established as the MTD. Dose level 1 (60 mg) maintained a similar area under the curve (AUC) to the MTD. With a median follow-up of 21 months, 92% of patients achieved complete response (CR). The most common treatment-emergent adverse events were lymphopenia (100%), infection (50%, n = 3 opportunistic), aspartate aminotransferase elevation (100%), and alanine aminotransferase elevation (83%). Conclusion: A TAK-659 dose of 60 mg was well tolerated, did not require dose modifications, and maintained a similar AUC to the MTD. The combination of R-CHOP and TAK-659 in patients with newly diagnosed high-risk DLBCL produces promising CR rates.
Collapse
Affiliation(s)
- Reem Karmali
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Hematology/OncologyNorthwestern UniversityChicagoIllinoisUSA
| | - Frederique St‐Pierre
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Shuo Ma
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Hematology/OncologyNorthwestern UniversityChicagoIllinoisUSA
| | - Kelly D. Foster
- Northwestern Medicine Lake Forest HospitalLake ForestIllinoisUSA
| | - Jason Kaplan
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Hematology/OncologyNorthwestern UniversityChicagoIllinoisUSA
| | - Xinlei Mi
- Department of Preventative Medicine ‐ Biostatistics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Barbara Pro
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Hematology/OncologyNorthwestern UniversityChicagoIllinoisUSA
| | - Jane N. Winter
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Hematology/OncologyNorthwestern UniversityChicagoIllinoisUSA
| | - Leo I. Gordon
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Division of Hematology/OncologyNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
20
|
St-Pierre F, Gordon LI. Lisocabtagene maraleucel in the treatment of relapsed/refractory large B-cell lymphoma. Future Oncol 2023; 19:19-28. [PMID: 36651471 DOI: 10.2217/fon-2022-0774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lisocabtagene maraleucel (liso-cel) is one of the three US FDA-approved chimeric antigen receptor T-cell therapies for the treatment of relapsed/refractory (R/R) large B-cell lymphoma (LBCL). TRANSCEND is the landmark trial that led to the approval of liso-cel in the third-line setting for R/R diffuse LBCL, primary mediastinal B-cell lymphoma, follicular lymphoma grade 3B and transformed lymphoma. The TRANSFORM and PILOT studies evaluated the use of liso-cel in the second-line treatment of R/R LBCL. This review details the structure and manufacturing process of liso-cel that make it distinct from other approved chimeric antigen receptor constructs, outlines results from landmark trials of liso-cel in LBCL and discusses liso-cel toxicity.
Collapse
Affiliation(s)
- Frédérique St-Pierre
- Department of Medicine, Division of Hematology/Oncology & the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60208, USA
| | - Leo I Gordon
- Department of Medicine, Division of Hematology/Oncology & the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
21
|
Villela L, Torre-Viera M, Idrobo-Quintero H, Beltran BE. Non-Hodgkin lymphoma treatment in middle-income countries in Latin America: perspective of the Latin American Study Group of Lymphoproliferative Disorders [ Grupo de Estudio de Linfoproliferativos de Latino América (GELL)]. Hematology 2022; 27:1208-1216. [DOI: 10.1080/16078454.2022.2141960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Luis Villela
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Mexico
- Hospital Fernando Ocaranza ISSSTE, Hermosillo, Mexico
- Centro Médico “Dr. Ignacio Chávez” ISSSTESON, Hermosillo, Mexico
| | - María Torre-Viera
- Oncological Hematology Unit 360, Clínica Santa Sofía, Instituto de Oncología y Hematología, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Brady E. Beltran
- Department of Oncology and Radiotherapy, Hospital Nacional Edgardo Rebagliati Martins and Research Center for Precision Medicine, Universidad San Martín de Porres Medical School, Lima, Peru
| | | |
Collapse
|
22
|
Kubacz M, Kusowska A, Winiarska M, Bobrowicz M. In Vitro Diffuse Large B-Cell Lymphoma Cell Line Models as Tools to Investigate Novel Immunotherapeutic Strategies. Cancers (Basel) 2022; 15:cancers15010235. [PMID: 36612228 PMCID: PMC9818372 DOI: 10.3390/cancers15010235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Despite the high incidence of diffuse large B-cell lymphoma (DLBCL), its management constitutes an ongoing challenge. The most common DLBCL variants include activated B-cell (ABC) and germinal center B-cell-like (GCB) subtypes including DLBCL with MYC and BCL2/BCL6 rearrangements which vary among each other with sensitivity to standard rituximab (RTX)-based chemoimmunotherapy regimens and lead to distinct clinical outcomes. However, as first line therapies lead to resistance/relapse (r/r) in about half of treated patients, there is an unmet clinical need to identify novel therapeutic strategies tailored for these patients. In particular, immunotherapy constitutes an attractive option largely explored in preclinical and clinical studies. Patient-derived cell lines that model primary tumor are indispensable tools that facilitate preclinical research. The current review provides an overview of available DLBCL cell line models and their utility in designing novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Małgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| |
Collapse
|
23
|
Jakobs F, Jeck J, Ahmadi P, Kron A, Kron F. Health economic analysis of third-line interventions in diffuse large B-cell lymphomas in Germany: applying the efficiency frontier. Cost Eff Resour Alloc 2022; 20:67. [PMID: 36503527 PMCID: PMC9743754 DOI: 10.1186/s12962-022-00400-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In the past decades, highly innovative treatments in the field of diffuse large B-cell lymphoma (DLBCL) became available in clinical practice. The aim of this study was to assess the cost-benefit relation of third-line interventions in DLBCL from a German payer perspective. METHODS Clinical benefit of allogeneic stem cell transplantation (alloSCT), chimeric antigen receptor T cells therapy (CAR T) [tisagenlecleucel (tisa-cel) and axicabtagene ciloleucel (axi-cel)] and best supportive care (BSC) was assessed in terms of median overall survival (median OS) derived from a systematic literature review in PubMed. Real-world treatment costs were retrieved from the university hospitals Cologne and Hamburg-Eppendorf. The cost-benefit relation was analysed using the efficiency frontier concept. RESULTS Median OS varied from 6.3 months in BSC to 23.5 months in CAR T (axi-cel), while median real-world treatment costs ranged likewise widely from €26,918 in BSC to €340,458 in CAR T (axi-cel). Shown by the efficiency frontier, alloSCT and axi-cel were found as most efficient interventions. CONCLUSION The efficiency frontier supports the pricing of innovative therapies, such as third-line interventions in DLBCL, in relation to appropriate comparators. Yet, studies with longer follow-up periods are needed to include studies with unreached median OS and to reflect experiences gained with CAR T in clinical practice.
Collapse
Affiliation(s)
- Florian Jakobs
- grid.5718.b0000 0001 2187 5445Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany ,VITIS Healthcare Group, Cologne, Germany
| | - Julia Jeck
- VITIS Healthcare Group, Cologne, Germany
| | - Paymon Ahmadi
- grid.9026.d0000 0001 2287 2617Faculty of Medicine and University Hospital Hamburg-Eppendorf, Center for Oncology, University of Hamburg, Hamburg, Germany
| | - Anna Kron
- VITIS Healthcare Group, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany ,grid.411097.a0000 0000 8852 305XNational Network Genomic Medicine Lung Cancer, University Hospital Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology (CIO ABCD), University of Cologne, Cologne, Germany
| | - Florian Kron
- VITIS Healthcare Group, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany ,grid.6190.e0000 0000 8580 3777Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology (CIO ABCD), University of Cologne, Cologne, Germany ,grid.448793.50000 0004 0382 2632FOM University of Applied Sciences, Essen, Germany
| |
Collapse
|
24
|
Ceccato J, Piazza M, Pizzi M, Manni S, Piazza F, Caputo I, Cinetto F, Pisoni L, Trojan D, Scarpa R, Zambello R, Tos APD, Trentin L, Semenzato G, Vianello F. A bone-based 3D scaffold as an in-vitro model of microenvironment–DLBCL lymphoma cell interaction. Front Oncol 2022; 12:947823. [PMID: 36330473 PMCID: PMC9623125 DOI: 10.3389/fonc.2022.947823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
About 30% of patients with diffuse large B-cell lymphoma (DLBCL) relapse or exhibit refractory disease (r/r DLBCL) after first-line immunochemotherapy. Bone marrow (BM) involvement confers a dismal prognosis at diagnosis, likely due to the interaction between neoplastic cells and a complex tumor microenvironment (TME). Therefore, we developed a 3D in-vitro model from human decellularized femoral bone fragments aiming to study the role of mesenchymal stromal cells (MSC) and the extracellular matrix (ECM) in the adaptation, growth, and drug resistance of DLBCL lymphoma cells. The 3D spatial configuration of the model was studied by histological analysis and confocal and multiphoton microscopy which allowed the 3D digital reproduction of the structure. We proved that MSC adapt and expand in the 3D scaffold generating niches in which also other cell types may grow. DLBCL cell lines adhered and grew in the 3D scaffold, both in the presence and absence of MSC, suggesting an active ECM–lymphocyte interaction. We found that the germinal center B-cell (GCB)-derived OCI-LY18 cells were more resistant to doxorubicin-induced apoptosis when growing in the decellularized 3D bone scaffold compared to 2D cultures (49.9% +/- 7.7% Annexin V+ cells in 2D condition compared to 30.7% + 9.2% Annexin V+ 3D adherent cells in the ECM model), thus suggesting a protective role of ECM. The coexistence of MSC in the 3D scaffold did not significantly affect doxorubicin-induced apoptosis of adherent OCI-LY18 cells (27.6% +/- 7.3% Annexin V+ 3D adherent cells in the ECM/MSC model after doxorubicin treatment). On the contrary, ECM did not protect the activated B-cell (ABC)-derived NU-DUL-1 lymphoma cell line from doxorubicin-induced apoptosis but protection was observed when MSC were growing in the bone scaffold (40.6% +/- 5.7% vs. 62.1% +/- 5.3% Annexin V+ 3D adherent cells vs. 2D condition). These data suggest that the interaction of lymphoma cells with the microenvironment may differ according to the DLBCL subtype and that 2D systems may fail to uncover this behavior. The 3D model we proposed may be improved with other cell types or translated to the study of other pathologies with the final goal to provide a tool for patient-specific treatment development.
Collapse
Affiliation(s)
- Jessica Ceccato
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Maria Piazza
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Sabrina Manni
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Francesco Piazza
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Ilaria Caputo
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Francesco Cinetto
- Internal Medicine and Allergology and Clinical Immunology Units, Treviso Ca’ Foncello Hospital, Treviso, Italy
| | - Lorena Pisoni
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | | | - Riccardo Scarpa
- Internal Medicine and Allergology and Clinical Immunology Units, Treviso Ca’ Foncello Hospital, Treviso, Italy
| | - Renato Zambello
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Gianpietro Semenzato
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy
| | - Fabrizio Vianello
- Hematology Unit, Department of Medicine, University of Padua, Padua, Italy
- *Correspondence: Fabrizio Vianello,
| |
Collapse
|
25
|
Sheikh IN, Elgehiny A, Ragoonanan D, Mahadeo KM, Nieto Y, Khazal S. Management of Aggressive Non-Hodgkin Lymphomas in the Pediatric, Adolescent, and Young Adult Population: An Adult vs. Pediatric Perspective. Cancers (Basel) 2022; 14:2912. [PMID: 35740580 PMCID: PMC9221186 DOI: 10.3390/cancers14122912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a broad entity which comprises a number of different types of lymphomatous malignancies. In the pediatric and adolescent population, the type and prognosis of NHL varies by age and gender. In comparison to adults, pediatric and adolescent patients generally have better outcomes following treatment for primary NHL. However, relapsed/refractory (R/R) disease is associated with poorer outcomes in many types of NHL such as diffuse large B cell lymphoma and Burkitt lymphoma. Newer therapies have been approved in the use of primary NHL in the pediatric and adolescent population such as Rituximab and other therapies such as chimeric antigen receptor T-cell (CAR T-cell) therapy are under investigation for the treatment of R/R NHL. In this review, we feature the characteristics, diagnosis, and treatments of the most common NHLs in the pediatric and adolescent population and also highlight the differences that exist between pediatric and adult disease. We then detail the areas of treatment advances such as immunotherapy with CAR T-cells, brentuximab vedotin, and blinatumomab as well as cell cycle inhibitors and describe areas where further research is needed. The aim of this review is to juxtapose established research regarding pediatric and adolescent NHL with recent advancements as well as highlight treatment gaps where more investigation is needed.
Collapse
Affiliation(s)
- Irtiza N. Sheikh
- Department of Pediatrics, Pediatric Hematology Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Amr Elgehiny
- Department of Pediatrics, McGovern Medical School, The University of Texas at Houston Health Science Center, Houston, TX 77030, USA;
| | - Dristhi Ragoonanan
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| | - Kris M. Mahadeo
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| | - Yago Nieto
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sajad Khazal
- Department of Pediatrics, CARTOX Program, Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (K.M.M.)
| |
Collapse
|
26
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. Circulating lncRNA- and miRNA-Associated ceRNA Network as a Potential Prognostic Biomarker for Non-Hodgkin Lymphoma: A Bioinformatics Analysis and a Pilot Study. Biomedicines 2022; 10:biomedicines10061322. [PMID: 35740344 PMCID: PMC9219780 DOI: 10.3390/biomedicines10061322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Non-Hodgkin lymphoma (NHL) is characterized by a great variability in patient outcomes, resulting in the critical need for identifying new molecular prognostic biomarkers. This study aimed to identify novel circulating prognostic biomarkers based on an miRNA/lncRNA-associated ceRNA network for NHL. Using bioinformatic analysis, we identified the miRNA-lncRNA pairs, and using RT-qPCR, we analyzed their plasma levels in a cohort of 113 NHL patients to assess their prognostic value. Bioinformatic analysis identified SNHG16 and SNHG6 as hsa-miR-20a-5p and hsa-miR-181a-5p sponges, respectively. Plasma levels of hsa-miR-20a-5p/SNHG16 and hsa-miR-181a-5p/SNG6 were significantly associated with more aggressive disease and IPI/FLIPI scores. Moreover, we found that patients with risk expression profiles of hsa-miR-20a-5p/SNHG16 and hsa-miR-181a-5p/SNHG6 presented a higher risk of positive bone marrow involvement. Moreover, hsa-miR-20a-5p/SNHG16 and hsa-miR-181a-5p/SNHG6 pairs’ plasma levels were associated with overall survival and progression-free survival of NHL patients, being independent prognostic factors in a multivariate Cox analysis. The prediction models incorporating the ceRNA network expression analysis improved the predictive capacity compared to the model, which only considered the clinicopathological variables. There are still few studies on using the ceRNA network as a potential prognostic biomarker, particularly in NHL, which may permit the implementation of a more personalized management of these patients.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-069 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000 (ext. 5414)
| |
Collapse
|
27
|
Dong L, Huang J, Gao X, Du J, Wang Y, Zhao L. CircPCBP2 promotes the stemness and chemoresistance of DLBCL via targeting miR-33a/b to disinhibit PD-L1. Cancer Sci 2022; 113:2888-2903. [PMID: 35579082 PMCID: PMC9357607 DOI: 10.1111/cas.15402] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Diffuse large B‐cell lymphoma (DLBCL) is the most common lymphoid malignancy with a high relapse rate of up to 40%. The prognosis of the disease needs improvement and requires a understanding of its molecular mechanism. We investigated the mechanisms of DLBCL development and its sensitivity to chemotherapy by focusing on circPCBP2/miR‐33a/b/PD‐L1 axis. Human DLBCL specimens and cultured cancer cell lines were used. Features of circPCBP2 were systematically characterized through Sanger sequencing, Actinomycin D, RNase R treatment, and FISH. The expression levels of circPCBP2, miR‐33a/b, PD‐L1, stemness‐related markers, ERK/AKT and JAK2/STAT3 signaling were measured using qRT‐PCR, western blotting, and immunohistochemistry. Stemness of DLBCL cells was assessed through spheroid formation assay and flow cytometry. Cell viability and apoptosis upon cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) treatment were determined using MTT assay and flow cytometry, respectively. Interactions of circPCBP2‐miR‐33a/b and miR‐33a/b‐PD‐L1 were validated using dual luciferase activity assay and RNA‐RIP. Nude mouse xenograft model was used to assess the function of circPCBP2 in DLBCL growth in vivo. circPCBP2 was upregulated in human DLBCL specimens and cultured DLBCL cells while miR‐33a/b was reduced. Knockdown of circPCBP2 or miR‐33a/b overexpression inhibited the stemness of DLBCL cells and promoted cancer cell apoptosis upon CHOP treatment. circPCBP2 directly bound with miR‐33a/b while miR‐33a/b targeted PD‐L1 3’‐UTR. circPCBP2 disinhibited PD‐L1 signaling via sponging miR‐33a/b. miR‐33a/b inhibitor and activating PD‐L1 reversed the effects of circPCBP2 knockdown and miR‐33a/b mimics, respectively. circPBCP2 knockdown restrained DLBCL growth in vivo and potentiated the anti‐tumor effects of CHOP. In conclusion, circPCBP2 enhances DLBCL cell stemness but suppresses its sensitivity to CHOP via sponging miR‐33a/b to disinhibit PD‐L1 expression. circPCBP2/miR‐33a/b/PD‐L1 axis could serve as a diagnosis marker or therapeutic target for DLBCL.
Collapse
Affiliation(s)
- Lihua Dong
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Jingjing Huang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Xue Gao
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Jianwei Du
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Yesheng Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Lingdi Zhao
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, Henan Province, P.R. China
| |
Collapse
|
28
|
Reinert CP, Perl RM, Faul C, Lengerke C, Nikolaou K, Dittmann H, Bethge WA, Horger M. Value of CT-Textural Features and Volume-Based PET Parameters in Comparison to Serologic Markers for Response Prediction in Patients with Diffuse Large B-Cell Lymphoma Undergoing CD19-CAR-T Cell Therapy. J Clin Med 2022; 11:jcm11061522. [PMID: 35329846 PMCID: PMC8951429 DOI: 10.3390/jcm11061522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this study was to investigate the value of CT-textural features and volume-based PET parameters in comparison to serologic markers for response prediction in patients with diffuse large B-cell lymphoma (DLBCL) undergoing cluster of differentiation (CD19)-chimeric antigen receptor (CAR)-T cell therapy. We retrospectively analyzed the whole-body (WB)-metabolic tumor volume (MTV), the WB-total lesion glycolysis (TLG) and first order textural features derived from 18F-FDG-PET/CT, as well as serologic parameters (C-reactive protein [CRP] and lactate dehydrogenase [LDH], leucocytes) prior and after CAR-T cell therapy in 21 patients with DLBCL (57.7 ± 14.7 year; 7 female). Interleukin 6 (IL-6) and IL-2 receptor peaks were monitored after treatment onset and compared with patient outcome judged by follow-up 18F-FDG-PET/CT. In 12/21 patients (57%), complete remission (CR) was observed, whereas 9/21 patients (43%) showed partial remission (PR). At baseline, WB-MTV and WB-TLG were lower in patients achieving CR (35 ± 38 mL and 319 ± 362) compared to patients achieving PR (88 ± 110 mL and 1487 ± 2254; p < 0.05). The “entropy” proved lower (1.81 ± 0.09) and “uniformity” higher (0.33 ± 0.02) in patients with CR compared to PR (2.08 ± 0.22 and 0.28 ± 0.47; p < 0.05). Patients achieving CR had lower levels of CRP, LDH and leucocytes at baseline compared to patients achieving PR (p < 0.05). In the entire cohort, WB-MTV and WB-TLG decreased after therapy onset (p < 0.01) becoming not measurable in the CR-group. Leucocytes and CRP significantly dropped after therapy (p < 0.01). The IL-6 and IL-2R peaks after therapy were lower in patients with CR compared to PR (p > 0.05). In conclusion, volume-based PET parameters derived from PET/CT and CT-textural features have the potential to predict therapy response in patients with DLBCL undergoing CAR-T cell therapy.
Collapse
Affiliation(s)
- Christian Philipp Reinert
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; (R.M.P.); (K.N.); (M.H.)
- Correspondence: ; Tel.: +49-7071-298-7212; Fax: +49-7071-295-845
| | - Regine Mariette Perl
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; (R.M.P.); (K.N.); (M.H.)
| | - Christoph Faul
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; (C.F.); (C.L.); (W.A.B.)
| | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; (C.F.); (C.L.); (W.A.B.)
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; (R.M.P.); (K.N.); (M.H.)
- Cluster of Excellence iFIT (EXC 2180) Image Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, 72074 Tuebingen, Germany
| | - Helmut Dittmann
- Department of Radiology, Nuclear Medicine, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany;
| | - Wolfgang A. Bethge
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; (C.F.); (C.L.); (W.A.B.)
| | - Marius Horger
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany; (R.M.P.); (K.N.); (M.H.)
| |
Collapse
|
29
|
Tao S, Chen Y, Hu M, Xu L, Fu CB, Hao XB. LncRNA PVT1 facilitates DLBCL development via miR-34b-5p/Foxp1 pathway. Mol Cell Biochem 2022; 477:951-963. [DOI: 10.1007/s11010-021-04335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022]
|
30
|
Kusowska A, Kubacz M, Krawczyk M, Slusarczyk A, Winiarska M, Bobrowicz M. Molecular Aspects of Resistance to Immunotherapies-Advances in Understanding and Management of Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2022; 23:ijms23031501. [PMID: 35163421 PMCID: PMC8835809 DOI: 10.3390/ijms23031501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the unquestionable success achieved by rituximab-based regimens in the management of diffuse large B-cell lymphoma (DLBCL), the high incidence of relapsed/refractory disease still remains a challenge. The widespread clinical use of chemo-immunotherapy demonstrated that it invariably leads to the induction of resistance; however, the molecular mechanisms underlying this phenomenon remain unclear. Rituximab-mediated therapeutic effect primarily relies on complement-dependent cytotoxicity and antibody-dependent cell cytotoxicity, and their outcome is often compromised following the development of resistance. Factors involved include inherent genetic characteristics and rituximab-induced changes in effectors cells, the role of ligand/receptor interactions between target and effector cells, and the tumor microenvironment. This review focuses on summarizing the emerging advances in the understanding of the molecular basis responsible for the resistance induced by various forms of immunotherapy used in DLBCL. We outline available models of resistance and delineate solutions that may improve the efficacy of standard therapeutic protocols, which might be essential for the rational design of novel therapeutic regimens.
Collapse
Affiliation(s)
- Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Correspondence:
| |
Collapse
|
31
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. ceRNA Network of lncRNA/miRNA as Circulating Prognostic Biomarkers in Non-Hodgkin Lymphomas: Bioinformatic Analysis and Assessment of Their Prognostic Value in an NHL Cohort. Int J Mol Sci 2021; 23:ijms23010201. [PMID: 35008626 PMCID: PMC8745130 DOI: 10.3390/ijms23010201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Research has been focusing on identifying novel biomarkers to better stratify non-Hodgkin lymphoma patients based on prognosis. Studies have demonstrated that lncRNAs act as miRNA sponges, creating ceRNA networks to regulate mRNA expression, and its deregulation is associated with lymphoma development. This study aimed to identify novel circulating prognostic biomarkers based on miRNA/lncRNA-associated ceRNA network for NHL. Herein, bioinformatic analysis was performed to construct ceRNA networks for hsa-miR-150-5p and hsa-miR335-5p. Then, the prognostic value of the miRNA–lncRNA pairs’ plasma levels was assessed in a cohort of 113 NHL patients. Bioinformatic analysis identified MALAT1 and NEAT1 as hsa-miR-150-5p and has-miR-335-5p sponges, respectively. Plasma hsa-miR-150-5p/MALAT1 and hsa-miR335-5p/NEAT1 levels were significantly associated with more aggressive and advanced disease. The overall survival and progression-free survival analysis indicated that hsa-miR-150-5p/MALAT1 and hsa-miR335-5p/NEAT1 pairs’ plasma levels were remarkably associated with NHL patients’ prognosis, being independent prognostic factors in a multivariate Cox analysis. Low levels of hsa-miR-150-5p and hsa-miR-335-5p combined with high levels of the respective lncRNA pair were associated with poor prognosis of NHL patients. Overall, the analysis of ceRNA network expression levels may be a useful prognostic biomarker for NHL patients and could identify patients who could benefit from more intensive treatments.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cohort Studies
- Computational Biology
- Disease-Free Survival
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Lymphoma, Non-Hodgkin/blood
- Lymphoma, Non-Hodgkin/genetics
- MicroRNAs/blood
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Prognosis
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Risk Factors
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000 (ext. 5414)
| |
Collapse
|
32
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. Competitive Endogenous RNA Network Involving miRNA and lncRNA in Non-Hodgkin Lymphoma: Current Advances and Clinical Perspectives. Biomedicines 2021; 9:1934. [PMID: 34944752 PMCID: PMC8698845 DOI: 10.3390/biomedicines9121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous malignancy with variable patient outcomes. There is still a lack of understanding about the different players involved in lymphomagenesis, and the identification of new diagnostic and prognostic biomarkers is urgent. MicroRNAs and long non-coding RNAs emerged as master regulators of B-cell development, and their deregulation has been associated with the initiation and progression of lymphomagenesis. They can function by acting alone or, as recently proposed, by creating competing endogenous RNA (ceRNA) networks. Most studies have focused on individual miRNAs/lncRNAs function in lymphoma, and there is still limited data regarding their interactions in lymphoma progression. The study of miRNAs' and lncRNAs' deregulation in NHL, either alone or as ceRNAs networks, offers new insights into the molecular mechanisms underlying lymphoma pathogenesis and opens a window of opportunity to identify potential diagnostic and prognostic biomarkers. In this review, we summarized the current knowledge regarding the role of miRNAs and lncRNAs in B-cell lymphoma, including their interactions and regulatory networks. Finally, we summarized the studies investigating the potential of miRNAs and lncRNAs as clinical biomarkers, with a special focus on the circulating profiles, to be applied as a non-invasive, easy-to-obtain, and reproducible liquid biopsy for dynamic management of NHL patients.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
| |
Collapse
|
33
|
miRNA- and lncRNA-Based Therapeutics for Non-Hodgkin’s Lymphoma: Moving towards an RNA-Guided Precision Medicine. Cancers (Basel) 2021; 13:cancers13246324. [PMID: 34944942 PMCID: PMC8699447 DOI: 10.3390/cancers13246324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-Hodgkin’s lymphoma (NHL) is a very heterogenous class of hematological cancers, with variable patient outcomes. Therefore, there is an urgent need to develop new and more effective therapeutic approaches. MiRNAs and lncRNAs have emerged as the central gene expression regulators, and their deregulation has been reported to be involved in lymphomagenesis. Given their ability to simultaneously modulate multiple targets, they provide an attractive therapeutic approach to treat NHL patients. In this review, we discuss the scientific rationale behind miRNA/lncRNA-based therapies in NHL and the different targeting technologies, such as antisense oligonucleotides, CRISPR-Cas9, and nanomedicines. Abstract Increasing evidence has demonstrated the functional roles of miRNAs and lncRNAs in lymphoma onset and progression, either by acting as tumor-promoting ncRNAs or as tumor suppressors, emphasizing their appeal as lymphoma therapeutics. In fact, their intrinsic ability to modulate multiple dysregulated genes and/or signaling pathways makes them an attractive therapeutic approach for a multifactorial pathology like lymphoma. Currently, the clinical application of miRNA- and lncRNA-based therapies still faces obstacles regarding effective delivery systems, off-target effects, and safety, which can be minimized with the appropriate chemical modifications and the development of tumor site-specific delivery approaches. Moreover, miRNA- and lncRNA-based therapeutics are being studied not only as monotherapies but also as complements of standard treatment regimens to provide a synergic effect, improving the overall treatment efficacy and reducing the therapeutic resistance. In this review, we summarize the fundamentals of miRNA- and lncRNA-based therapeutics by discussing the different types of delivery systems, with a focus on those that have been investigated in lymphoma in vitro and in vivo. Moreover, we described the ongoing clinical trials of novel miRNA- and lncRNA-based therapeutics in lymphoma.
Collapse
|
34
|
Gorodetskiy V, Probatova N, Obukhova T, Vasilyev V. Analysis of prognostic factors in diffuse large B-cell lymphoma associated with rheumatic diseases. Lupus Sci Med 2021; 8:8/1/e000561. [PMID: 34785569 PMCID: PMC8596057 DOI: 10.1136/lupus-2021-000561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Objective The risk of developing diffuse large B-cell lymphoma (DLBCL) is increased in many rheumatic diseases (RDs). It is possible that RD-associated DLBCL is a distinct subset within the category of ‘DLBCL’, exhibiting characteristic biological features and clinical behaviour. However, information on RD-associated DLBCL is limited. Methods We searched the V.A. Nasonova Research Institute of Rheumatology (Russia) database from 1996 to 2021 for patients with RDs and coexisting DLBCL. Prognostic factors including the International Prognostic Index (IPI), bulk disease and c-MYC/8q24 gene rearrangements were analysed. Furthermore, we stratified DLBCLs as germinal centre B-cell (GCB) subtype and non-GCB subtype based on Hans’ immunohistochemical algorithm and also examined Epstein-Barr virus (EBV) status. Results Twenty-seven patients with RD-associated DLBCL were identified. Twenty patients had primary Sjogren’s syndrome, three had systemic lupus erythematosus, two had rheumatoid arthritis and two had systemic sclerosis. Secondary Sjogren’s syndrome was found in four patients. The median age at the time of diagnosis of DLBCL was 59 years with a female predominance (26:1). Based on IPI, 16 patients were assigned to the intermediate-high and high-risk groups. Bulk disease was detected in 29% of patients. Of the 20 examined cases, 4 (20%) were classified as the GCB subtype and 16 (80%) were classified as the non-GCB subtype. EBV was detected in 2 of the 21 tested cases (10%), and the c-MYC/8q24 gene rearrangement was not found in any of the 19 examined cases. After the lymphoma diagnosis, the median overall survival (OS) was 10 months (range: 0–238 months). Conclusions Except for the more common non-GCB subtype, we did not identify any other prognostic factor that could influence the prognosis of patients with RD-associated DLBCL. We believe that short OS in our patients was predominantly associated with decreased tolerance to lymphoma treatment.
Collapse
Affiliation(s)
- Vadim Gorodetskiy
- Department of Intensive Methods of Therapy, V A Nasonova Research Institute of Rheumatology, Moscow, Russian Federation
| | - Natalya Probatova
- Department of Pathology, N N Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Tatiana Obukhova
- Cytogenetic Laboratory, National Research Center for Hematology, Moscow, Russian Federation
| | | |
Collapse
|
35
|
Dlouhy I, Karube K, Enjuanes A, Salaverria I, Nadeu F, Ramis-Zaldivar JE, Valero JG, Rivas-Delgado A, Magnano L, Martin-García D, Pérez-Galán P, Clot G, Rovira J, Jares P, Balagué O, Giné E, Mozas P, Briones J, Sancho JM, Salar A, Mercadal S, Alcoceba M, Valera A, Campo E, López-Guillermo A. Revised International Prognostic Index and genetic alterations are associated with early failure to R-CHOP in patients with diffuse large B-cell lymphoma. Br J Haematol 2021; 196:589-598. [PMID: 34632572 DOI: 10.1111/bjh.17858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
Relapsed or refractory diffuse large B-cell lymphoma (DLBCL) cases have a poor outcome. Here we analysed clinico-biological features in 373 DLBCL patients homogeneously treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP), in order to identify variables associated with early failure to treatment (EF), defined as primary refractoriness or relapse within 12 months from diagnosis. In addition to clinical features, mutational status of 106 genes was studied by targeted next-generation sequencing in 111 cases, copy number alterations in 87, and gene expression profile (GEP) in 39. Ninety-seven cases (26%) were identified as EF and showed significantly shorter overall survival (OS). Patients with B symptoms, advanced stage, high levels of serum lactate dehydrogenase (LDH) or β2-microglobulin, low lymphocyte/monocyte ratio and higher Revised International Prognostic Index (R-IPI) scores, as well as those with BCL2 rearrangements more frequently showed EF, with R-IPI being the most important in logistic regression. Mutations in NOTCH2, gains in 5p15·33 (TERT), 12q13 (CDK2), 12q14·1 (CDK4) and 12q15 (MDM2) showed predictive importance for EF independently from R-IPI. GEP studies showed that EF cases were significantly enriched in sets related to cell cycle regulation and inflammatory response, while cases in response showed over-representation of gene sets related to extra-cellular matrix and tumour microenvironment.
Collapse
Affiliation(s)
- Ivan Dlouhy
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Kennosuke Karube
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Cell Biology & Pathology Department, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Anna Enjuanes
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Itziar Salaverria
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Enric Ramis-Zaldivar
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan G Valero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alfredo Rivas-Delgado
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Laura Magnano
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - David Martin-García
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Pérez-Galán
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Guillem Clot
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordina Rovira
- Department of Hematology, Hospital Clínic, Barcelona, Spain
| | - Pedro Jares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Olga Balagué
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eva Giné
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Pablo Mozas
- Department of Hematology, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | - Miguel Alcoceba
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Hospital Clínico Universitario, Salamanca, Spain
| | - Alexandra Valera
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elías Campo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Armando López-Guillermo
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Kanas G, Ge W, Quek RGW, Keeven K, Nersesyan K, Jon E Arnason. Epidemiology of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) in the United States and Western Europe: population-level projections for 2020-2025. Leuk Lymphoma 2021; 63:54-63. [PMID: 34510995 DOI: 10.1080/10428194.2021.1975188] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) treatments have been rapidly evolving for patients treated in later lines of therapy (LoT). Country-specific cancer registry data for the US and Western Europe (WE) were combined with physician survey results to project the incidence, prevalence, and number of DLBCL and FL patients eligible for and treated by LoT between 2020 and 2025. The total number of incidents and prevalent cases of DLBCL and FL is expected to increase between 2020 and 2025 in the US and WE. 56% and 53% of the third line plus (3L+) eligible DLBCL patients and 60% and 55% of eligible FL patients initiated treatment in the US and WE, respectively. Further research is warranted to understand the reasons behind the high proportion of treatment eligible patients who do not initiate treatment, and potential differences between countries, especially in the 3L + settings.
Collapse
Affiliation(s)
| | - Wenzhen Ge
- Regeneron Pharmaceuticals Inc. - Health Economics & Outcomes Research, Tarrytown, NY, USA
| | - Ruben G W Quek
- Regeneron Pharmaceuticals Inc. - Health Economics & Outcomes Research, Tarrytown, NY, USA
| | | | | | - Jon E Arnason
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
37
|
Fuji S, Kida S, Nakata K, Morishima T, Miyashiro I, Ishikawa J. Analysis of real-world data in patients with relapsed/refractory diffuse large B cell lymphoma who received salvage chemotherapy in the rituximab era. Ann Hematol 2021; 100:2253-2260. [PMID: 33169198 DOI: 10.1007/s00277-020-04342-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/04/2020] [Indexed: 12/28/2022]
Abstract
Although the overall clinical outcome of patients with diffuse large B cell lymphoma (DLBCL) has significantly improved, some patients still experience relapsed/refractory disease. In the rituximab era, real-world data about relapsed/refractory DLBCL are limited. To clarify the clinical outcome and prognostic factors in these patients, we conducted a retrospective analysis using data from the population-based Osaka Cancer Registry (OCR) from 2010 to 2015. In total, 189 adult patients aged up to 70 years who received CHOP or a CHOP-like regimen in combination with rituximab, as well as a subsequent second-line therapy, were included in the analysis. The median age was 63 years (range, 24-70). Age (> 63 years), the duration of first progression-free survival (PFS), and the use of rituximab in the second-line chemotherapy were prognostic factors for overall survival (OS) after the second-line treatment. In this cohort, 48 and 11 patients received autologous and allogeneic hematopoietic stem cell transplantation (HSCT), respectively. The probabilities of 3-year OS after autologous and allogeneic HSCT were 55.7% and 18.2%, respectively. In conclusion, we found that the clinical outcome of patients with relapsed/refractory DLBCL in the rituximab era was unsatisfactory. Further improvements in treatment strategies, including novel agents, are needed.
Collapse
Affiliation(s)
- Shigeo Fuji
- Department of Hematology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka-shi, Osaka, 5418567, Japan.
| | - Shuhei Kida
- Department of Hematology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka-shi, Osaka, 5418567, Japan
| | - Kayo Nakata
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | | | - Isao Miyashiro
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | - Jun Ishikawa
- Department of Hematology, Osaka International Cancer Institute, 3-1-69, Otemae, Chuo-ku, Osaka-shi, Osaka, 5418567, Japan
| |
Collapse
|
38
|
Access to Chimeric Antigen Receptor T Cell Therapy for Diffuse Large B Cell Lymphoma. Adv Ther 2021; 38:4659-4674. [PMID: 34302277 PMCID: PMC8408091 DOI: 10.1007/s12325-021-01838-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/21/2021] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Geographic access to novel oncology therapies, and the extent to which it may vary by potential sites of care, regions, and population characteristics, is poorly understood. We examined how expanding access to chimeric antigen receptor (CAR) T cell therapy administration sites impacts patient travel distances and time. METHODS We used geographic information system techniques to calculate shortest travel distance and time between patients with relapsed/refractory diffuse large B cell lymphoma (DLBCL) and the nearest CAR T cell therapy administration site in three scenarios: academic hospitals; academic and community multispecialty hospitals; and academic and community multispecialty hospitals plus nonacademic specialty oncology network centers. Main outcome measures were differences in travel distance and time among the scenarios and the relationship between travel time and socioeconomic status, race, rural-urban areas, and non-Hodgkin lymphoma clusters. Non-Hodgkin lymphoma incidence, socioeconomic status, and administration centers were derived from governmental/publicly available data sources. RESULTS Of 3922 patients eligible for CAR T cell therapy, more than 37% had to travel more than 1 h to the nearest academic hospital. Average travel time and distance were significantly reduced by 23% and 30% (P < 0.001), respectively, when access was expanded to include community hospitals plus a broader range of oncology specialty treatment centers. Compared to academic hospitals alone, increasing access to include community hospitals decreased time and distance by 7% and 8% (P < 0.01), respectively. In addition, there would be a lower proportion of sites operating as the only care provider within 25 miles if access was expanded outside of academic hospitals only. Longer travel time was associated with lower socioeconomic status. CONCLUSION Many patients with DLBCL have long travel times to an academic hospital that administers CAR T cell therapy. Expanding access to care through site-of-care planning will help address regional, rural-urban, and sociodemographic equity in the geographic allocation of CAR T cell therapy.
Collapse
|
39
|
Travel-Related Economic Burden of Chimeric Antigen Receptor T Cell Therapy Administration by Site of Care. Adv Ther 2021; 38:4541-4555. [PMID: 34279805 PMCID: PMC8342383 DOI: 10.1007/s12325-021-01839-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Introduction We previously examined how expanding access to chimeric antigen receptor (CAR) T cell therapy administration sites impacted patient travel distances and time. In the current study, we estimated travel-related economic burden associated with site-of-care options among patients with relapsed/refractory diffuse large B cell lymphoma. Methods We used geographic information system methods to quantify travel-related economic burden across three site-of-care scenarios: academic hospitals; academic and community multispecialty hospitals; and academic and community multispecialty hospitals plus nonacademic specialty oncology network centers. Socioeconomic status, administration sites, and county of residence were derived from the US Census Bureau and publicly available sources. Travel costs were based on governmental guidelines, US census wage data, and Bureau of Transportation Statistics. Travel distance and time to the nearest CAR T cell therapy administration sites were estimated from previous research. Results Total national estimated costs associated with traveling for CAR T cell therapy were $21.1 million if CAR T cell therapy was offered exclusively in academic hospitals, and $14.7 million if expanded to include community hospitals plus nonacademic specialty oncology network centers, representing a $6.5-million reduction associated with expanding access to eligible patients. The largest cost-saving component was lodging/meals. Regional and demographic cost differences were statistically significant between academic hospitals and nonacademic hospitals/specialty oncology centers. In all scenarios, patients living below the federal poverty level (FPL) had higher weighted mean total costs versus patients living above the FPL. White and Native American patients were estimated to have the highest weighted mean total costs across race/ethnicity groups. For all subgroups, costs were reduced by expanding access beyond academic hospitals. Conclusion CAR T cell therapy is currently restricted to academic hospitals; total travel costs could be substantially decreased if access is expanded to nonacademic hospitals and specialty oncology centers. Patients in rural areas and those living below the FPL are particularly disadvantaged by restricted access. Supplementary Information The online version contains supplementary material available at 10.1007/s12325-021-01839-y.
Collapse
|
40
|
Genetic Events Inhibiting Apoptosis in Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13092167. [PMID: 33946435 PMCID: PMC8125500 DOI: 10.3390/cancers13092167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma (NHL). Despite the genetic heterogeneity of the disease, most patients are initially treated with a combination of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), but relapse occurs in ~50% of patients. One of the hallmarks of DLBCL is the occurrence of genetic events that inhibit apoptosis, which contributes to disease development and resistance to therapy. These events can affect the intrinsic or extrinsic apoptotic pathways, or their modulators. Understanding the factors that contribute to inhibition of apoptosis in DLBCL is crucial in order to be able to develop targeted therapies and improve outcomes, particularly in relapsed and refractory DLBCL (rrDLBCL). This review provides a description of the genetic events inhibiting apoptosis in DLBCL, their contribution to lymphomagenesis and chemoresistance, and their implication for the future of DLBCL therapy. Abstract Diffuse large B cell lymphoma (DLBCL) is curable with chemoimmunotherapy in ~65% of patients. One of the hallmarks of the pathogenesis and resistance to therapy in DLBCL is inhibition of apoptosis, which allows malignant cells to survive and acquire further alterations. Inhibition of apoptosis can be the result of genetic events inhibiting the intrinsic or extrinsic apoptotic pathways, as well as their modulators, such as the inhibitor of apoptosis proteins, P53, and components of the NF-kB pathway. Mechanisms of dysregulation include upregulation of anti-apoptotic proteins and downregulation of pro-apoptotic proteins via point mutations, amplifications, deletions, translocations, and influences of other proteins. Understanding the factors contributing to resistance to apoptosis in DLBCL is crucial in order to be able to develop targeted therapies that could improve outcomes by restoring apoptosis in malignant cells. This review describes the genetic events inhibiting apoptosis in DLBCL, provides a perspective of their interactions in lymphomagenesis, and discusses their implication for the future of DLBCL therapy.
Collapse
|
41
|
Tokola S, Kuitunen H, Turpeenniemi-Hujanen T, Kuittinen O. Interim and end-of-treatment PET-CT suffers from high false-positive rates in DLBCL: Biopsy is needed prior to treatment decisions. Cancer Med 2021; 10:3035-3044. [PMID: 33792190 PMCID: PMC8085947 DOI: 10.1002/cam4.3867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 11/06/2022] Open
Abstract
The application of positron emission tomography (PET)-computed tomography (CT) in treatment response evaluation has increased in diffuse large B-cell lymphoma (DLBCL), although its predictive value is controversial. We retrospectively analyzed the rate of false-positive PET-CTs performed as interim (n = 94) and end-of-treatment (n = 8) assessments among 102 DLBCL patients treated during 2010-2017 at Oulu University Hospital. In PET-CT Deauville score ≥4 was regarded as positive. A biopsy was performed on 35 patients, and vital lymphoma tissue was detected from nine patients. Positive biopsy findings were associated with poor disease outcomes in this study. This difference was statistically significant: 2-year failure-free survival (FFS) was 44% in patients with a positive biopsy versus 83% for those with a negative biopsy (p = 0.003). The corresponding overall survival (OS) rates were 53% versus 95% (p = 0.010). In the multivariate analyses, a negative biopsy was an independent protective factor in FFS (Hazard Ratio (HR) 0.093 (95% confidence interval [CI] 0.017-0.511); p = 0.006) unrelated to the International Prognostic Index (IPI) (HR 1.139 [95% CI 0.237-5.474] p = 0.871) or stage (HR 1.365 [95% CI 0.138-13.470]; p = 0.790). There was no statistically significant difference in OS according to the PET results, but the FFS rate was significantly higher in patients with a negative PET. The value of PET-CT as an evaluation method suffers from a high false-positive rate, and it is inadequate alone for the justification of treatment decisions. Biopsy results provide more reliable prognostic information for the evaluation of treatment response and outcome and should be used to assess patients with positive PET-CT scans.
Collapse
Affiliation(s)
- Susanna Tokola
- Department of Oncology and Medical Research Center, Oulu University Hospital, Oulu, Finland.,Unit of Cancer and Translational Medicine Research, Oulu University, Oulu, Finland
| | - Hanne Kuitunen
- Department of Oncology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Taina Turpeenniemi-Hujanen
- Department of Oncology and Medical Research Center, Oulu University Hospital, Oulu, Finland.,Unit of Cancer and Translational Medicine Research, Oulu University, Oulu, Finland
| | - Outi Kuittinen
- Department of Oncology and Medical Research Center, Oulu University Hospital, Oulu, Finland.,Institute of Clinical Medicine, Faculty of Health Medicine, University of Eastern Finland, Kuopio, Finland.,Faculty of Health Medicine, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
42
|
Wang XJ, Wang YH, Li SCT, Gkitzia C, Lim ST, Koh LP, Lim FLWI, Hwang WYK. Cost-effectiveness and budget impact analyses of tisagenlecleucel in adult patients with relapsed or refractory diffuse large B-cell lymphoma from Singapore's private insurance payer's perspective. J Med Econ 2021; 24:637-653. [PMID: 33904359 DOI: 10.1080/13696998.2021.1922066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Patients experiencing relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL) have limited treatment options and poor prognosis. Tisagenlecleucel (TIS) has shown improved clinical outcomes, but at a high upfront cost. Singapore has a multi-payer healthcare system where private insurance is one of the major payers. This study evaluated the cost-effectiveness and budget impact of TIS against salvage chemotherapy regimen (SCR) for treating r/r DLBCL patients who have failed ≥2 lines of systemic therapy from Singapore's private insurance payer's perspective. METHODS Over a life-time horizon, a partitioned survival model with three health-states was developed to evaluate the cost-effectiveness of TIS vs. SCR with or without hematopoietic stem cell transplantation (HSCT). Efficacy inputs for TIS and SCR were based on 43 months of observation data from pooled JULIET and UPenn trials, and CORAL extension studies respectively. Direct costs for pre-treatment, treatment, adverse events, follow-up, subsequent-HSCT, relapse, and terminal care were included. Incremental cost-effectiveness ratios (ICERs) were calculated as the total incremental costs per quality-adjusted life-year (QALY) gained. Additionally, the financial implication of introducing TIS in Singapore from a private payer's perspective was analyzed, comparing the current treatment pathway (without TIS) with a future scenario (with TIS) over 5 years. RESULTS Compared with SCR, TIS was the dominant option, with cost savings of S$8,477 alongside an additional gain of 2.78 QALYs in privately insured patients who shifted from private to public hospitals for TIS treatment. Scenario analyses for patients starting in public hospitals show ICERs of S$99,623 (no subsidy) and S$133,261 (50% subsidy for SCR treatment, no subsidy for TIS), supporting the base case. The projected annual budget impact ranges from S$850,000 to S$3.4 million during the first 5 years. CONCLUSIONS TIS for treating r/r DLBCL patients who have failed ≥2 lines of systemic therapies, is likely to be cost effective with limited budget impact.
Collapse
Affiliation(s)
| | - Yi-Ho Wang
- Novartis Singapore Pte Ltd., Singapore, Singapore
| | | | | | - Soon Thye Lim
- National Cancer Centre Singapore, Singapore, Singapore
| | - Liang Piu Koh
- National University Cancer Institute, Singapore, Singapore
| | | | - William Ying Khee Hwang
- National University Cancer Institute, Singapore, Singapore
- Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
43
|
Karstensen KT, Schein A, Petri A, Bøgsted M, Dybkær K, Uchida S, Kauppinen S. Long Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Noncoding RNA 2020; 7:1. [PMID: 33379241 PMCID: PMC7838888 DOI: 10.3390/ncrna7010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. Although significant progress has been made in recent years to treat DLBCL patients, 30%-40% of the patients eventually relapse or are refractory to first line treatment, calling for better therapeutic strategies for DLBCL. Long non-coding RNAs (lncRNAs) have emerged as a highly diverse group of non-protein coding transcripts with intriguing molecular functions in human disease, including cancer. Here, we review the current understanding of lncRNAs in the pathogenesis and progression of DLBCL to provide an overview of the field. As the current knowledge of lncRNAs in DLBCL is still in its infancy, we provide molecular signatures of lncRNAs in DLBCL cell lines to assist further lncRNA research in DLBCL.
Collapse
Affiliation(s)
- Kasper Thystrup Karstensen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Aleks Schein
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Martin Bøgsted
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Karen Dybkær
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW CD19-directed chimeric antigen receptor (CAR) T-cell therapy is a valuable new treatment option for patients with relapsed/refractory (R/R) B-cell non-Hodgkin lymphoma. The aim of this review is to give an overview of the pivotal phase I/II trials, emerging real-world evidence and ongoing trials. RECENT FINDINGS For decades, attempts at improvement of the poor prognosis of patients with R/R large B-cell lymphoma with new treatment regimens have been disappointing. Since the first report of CD19-directed CAR-T-cell therapy in 2010, three constructs have been tested in large phase I/II trials and resulted in 30-40% durable responses. This has led to Food and Drug Administration and European Medicines Agency approval for axicabtagene ciloleucel and tisagenlecleucel and filing of the biologics license application for lisocabtagene maraleucel. Emerging real-world evidence seems to confirm the promising results. However, considerable toxicity, mainly cytokine release syndrome and neurotoxicity limits their general applicability and not all patients intended to be treated can be bridged during the manufacturing period due to kinetics of the disease. Randomized phase III clinical trials are being conducted to test anti-CD19 CAR-T-cell therapy in the second-line and several phase II trials are aiming to improve efficacy and decrease toxicity. SUMMARY CD19-directed CAR-T-cell therapy has become standard of care for aggressive R/R diffuse large B-cell non-Hodgkin lymphoma (DLBCL), but challenges still remain.
Collapse
|
45
|
Skorka K, Ostapinska K, Malesa A, Giannopoulos K. The Application of CAR-T Cells in Haematological Malignancies. Arch Immunol Ther Exp (Warsz) 2020; 68:34. [PMID: 33156409 PMCID: PMC7647970 DOI: 10.1007/s00005-020-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR)-T cells (CART) remain one of the most advanced and promising forms of adoptive T-cell immunotherapy. CART represent autologous, genetically engineered T lymphocytes expressing CAR, i.e. fusion proteins that combine components and features of T cells as well as antibodies providing their more effective and direct anti-tumour effect. The technology of CART construction is highly advanced in vitro and every element of their structure influence their mechanism of action in vivo. Patients with haematological malignancies are faced with the possibility of disease relapse after the implementation of conventional chemo-immunotherapy. Since the most preferable result of therapy is a partial or complete remission, cancer treatment regimens are constantly being improved and customized to individual patients. This individualization could be ensured by CART therapy. This paper characterized CART strategy in details in terms of their structure, generations, mechanism of action and published the results of clinical trials in haematological malignancies including acute lymphoblastic leukaemia, diffuse large B-cell lymphoma, chronic lymphocytic leukaemia and multiple myeloma.
Collapse
Affiliation(s)
- Katarzyna Skorka
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Katarzyna Ostapinska
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aneta Malesa
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| |
Collapse
|
46
|
Rushton CK, Arthur SE, Alcaide M, Cheung M, Jiang A, Coyle KM, Cleary KLS, Thomas N, Hilton LK, Michaud N, Daigle S, Davidson J, Bushell K, Yu S, Rys RN, Jain M, Shepherd L, Marra MA, Kuruvilla J, Crump M, Mann K, Assouline S, Connors JM, Steidl C, Cragg MS, Scott DW, Johnson NA, Morin RD. Genetic and evolutionary patterns of treatment resistance in relapsed B-cell lymphoma. Blood Adv 2020; 4:2886-2898. [PMID: 32589730 PMCID: PMC7362366 DOI: 10.1182/bloodadvances.2020001696] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) patients are typically treated with immunochemotherapy containing rituximab (rituximab, cyclophosphamide, hydroxydaunorubicin-vincristine (Oncovin), and prednisone [R-CHOP]); however, prognosis is extremely poor if R-CHOP fails. To identify genetic mechanisms contributing to primary or acquired R-CHOP resistance, we performed target-panel sequencing of 135 relapsed/refractory DLBCLs (rrDLBCLs), primarily comprising circulating tumor DNA from patients on clinical trials. Comparison with a metacohort of 1670 diagnostic DLBCLs identified 6 genes significantly enriched for mutations upon relapse. TP53 and KMT2D were mutated in the majority of rrDLBCLs, and these mutations remained clonally persistent throughout treatment in paired diagnostic-relapse samples, suggesting a role in primary treatment resistance. Nonsense and missense mutations affecting MS4A1, which encodes CD20, are exceedingly rare in diagnostic samples but show recurrent patterns of clonal expansion following rituximab-based therapy. MS4A1 missense mutations within the transmembrane domains lead to loss of CD20 in vitro, and patient tumors harboring these mutations lacked CD20 protein expression. In a time series from a patient treated with multiple rounds of therapy, tumor heterogeneity and minor MS4A1-harboring subclones contributed to rapid disease recurrence, with MS4A1 mutations as founding events for these subclones. TP53 and KMT2D mutation status, in combination with other prognostic factors, may be used to identify high-risk patients prior to R-CHOP for posttreatment monitoring. Using liquid biopsies, we show the potential to identify tumors with loss of CD20 surface expression stemming from MS4A1 mutations. Implementation of noninvasive assays to detect such features of acquired treatment resistance may allow timely transition to more effective treatment regimens.
Collapse
Affiliation(s)
- Christopher K Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sarah E Arthur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Miguel Alcaide
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Matthew Cheung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kirstie L S Cleary
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nicole Thomas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Laura K Hilton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | - Jordan Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin Bushell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Stephen Yu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | - Michael Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Marco A Marra
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Centre, Toronto, ON, Canada; and
| | - Michael Crump
- Princess Margaret Cancer Centre, Toronto, ON, Canada; and
| | - Koren Mann
- Lady Davis Institute for Medical Research
- Jewish General Hospital, Montreal, QC, Canada
| | | | | | | | - Mark S Cragg
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | | | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
47
|
Liu Y, Li Q, Dai Y, Jiang T, Zhou Y. miR-532-3p Inhibits Proliferation and Promotes Apoptosis of Lymphoma Cells by Targeting β-Catenin. J Cancer 2020; 11:4762-4770. [PMID: 32626523 PMCID: PMC7330684 DOI: 10.7150/jca.45684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Dysregulated expression of miR-532-3p has been observed in several types of cancer and plays a key role in tumor progression and metastasis. In this study, we analyzed the role and molecular mechanism of miR-532-3p in lymphoma progression. Methods: The expression of miR-532-3p in lymphoma sample tissues was analyzed using the GEO database and in cell lines by quantitative reverse transcription (qRT)-PCR. The functions of miR-532-3p in lymphoma cell proliferation and apoptosis were analyzed by CCK-8 assay and Annexin V-FITC/propidium iodide staining, respectively. In vivo, the tumor weight and volume were measured. The target gene of miR-532-3p was predicted using miRanda software, and then luciferase, qRT-PCR, and western blot assays were performed to verify that β-catenin was the downstream target gene of miR-532-3p. Results: miR-532-3p was decreased in lymphoma tissues and cell lines. In vitro and in vivo experiments showed that overexpression of miR-532-3p inhibited lymphoma cell proliferation and promoted apoptosis. Mechanistic studies demonstrated that β-catenin was a functional target gene of miR-532-3p. Furthermore, we found that overexpression of β-catenin reversed the tumor-suppression activities caused by overexpression of miR-532-3p in lymphoma proliferation and apoptosis. Conclusion: This study demonstrates that miR-532-3p functions as a tumor inhibitor in lymphoma progression by targeting β-catenin, suggesting miR-532-3p/β-catenin as a new diagnosis marker or potential therapeutic target in lymphoma.
Collapse
Affiliation(s)
- Yan Liu
- Department of Oncology, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China.,Department of Hematology, Yueyang Hospital of Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qiuying Li
- Department of Oncology, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Yongzhou Dai
- Department of Oncology, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Tinghui Jiang
- Department of Oncology, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Yongming Zhou
- Department of Hematology, Yueyang Hospital of Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
48
|
Lee K, Ha JY, Jung AR, Lee YS, Lee SW, Ryu JS, Chae EJ, Kim KW, Huh J, Park CS, Yoon DH, Suh C. The clinical outcomes of rituximab biosimilar CT-P10 (Truxima ®) with CHOP as first-line treatment for patients with diffuse large B-cell lymphoma: real-world experience. Leuk Lymphoma 2020; 61:1575-1583. [PMID: 32290739 DOI: 10.1080/10428194.2020.1742906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We evaluated real-world effectiveness and safety of CT-P10 (Truxima®) compared with originator rituximab in diffuse large B-cell lymphoma (DLBCL) treatment. Before and after the introduction of CT-P10 to our institute (November 2017), 221 newly-diagnosed DLBCL patients received rituximab with standard cyclophosphamide, vincristine, doxorubicin and prednisone. Patients received originator rituximab throughout (n = 95), switched from originator rituximab to CT-P10 (n = 36), or received CT-P10 throughout (n = 90). There were no significant differences between groups in overall response rate (91.6% vs 94.4% vs 96.7%, respectively; p = 0.403) or complete response rate (84.2% vs 77.8% vs 86.7%, respectively; p = 0.467). Kaplan-Meier survival curves also showed no significant differences in progression-free survival and overall survival between groups (log-rank p = 0.794 and p = 0.955, respectively). Safety profiles were comparable between treatment groups. These data support the ability of CT-P10 to successfully replace originator rituximab in DLBCL treatment and, given the lowered financial barrier, to improve the overall prognosis for DLBCL patients.
Collapse
Affiliation(s)
- Kyoungmin Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joo Young Ha
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ah Ra Jung
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon Sei Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Jin Chae
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Cheolwon Suh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
49
|
Bachanova V, Perales MA, Abramson JS. Modern management of relapsed and refractory aggressive B-cell lymphoma: A perspective on the current treatment landscape and patient selection for CAR T-cell therapy. Blood Rev 2020; 40:100640. [DOI: 10.1016/j.blre.2019.100640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/17/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
|
50
|
Malpica L, Mufuka B, Galeotti J, Tan X, Grover N, Clark SM, Beaven A, Muss H, Dittus C. A retrospective study on prephase therapy prior to definitive multiagent chemotherapy in aggressive lymphomas. Leuk Lymphoma 2020; 61:1508-1511. [PMID: 32037934 DOI: 10.1080/10428194.2020.1725505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Luis Malpica
- Division of Hematology-Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Bolanle Mufuka
- Department of Internal Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jonathan Galeotti
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Xianming Tan
- Department of Biostatistics Shared Resource, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Natalie Grover
- Division of Hematology-Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen M Clark
- Department of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Anne Beaven
- Division of Hematology-Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Hyman Muss
- Division of Hematology-Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher Dittus
- Division of Hematology-Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|