1
|
Mai Q, Wang Z, Chen Q, Zhang J, Zhang D, Li C, Jiang Q. Magnetically empowered bone marrow cells as a micro-living motor can improve early hematopoietic reconstitution. Cytotherapy 2023; 25:162-173. [PMID: 36503865 DOI: 10.1016/j.jcyt.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS Bone marrow-derived hematopoietic stem cell transplantation/hematopoietic progenitor cell transplantation (HSCT/HPCT) is widely used and one of the most useful treatments in clinical practice. However, the homing rate of hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs) by routine cell transfusion is quite low, influencing hematopoietic reconstitution after HSCT/HPCT. METHODS The authors developed a micro-living motor (MLM) strategy to increase the number of magnetically empowered bone marrow cells (ME-BMCs) homing to the bone marrow of recipient mice. RESULTS In the in vitro study, migration and retention of ME-BMCs were greatly improved in comparison with non-magnetized bone marrow cells, and the biological characteristics of ME-BMCs were well maintained. Differentially expressed gene analysis indicated that ME-BMCs might function through gene regulation. In the in vivo study, faster hematopoietic reconstitution was observed in ME-BMC mice, which demonstrated a better survival rate and milder symptoms of acute graft-versus-host disease after transplantation of allogeneic ME-BMCs. CONCLUSIONS This study demonstrated that ME-BMCs serving as MLMs facilitated the homing of HSCs/HPCs and eventually contributed to earlier hematopoietic reconstitution in recipients. These data might provide useful information for other kinds of cell therapies.
Collapse
Affiliation(s)
- Qiusui Mai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhengyuan Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quanfeng Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jialu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingyi Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Qianli Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Gudmundsson KO, Du Y. Quiescence regulation by normal haematopoietic stem cells and leukaemia stem cells. FEBS J 2022. [PMID: 35514133 DOI: 10.1111/febs.16472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/21/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The haematopoietic system is maintained by rare haematopoietic stem cells (HSCs), which are quiescent most of the time and only divide occasionally to self-renew and/or to undergo commitment to clonal expansion via the generation of highly proliferative progenitor cells. The latter is responsible for the generation of all mature cells of the system through subsequent lineage commitment and terminal differentiation. Cells with similar properties also exist in leukaemias and are known as leukaemia stem cells (LSCs). Quiescence provides essential protection for both HSC and LSC from cytotoxic stress and DNA damage and, in the case of LSCs, likely causes therapy resistance and disease relapse in leukaemia patients. Specific inhibition of LSC quiescence has been considered a promising strategy for eliminating LSCs and curing leukaemias. Although the understanding of mechanisms responsible for quiescence maintenance in these cells remains limited, particularly for LSCs, recent studies have suggested potential differences in their dependency on certain pathways and their levels of stress and DNA damage caused by increased cycling. Such differences likely stem from oncogenic mutations in LSCs and could be specifically exploited for the elimination of LSCs while sparing normal HSCs in the future.
Collapse
Affiliation(s)
- Kristbjorn Orri Gudmundsson
- Basic Science Program Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program Center for Cancer Research NCI Frederick MD USA
| | - Yang Du
- Department of Pediatrics Uniformed Services University of the Health Sciences Bethesda MD USA
| |
Collapse
|
3
|
Ngo MT, Barnhouse VR, Gilchrist AE, Mahadik BP, Hunter CJ, Hensold JN, Petrikas N, Harley BAC. Hydrogels Containing Gradients in Vascular Density Reveal Dose-Dependent Role of Angiocrine Cues on Stem Cell Behavior. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101541. [PMID: 35558090 PMCID: PMC9090181 DOI: 10.1002/adfm.202101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 05/05/2023]
Abstract
Biomaterials that replicate patterns of microenvironmental signals from the stem cell niche offer the potential to refine platforms to regulate stem cell behavior. While significant emphasis has been placed on understanding the effects of biophysical and biochemical cues on stem cell fate, vascular-derived or angiocrine cues offer an important alternative signaling axis for biomaterial-based stem cell platforms. Elucidating dose-dependent relationships between angiocrine cues and stem cell fate are largely intractable in animal models and 2D cell cultures. In this study, microfluidic mixing devices are leveraged to generate 3D hydrogels containing lateral gradients in vascular density alongside murine hematopoietic stem cells (HSCs). Regional differences in vascular density can be generated via embossed gradients in cell, matrix, or growth factor density. HSCs co-cultured alongside vascular gradients reveal spatial patterns of HSC phenotype in response to angiocrine signals. Notably, decreased Akt signaling in high vessel density regions led to increased expansion of lineage-positive hematopoietic cells. This approach offers a combinatorial tool to rapidly screen a continuum of microenvironments with varying vascular, biophysical, and biochemical cues to reveal the influence of local angiocrine signals on HSC fate.
Collapse
Affiliation(s)
- Mai T Ngo
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victoria R Barnhouse
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aidan E Gilchrist
- Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bhushan P Mahadik
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christine J Hunter
- Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joy N Hensold
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nathan Petrikas
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Lutfi F, Wu L, Sunshine S, Cao X. Targeting the CD27-CD70 Pathway to Improve Outcomes in Both Checkpoint Immunotherapy and Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2021; 12:715909. [PMID: 34630390 PMCID: PMC8493876 DOI: 10.3389/fimmu.2021.715909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitor therapies and allogeneic hematopoietic cell transplant (alloHCT) represent two distinct modalities that offer a chance for long-term cure in a diverse array of malignancies and have experienced many breakthroughs in recent years. Herein, we review the CD27-CD70 co-stimulatory pathway and its therapeutic potential in 1) combination with checkpoint inhibitor and other immune therapies and 2) its potential ability to serve as a novel approach in graft-versus-host disease (GVHD) prevention. We further review recent advances in the understanding of GVHD as a complex immune phenomenon between donor and host immune systems, particularly in the early stages with mixed chimerism, and potential novel therapeutic approaches to prevent the development of GVHD.
Collapse
Affiliation(s)
- Forat Lutfi
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
| | - Long Wu
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD, United States
| | - Sarah Sunshine
- Department of Ophthalmology and Visual Sciences, Marlene and Stewart Greenebaum Comprehensive Cancer, University of Maryland Medical Center, Baltimore, MD, United States
| | - Xuefang Cao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD, United States
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
5
|
O'Reilly E, Zeinabad HA, Szegezdi E. Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Rev 2021; 50:100850. [PMID: 34049731 DOI: 10.1016/j.blre.2021.100850] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of mature blood cells. To ensure that the HSC pool does not get exhausted over the lifetime of an individual, most HSCs are in a state of quiescence with only a small proportion of HSCs dividing at any one time. HSC quiescence is carefully controlled by both intrinsic and extrinsic, niche-driven mechanisms. In acute myeloid leukemia (AML), the leukemic cells overtake the hematopoietic bone marrow niche where they acquire a quiescent state. These dormant AML cells are resistant to chemotherapeutics. Because they can re-establish the disease after therapy, they are often termed as quiescent leukemic stem cells (LSC) or leukemia-initiating cells. While advancements are being made to target particular driver mutations in AML, there is less focus on how to tackle the drug resistance of quiescent LSCs. This review summarises the current knowledge on the biochemical characteristics of quiescent HSCs and LSCs, the intracellular signaling pathways and the niche-driven mechanisms that control quiescence and the key differences between HSC- and LSC-quiescence that may be exploited for therapy.
Collapse
Affiliation(s)
- Eimear O'Reilly
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
6
|
Barnhouse V, Petrikas N, Crosby C, Zoldan J, Harley B. Perivascular Secretome Influences Hematopoietic Stem Cell Maintenance in a Gelatin Hydrogel. Ann Biomed Eng 2021; 49:780-792. [PMID: 32939609 PMCID: PMC7854499 DOI: 10.1007/s10439-020-02602-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Adult hematopoietic stem cells (HSCs) produce the body's full complement of blood and immune cells. They reside in specialized microenvironments, or niches, within the bone marrow. The perivascular niche near blood vessels is believed to help maintain primitive HSCs in an undifferentiated state but demonstration of this effect is difficult. In vivo studies make it challenging to determine the direct effect of the endosteal and perivascular niches as they can be in close proximity, and two-dimensional in vitro cultures often lack an instructive extracellular matrix environment. We describe a tissue engineering approach to develop and characterize a three-dimensional perivascular tissue model to investigate the influence of the perivascular secretome on HSC behavior. We generate 3D endothelial networks in methacrylamide-functionalized gelatin hydrogels using human umbilical vein endothelial cells (HUVECs) and mesenchymal stromal cells (MSCs). We identify a subset of secreted factors important for HSC function, and examine the response of primary murine HSCs in hydrogels to the perivascular secretome. Within 4 days of culture, perivascular conditioned media promoted maintenance of a greater fraction of hematopoietic stem and progenitor cells. This work represents an important first-generation perivascular model to investigate the role of niche secreted factors on the maintenance of primary HSCs.
Collapse
Affiliation(s)
- Victoria Barnhouse
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nathan Petrikas
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Cody Crosby
- Department of Biomedical Engineering, University of Texas at Austin, Austin, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, USA
| | - Brendan Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Gilchrist AE, Harley BA. Connecting secretome to hematopoietic stem cell phenotype shifts in an engineered bone marrow niche. Integr Biol (Camb) 2020; 12:175-187. [PMID: 32556172 PMCID: PMC7384206 DOI: 10.1093/intbio/zyaa013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/21/2020] [Accepted: 05/08/2020] [Indexed: 01/06/2023]
Abstract
Hematopoietic stem cells (HSCs) primarily reside in the bone marrow, where they receive external cues from their local microenvironment. The complex milieu of biophysical cues, cellular components and cell-secreted factors regulates the process by which HSC produce the blood and immune system. We previously showed direct coculture of primary murine hematopoietic stem and progenitor cells with a population of marrow-derived mesenchymal stromal and progenitor cells (MSPCs) in a methacrylamide-functionalized gelatin (GelMA) hydrogel improves hematopoietic progenitor maintenance. However, the mechanism by which MSPCs influenced HSC fate decisions remained unknown. Herein, we report the use of proteomic analysis to correlate HSC phenotype to a broad candidate pool of 200 soluble factors produced by combined mesenchymal and hematopoietic progeny. Partial least squares regression (PLSR), along with an iterative filter method, identified TGFβ-1, MMP-3, c-RP and TROY as positively correlated with HSC maintenance. Experimentally, we then observe exogenous stimulation of HSC monocultures in GelMA hydrogels with these combined cytokines increases the ratio of hematopoietic progenitors to committed progeny after a 7-day culture 7.52 ± 3.65-fold compared to non-stimulated monocultures. Findings suggest a cocktail of the downselected cytokines amplifies hematopoietic maintenance potential of HSCs beyond that of MSPC-secreted factors alone. This work integrates empirical and computation methods to identify cytokine combinations to improve HSC maintenance within an engineered HSC niche, suggesting a route toward identifying feeder-free culture platforms for HSC expansion. Insight Hematopoietic stem cells within an artificial niche receive maintenance cues in the form of soluble factors from hematopoietic and mesenchymal progeny. Applying a proteomic regression analysis, we identify a reduced set of soluble factors correlated to maintenance of a hematopoietic phenotype during culture in a biomaterial model of the bone marrow niche. We identify a minimum factor cocktail that promotes hematopoietic maintenance potential in a gelatin-based culture, regardless of the presence of mesenchymal feeder cells. By combining empirical and computational methods, we report an experimentally feasible number of factors from a large dataset, enabling exogenous integration of soluble factors into an engineered hematopoietic stem cell for enhanced maintenance potential of a quiescent stem cell population.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Gilchrist AE, Lee S, Hu Y, Harley BA. Soluble Signals and Remodeling in a Synthetic Gelatin-Based Hematopoietic Stem Cell Niche. Adv Healthc Mater 2019; 8:e1900751. [PMID: 31532901 PMCID: PMC6813872 DOI: 10.1002/adhm.201900751] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/21/2019] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow within niches that provide microenvironmental signals in the form of biophysical cues, bound and diffusible biomolecules, and heterotypic cell-cell interactions that influence HSC fate decisions. This study seeks to inform the development of a synthetic culture platform that promotes ex vivo HSC expansion without exhaustion. A library of methacrylamide-functionalized gelatin (GelMA) hydrogels is used to explore remodeling and crosstalk from mesenchymal stromal cells (MSCs) on the expansion and quiescence of murine HSCs. The use of a degradable GelMA hydrogel enables MSC-mediated remodeling, yielding dynamic shifts in the matrix environment over time. An initially low-diffusivity hydrogel for co-culture of hematopoietic stem and progenitor cells to MSCs facilitates maintenance of an early progenitor cell population over 7 days. Excitingly, this platform promotes retention of a quiescent HSC population compared to HSC monocultures. These studies reveal MSC-density-dependent upregulation of MMP-9 and changes in hydrogel mechanical properties (ΔE = 2.61 ± 0.72) suggesting MSC-mediated matrix remodeling may contribute to a dynamic culture environment. Herein, a 3D hydrogel is reported for ex vivo HSC culture, in which HSC expansion and quiescence is sensitive to hydrogel properties, MSC co-culture, and MSC-mediated hydrogel remodeling.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
| | - Sunho Lee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
| | - Yuhang Hu
- Department of Woodruff School of Mechanical Engineering, Georgia Institute of Technology Atlanta, GA 30332
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana, IL 61801
| |
Collapse
|
9
|
Abstract
Granulocytes are the major type of phagocytes constituting the front line of innate immune defense against bacterial infection. In adults, granulocytes are derived from hematopoietic stem cells in the bone marrow. Alcohol is the most frequently abused substance in human society. Excessive alcohol consumption injures hematopoietic tissue, impairing bone marrow production of granulocytes through disrupting homeostasis of granulopoiesis and the granulopoietic response. Because of the compromised immune defense function, alcohol abusers are susceptible to infectious diseases, particularly septic infection. Alcoholic patients with septic infection and granulocytopenia have an exceedingly high mortality rate. Treatment of serious infection in alcoholic patients with bone marrow inhibition continues to be a major challenge. Excessive alcohol consumption also causes diseases in other organ systems, particularly severe alcoholic hepatitis which is life threatening. Corticosteroids are the only therapeutic option for improving short-term survival in patients with severe alcoholic hepatitis. The existence of advanced alcoholic liver diseases and administration of corticosteroids make it more difficult to treat serious infection in alcoholic patients with the disorder of granulopoieis. This article reviews the recent development in understanding alcohol-induced disruption of marrow granulopoiesis and the granulopoietic response with the focus on progress in delineating cell signaling mechanisms underlying the alcohol-induced injury to hematopoietic tissue. Efforts in exploring effective therapy to improve patient care in this field will also be discussed.
Collapse
|
10
|
Systems for localized release to mimic paracrine cell communication in vitro. J Control Release 2018; 278:24-36. [PMID: 29601931 DOI: 10.1016/j.jconrel.2018.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
Abstract
Paracrine cell communication plays a pivotal role for signal exchange between proximal cells in vivo. However, this localized, gradient type release of mediators at very low concentrations (pg/ml), relevant during physiological and pathological processes, is rarely reflected within in vitro approaches. This review gives an overview on state-of-the-art approaches, which transfer the paracrine cell-to-cell communication into in vitro cell culture model setups. The traditional methods like trans-well assays and more advanced microfluidic approaches are included. The review focusses on systems for localized release, mostly based on microparticles, which tightly mimic the paracrine interaction between single cells in 3D microenvironments. Approaches based on single microparticles, with the main focus on affinity-controlled storage and release of cytokines, are reviewed and their importance for understanding paracrine communication is highlighted. Various methods to study the cytokine release and their advantages and disadvantages are discussed. Basic principles of the release characteristics, like diffusion mechanisms, are quantitatively described, including the formation of resulting gradients around the local sources. In vitro cell experiments using such localized microparticle release systems in approaches to increase understanding of stem cell behavior within their niches and regulation of wound healing are highlighted as examples of successful localized release systems for mimicking paracrine cell communication.
Collapse
|