1
|
Willis TW, Gkrania-Klotsas E, Wareham NJ, McKinney EF, Lyons PA, Smith KGC, Wallace C. Leveraging pleiotropy identifies common-variant associations with selective IgA deficiency. Clin Immunol 2024; 268:110356. [PMID: 39241920 DOI: 10.1016/j.clim.2024.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Selective IgA deficiency (SIgAD) is the most common inborn error of immunity (IEI). Unlike many IEIs, evidence of a role for highly penetrant rare variants in SIgAD is lacking. Previous SIgAD studies have had limited power to identify common variants due to their small sample size. We overcame this problem first through meta-analysis of two existing GWAS. This identified four novel common-variant associations and enrichment of SIgAD-associated variants in genes linked to Mendelian IEIs. SIgAD showed evidence of shared genetic architecture with serum IgA and a number of immune-mediated diseases. We leveraged this pleiotropy through the conditional false discovery rate procedure, conditioning our SIgAD meta-analysis on large GWAS of asthma and rheumatoid arthritis, and our own meta-analysis of serum IgA. This identified an additional 18 variants, increasing the number of known SIgAD-associated variants to 27 and strengthening the evidence for a polygenic, common-variant aetiology for SIgAD.
Collapse
Affiliation(s)
- Thomas W Willis
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK.
| | - Effrossyni Gkrania-Klotsas
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK; Department of Infectious Diseases, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kenneth G C Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Chris Wallace
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Jamee M, Sharafian S, Eslami N, Bayegi SN, Keramatipour M, Nabavi M, Shokri S, Shakiba M, Shamsian BS, Abolghasemi H, Vahidshahi K, Khanbabaee G, Armin S, Chavoshzadeh Z, Mesdaghi M. Revisiting double-negative T cells in autoimmune lymphoproliferative immunodeficiencies: a case series. Allergol Immunopathol (Madr) 2024; 52:6-14. [PMID: 39278845 DOI: 10.15586/aei.v52i5.1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Elevated level of double-negative T (DNT) cells is a historical hallmark of autoimmune lymphoproliferative syndrome (ALPS) diagnosis. However, the peripheral blood level of DNT cells might also be compromised in autoimmune lymphoproliferative immunodeficiencies (ALPID) other than ALPS, inattention to which would increase the delay in diagnosis of the underlying genetic defect and hinder disease-specific treatment. MATERIALS AND METHODS This cross-sectional study recruited patients suffering from ALPID (exclusion of ALPS) with established genetic diagnosis. Following thorough history taking, immunophenotyping for lymphocyte subsets was performed using BD FACS CaliburTM flowcytometry. RESULTS Fifteen non-ALPS ALPID patients (60% male and 40% female) at a median (interquartile range: IQR) age of 14.0 (7.6-21.8) years were enrolled. Parental consanguinity and family history of immunodeficiency were present in 8 (53.3%) patients. The median (IQR) age at first presentation, clinical and molecular diagnosis were 18 (4-36) months, 8.0 (4.0-17.0) years, and 9.5 (5.0-20.9) years, respectively. Molecular defects were observed in these genes: LRBA (3, 20%), CTLA-4 (2, 13.3%), BACH2 (2, 13.3%), AIRE (2, 13.3%), and FOXP3, IL2Rβ, DEF6, RASGRP1, PIK3CD, and PIK3R1 each in one patient (6.7%). The most common manifestations were infections (14, 93.3%), autoimmunity (12, 80%), and lymphoproliferation (10, 66.7%). The median (IQR) count of white blood cells (WBCs) and lymphocytes were 7160 (3690-12,600) and 3266 (2257-5370) cells/mm3, respectively. The median (IQR) absolute counts of CD3+ T lymphocytes and DNTs were 2085 (1487-4222) and 18 (11-36) cells/mm3, respectively. Low lymphocytes and low CD3+ T cells were observed in 3 (20%) patients compared to normal age ranges. Only one patient with FOXP3 mutation had DNT cells higher than the normal range for age. CONCLUSIONS Most non-ALPS ALPID patients manifested normal DNT cell count. For a small subgroup of patients with high DNT cells, defects in other IEI genes may explain the phenotype and should be included in the diagnostic genetic panel.
Collapse
Affiliation(s)
- Mahnaz Jamee
- Clinical Research Development Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Eslami
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shideh Namazi Bayegi
- Department of Allergy and Immunodeficiency, Massoud Medical Laboratory, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Nabavi
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Shokri
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Shakiba
- Department of Pediatric Endocrinology and Metabolism, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bibi Shahin Shamsian
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kurosh Vahidshahi
- Department of Pediatric Cardiology, Modarres Teaching Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghamartaj Khanbabaee
- Pediatric Respiratory Ward, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahnaz Armin
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
| | - Mehrnaz Mesdaghi
- Clinical Research Development Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Allergy and Immunodeficiency, Massoud Medical Laboratory, Tehran, Iran;
| |
Collapse
|
3
|
Pasternak Y, Vong L, Merico D, Abrego Fuentes L, Scott O, Sham M, Fraser M, Watts-Dickens A, Willett Pachul J, Kim VH, Marshall CR, Scherer S, Roifman CM. Utilization of next-generation sequencing to define the role of heterozygous FOXN1 variants in immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100267. [PMID: 38800615 PMCID: PMC11127205 DOI: 10.1016/j.jacig.2024.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 05/29/2024]
Abstract
Background Forkhead box protein N1 (FOXN1) transcription factor plays an essential role in the development of thymic epithelial cells, required for T-cell differentiation, maturation, and function. Biallelic pathogenic variants in FOXN1 cause severe combined immunodeficiency (SCID). More recently, heterozygous variants in FOXN1, identified by restricted gene panels, were also implicated with causing a less severe and variable immunodeficiency. Objective We undertook longitudinal follow-up and advanced genetic investigations, including whole exome sequencing and whole genome sequencing, of newborns with a heterozygous variant in FOXN1. Methods Five patients (3 female, 2 male) have been followed since they were first detected with low T-cell receptor excision circles during newborn screening for SCID. Patients underwent immune evaluation as well as genetic testing, including a primary immunodeficiency panel, whole exome sequencing, and whole genome sequencing in some cases. Results Median follow-up time was 6.5 years. Initial investigations revealed low CD3+ T lymphocytes in all patients. One patient presented with extremely low lymphocyte counts and depressed phytohemagglutinin responses leading to a tentative diagnosis of SCID. Over a period of 2 years, CD3+ T-cell counts rose, although in some patients it remained borderline low. One of 5 children continues to experience recurrent upper respiratory infections and asthma episodes. The remaining are asymptomatic except for eczema in 2 of 5 cases. Lymphocyte proliferation responses to phytohemagglutinin were initially low in 3 patients but normalized by age 10 months. In 3 of 5 cases, T lymphocyte counts remain low/borderline low. Conclusion In cases of monoallelic FOXN1 variants, using whole exome sequencing and whole genome sequencing to rule out possible other significant pathogenic variants allowed us to proceed with confidence in a conservative manner, even in extreme cases consistent with newborn screen-positive early presentation of SCID.
Collapse
Affiliation(s)
- Yehonatan Pasternak
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Linda Vong
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
- Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| | - Daniele Merico
- Vevo Therapeutics, San Francisco, Calif
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura Abrego Fuentes
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Ori Scott
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Marina Sham
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Meghan Fraser
- Newborn Screening Program, Department of Clinical and Metabolic Genetics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Abby Watts-Dickens
- Newborn Screening Program, Department of Clinical and Metabolic Genetics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics and the McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Willett Pachul
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Vy H.D. Kim
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Christian R. Marshall
- Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen Scherer
- The Centre for Applied Genomics (TCAG), Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics and the McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chaim M. Roifman
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
- Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children and Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Costagliola G, De Marco E, Massei F, Roberti G, Catena F, Casazza G, Consolini R. The Etiologic Landscape of Lymphoproliferation in Childhood: Proposal for a Diagnostic Approach Exploring from Infections to Inborn Errors of Immunity and Metabolic Diseases. Ther Clin Risk Manag 2024; 20:261-274. [PMID: 38770035 PMCID: PMC11104440 DOI: 10.2147/tcrm.s462996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024] Open
Abstract
Lymphoproliferation is defined by lymphadenopathy, splenomegaly, hepatomegaly, or lymphocytic organ and tissue infiltration. The most common etiologies of lymphoproliferation are represented by infectious diseases and lymphoid malignancies. However, it is increasingly recognized that lymphoproliferative features can be the presenting sign of rare conditions, including inborn errors of immunity (IEI) and inborn errors of metabolism (IEM). Among IEI, lymphoproliferation is frequently observed in autoimmune lymphoproliferative syndrome (ALPS) and related disorders, common variable immunodeficiency (CVID), activated phosphoinositide 3-kinase δ syndrome, and Epstein-Barr virus (EBV)-related disorders. Gaucher disease and Niemann-Pick disease are the most common IEMs that can present with isolated lymphoproliferative features. Notably, other rare conditions, such as sarcoidosis, Castleman disease, systemic autoimmune diseases, and autoinflammatory disorders, should be considered in the differential diagnosis of patients with persistent lymphoproliferation when infectious and malignant diseases have been reasonably ruled out. The clinical features of lymphoproliferative diseases, as well as the associated clinical findings and data deriving from imaging and first-level laboratory investigations, could significantly help in providing the correct diagnostic suspicion for the underlying etiology. This paper reviews the most relevant diseases associated with lymphoproliferation, including infectious diseases, hematological malignancies, IEI, and IEM. Moreover, some practical indications to orient the initial diagnostic process are provided, and two diagnostic algorithms are proposed for the first-level assessment and the approach to persistent lymphoproliferation, respectively.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56126, Italy
| | - Emanuela De Marco
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56126, Italy
| | - Francesco Massei
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56126, Italy
| | - Giulia Roberti
- Pediatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Fabrizio Catena
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56126, Italy
| | - Gabriella Casazza
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56126, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
5
|
Consonni F, Moreno S, Vinuales Colell B, Stolzenberg MC, Fernandes A, Parisot M, Masson C, Neveux N, Rosain J, Bamberger S, Vigue MG, Malphettes M, Quartier P, Picard C, Rieux-Laucat F, Magerus A. Study of the potential role of CASPASE-10 mutations in the development of autoimmune lymphoproliferative syndrome. Cell Death Dis 2024; 15:315. [PMID: 38704374 PMCID: PMC11069523 DOI: 10.1038/s41419-024-06679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a primary disorder of lymphocyte homeostasis, leading to chronic lymphoproliferation, autoimmune cytopenia, and increased risk of lymphoma. The genetic landscape of ALPS includes mutations in FAS, FASLG, and FADD, all associated with apoptosis deficiency, while the role of CASP10 defect in the disease remains debated. In this study, we aimed to assess the impact of CASP10 variants on ALPS pathogenesis. We benefit from thousands of genetic analysis datasets performed in our Institute's genetic platform to identify individuals carrying CASP10 variants previously suspected to be involved in ALPS outcome: p.C401LfsX15, p.V410I and p.Y446C, both at heterozygous and homozygous state. Clinical and laboratory features of the six included subjects were variable but not consistent with ALPS. Two individuals were healthy. Comprehensive analyses of CASP10 protein expression and FAS-mediated apoptosis were conducted and compared to healthy controls and ALPS patients with FAS mutations. Missense CASP10 variants (p.V410I and p.Y446C), which are common in the general population, did not disrupt CASP10 expression, nor FAS-mediated apoptosis. In contrast, homozygous p.C401LfsX15 CASP10 variant lead to a complete abolished CASP10 expression but had no impact on FAS-mediated apoptosis function. At heterozygous state, this p.C401LfsX15 variant lead to a reduced CASP10 protein levels but remained associated with a normal FAS-mediated apoptosis function. These findings demonstrate that CASPASE 10 is dispensable for FAS-mediated apoptosis. In consequences, CASP10 defect unlikely contribute to ALPS pathogenesis, since they did not result in an impairment of FAS-mediated apoptosis nor in clinical features of ALPS in human. Moreover, the absence of FAS expression up-regulation in subjects with CASP10 variants rule out any compensatory mechanisms possibly involved in the normal apoptosis function observed. In conclusion, this study challenges the notion that CASP10 variants contribute to the development of ALPS.
Collapse
Affiliation(s)
- Filippo Consonni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Centre of Excellence, Division of Paediatric Oncology/Haematology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Solange Moreno
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Blanca Vinuales Colell
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Marie-Claude Stolzenberg
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Alicia Fernandes
- Plateforme Vecteurs Viraux et Transfert de Gènes, SFR Necker, INSERM US 24/CNRS UAR 3633, Faculté de santé Necker, Paris, France
| | - Mélanie Parisot
- University of Paris Cité, Paris, France
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UAR3633, Paris, France
| | - Cécile Masson
- University of Paris Cité, Paris, France
- Bioinformatics Core Facility, Paris-Cité University-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Nathalie Neveux
- Laboratory of Biological Nutrition, EA 4466, Faculty of Pharmacy, Paris University, Paris, France
- Clinical Chemistry Department, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Jérémie Rosain
- University of Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sarah Bamberger
- Pediatrics Gastroenterology and Nutrition, Robert-Debré Hospital, Paris, France
| | - Marie-Gabrielle Vigue
- Pediatrics, Infectiology, Rhumatology, Hôpital Arnaud-de-Villeneuve, CHRU de Montpellier, Montpellier, France
| | - Marion Malphettes
- University of Paris Cité, Paris, France
- Department of Clinical Immunology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Pierre Quartier
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
- Pediatric immuno-hematology and rheumatology department, Necker-Enfants Malades Hospital, Assistance publique - Hôpitaux de Paris, Paris, France
| | - Capucine Picard
- University of Paris Cité, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Pediatric immuno-hematology and rheumatology department, Necker-Enfants Malades Hospital, Assistance publique - Hôpitaux de Paris, Paris, France
| | - Frédéric Rieux-Laucat
- University of Paris Cité, Paris, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Aude Magerus
- University of Paris Cité, Paris, France.
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Paris, France.
| |
Collapse
|
6
|
Fernandez I, Touzot F. Looking for ALPS: The value of a combined assessment of biochemical markers. Pediatr Allergy Immunol 2024; 35:e14135. [PMID: 38700373 DOI: 10.1111/pai.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Autoimmune lymphoproliferative syndrome (ALPS) is a rare primary immune disorder caused by defect of the extrinsic apoptotic pathway. The current diagnostic criteria combine clinical features and typical biomarkers but have not been the object of clear international consensus. METHODS We conducted a retrospective study on pediatric patients who were investigated for autoimmune cytopenia and/or lymphoproliferation at the CHU Sainte-Justine Hospital over 10 years. Patients were screened using the combination of TCRαβ+ CD4- CD8- "double negative" (DN) T cells and soluble plasmatic FAS ligand (sFASL). RESULTS Among the 398 tested patients, the median sFASL and DN T cells were 200 ng/mL and 1.8% of TCRαβ+ T cells, respectively. sFASL was highly correlated with vitamin B12 levels. We identified five patients diagnosed with ALPS for whose sFASL and vitamin B12 levels were the more discriminating biomarkers. While ALPS diagnostic criteria had high sensibility, their predictive value remained low. CONCLUSION sFASL level can efficiently discriminate patients with ALPS when using the appropriate thresholds. Our study highlights the need for an international consensus to redefine the place and threshold of biological biomarkers for ALPS diagnosis.
Collapse
Affiliation(s)
- Isabel Fernandez
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Québec, Canada
| | - Fabien Touzot
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Rodríguez-Bayona B, Lucena-Soto JM, Croché-Santander B, Olbrich P, González-Escribano MF, Neth O. Autoimmune lymphoproliferative syndrome (ALPS) due to a novel dominant negative germline mutation in the FAS gene. Immunol Res 2024; 72:162-166. [PMID: 37548830 DOI: 10.1007/s12026-023-09411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Beatriz Rodríguez-Bayona
- Servicio de Inmunología, Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot S/N, 41013, Seville, Spain.
| | - José Manuel Lucena-Soto
- Servicio de Inmunología, Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot S/N, 41013, Seville, Spain
| | | | - Peter Olbrich
- Servicio de Pediatría, Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | - Olaf Neth
- Servicio de Pediatría, Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
8
|
Kanagal-Shamanna R, Beck DB, Calvo KR. Clonal Hematopoiesis, Inflammation, and Hematologic Malignancy. ANNUAL REVIEW OF PATHOLOGY 2024; 19:479-506. [PMID: 37832948 DOI: 10.1146/annurev-pathmechdis-051222-122724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Somatic or acquired mutations are postzygotic genetic variations that can occur within any tissue. These mutations accumulate during aging and have classically been linked to malignant processes. Tremendous advancements over the past years have led to a deeper understanding of the role of somatic mutations in benign and malignant age-related diseases. Here, we review the somatic mutations that accumulate in the blood and their connection to disease states, with a particular focus on inflammatory diseases and myelodysplastic syndrome. We include a definition of clonal hematopoiesis (CH) and an overview of the origins and implications of these mutations. In addition, we emphasize somatic disorders with overlapping inflammation and hematologic disease beyond CH, including paroxysmal nocturnal hemoglobinuria and aplastic anemia, focusing on VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. Finally, we provide a practical view of the implications of somatic mutations in clinical hematology, pathology, and beyond.
Collapse
Affiliation(s)
- Rashmi Kanagal-Shamanna
- Department of Hematopathology and Molecular Diagnostics, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David B Beck
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA;
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Mondal T, Gaur H, Wamba BEN, Michalak AG, Stout C, Watson MR, Aleixo SL, Singh A, Condello S, Faller R, Leiserowitz GS, Bhatnagar S, Tushir-Singh J. Characterizing the regulatory Fas (CD95) epitope critical for agonist antibody targeting and CAR-T bystander function in ovarian cancer. Cell Death Differ 2023; 30:2408-2431. [PMID: 37838774 PMCID: PMC10657439 DOI: 10.1038/s41418-023-01229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
Receptor clustering is the most critical step to activate extrinsic apoptosis by death receptors belonging to the TNF superfamily. Although clinically unsuccessful, using agonist antibodies, the death receptors-5 remains extensively studied from a cancer therapeutics perspective. However, despite its regulatory role and elevated function in ovarian and other solid tumors, another tumor-enriched death receptor called Fas (CD95) remained undervalued in cancer immunotherapy until recently, when its role in off-target tumor killing by CAR-T therapies was imperative. By comprehensively analyzing structure studies in the context of the binding epitope of FasL and various preclinical Fas agonist antibodies, we characterize a highly significant patch of positively charged residue epitope (PPCR) in its cysteine-rich domain 2 of Fas. PPCR engagement is indispensable for superior Fas agonist signaling and CAR-T bystander function in ovarian tumor models. A single-point mutation in FasL or Fas that interferes with the PPCR engagement inhibited apoptotic signaling in tumor cells and T cells. Furthermore, considering that clinical and immunological features of the autoimmune lymphoproliferative syndrome (ALPS) are directly attributed to homozygous mutations in FasL, we reveal differential mechanistic details of FasL/Fas clustering at the PPCR interface compared to described ALPS mutations. As Fas-mediated bystander killing remains vital to the success of CAR-T therapies in tumors, our findings highlight the therapeutic analytical design for potentially effective Fas-targeting strategies using death agonism to improve cancer immunotherapy in ovarian and other solid tumors.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Himanshu Gaur
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Brice E N Wamba
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Abby Grace Michalak
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Camryn Stout
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Matthew R Watson
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Sophia L Aleixo
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Undergraduate Research Program Volunteers, University of California Davis, Davis, CA, USA
| | - Arjun Singh
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roland Faller
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Gary Scott Leiserowitz
- Department of Obstetrics and Gynecology, UC Davis School of Medicine, Sacramento, CA, USA
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Sanchita Bhatnagar
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA
| | - Jogender Tushir-Singh
- Laboratory of Novel Biologics, University of California Davis, Davis, CA, USA.
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA.
- UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA.
- Ovarian Cancer Academy Early Career Investigator at UC Davis, Davis, CA, USA.
| |
Collapse
|
10
|
Failing C, Blase JR, Walkovich K. Understanding the Spectrum of Immune Dysregulation Manifestations in Autoimmune Lymphoproliferative Syndrome and Autoimmune Lymphoproliferative Syndrome-like Disorders. Rheum Dis Clin North Am 2023; 49:841-860. [PMID: 37821199 DOI: 10.1016/j.rdc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
As a disorder of immune dysregulation, autoimmune lymphoproliferative syndrome (ALPS) stems from pathogenic variants in the first apoptosis signal-mediated apoptosis (Fas) and Fas-ligand pathway that result in elevations of CD3+ TCRαβ+ CD4- CD8- T cells along with chronic lymphoproliferation, a heightened risk for malignancy, and importantly for the rheumatologist, increased risk of autoimmunity. While immune cytopenias are the most encountered autoimmune phenomena, there is increasing appreciation for ocular, musculoskeletal, pulmonary and renal inflammatory manifestations similar to more common rheumatology diseases. Additionally, ALPS-like conditions that share similar clinical features and opportunities for targeted therapy are increasingly recognized via genetic testing, highlighting the need for rheumatologists to be facile in the recognition and diagnosis of this spectrum of disorders. This review will focus on clinical and laboratory features of both ALPS and ALPS-like disorders with the intent to provide a framework for rheumatologists to understand the pathophysiologic drivers and discriminate between diagnoses.
Collapse
Affiliation(s)
- Christopher Failing
- Sanford Health, Fargo, ND, USA; University of North Dakota School of Medicine and Health Sciences, Grand Folks, ND, USA.
| | - Jennifer R Blase
- University of Michigan, 1500 East Medical Center Drive, D4202 Medical Professional Building, Ann Arbor, MI 48109, USA
| | - Kelly Walkovich
- University of Michigan, 1500 East Medical Center Drive, D4202 Medical Professional Building, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Wang CS. Type I Interferonopathies: A Clinical Review. Rheum Dis Clin North Am 2023; 49:741-756. [PMID: 37821193 DOI: 10.1016/j.rdc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
This review will discuss when clinicians should consider evaluating for Type I interferonopathies, review clinical phenotypes and molecular defects of Type I interferonopathies, and discuss current treatments.
Collapse
Affiliation(s)
- Christine S Wang
- Department of Pediatric Rheumatology, C.S. Mott Children's Hospital, University of Michigan, 1500 East Medical Center Drive SPC 5718, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
13
|
Sun R, Wang Y, Abolhassani H. Cellular mechanisms and clinical applications for phenocopies of inborn errors of immunity: infectious susceptibility due to cytokine autoantibodies. Expert Rev Clin Immunol 2023:1-14. [PMID: 37114623 DOI: 10.1080/1744666x.2023.2208863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION With a growing knowledge of Inborn error immunity (IEI), immunological profiling and genetic predisposition to IEI phenocopies have been developed in recent years. AREAS COVERED Here we summarized the correlation between various pathogen invasions, autoantibody profiles, and corresponding clinical features in the context of patients with IEI phenocopies. It has been extensively evident that patients with anti-cytokine autoantibodies underly impaired anti-pathogen immune responses and lead to broad unregulated inflammation and tissue damage. Several hypotheses of anti-cytokine autoantibodies production were summarized here, including a defective negative selection of autoreactive T cells, abnormal germinal center formation, molecular mimicry, HLA class II allele region, lack of auto-reactive lymphocyte apoptosis, and other possible hypotheses. EXPERT OPINION Phenocopies of IEI associated with anti-cytokine autoantibodies are increasingly recognized as one of the causes of acquired immunodeficiency and susceptibility to certain pathogen infections, especially facing the current challenge of the COVID-19 pandemic. By investigating clinical, genetic, and pathogenesis autoantibodies profiles associated with various pathogens' susceptibilities, we could better understand the IEI phenocopies with anti-cytokine autoantibodies, especially for those that underlie life-threatening SARS-CoV-2.
Collapse
Affiliation(s)
- Rui Sun
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Yating Wang
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
14
|
Costa F, Beltrami E, Mellone S, Sacchetti S, Boggio E, Gigliotti CL, Stoppa I, Dianzani U, Rolla R, Giordano M. Genes and Microbiota Interaction in Monogenic Autoimmune Disorders. Biomedicines 2023; 11:1127. [PMID: 37189745 PMCID: PMC10135656 DOI: 10.3390/biomedicines11041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Monogenic autoimmune disorders represent an important tool to understand the mechanisms behind central and peripheral immune tolerance. Multiple factors, both genetic and environmental, are known to be involved in the alteration of the immune activation/immune tolerance homeostasis typical of these disorders, making it difficult to control the disease. The latest advances in genetic analysis have contributed to a better and more rapid diagnosis, although the management remains confined to the treatment of clinical manifestations, as there are limited studies on rare diseases. Recently, the correlation between microbiota composition and the onset of autoimmune disorders has been investigated, thus opening up new perspectives on the cure of monogenic autoimmune diseases. In this review, we will summarize the main genetic features of both organ-specific and systemic monogenic autoimmune diseases, reporting on the available literature data on microbiota alterations in these patients.
Collapse
Affiliation(s)
- Federica Costa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Eleonora Beltrami
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Simona Mellone
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| |
Collapse
|
15
|
The link between rheumatic disorders and inborn errors of immunity. EBioMedicine 2023; 90:104501. [PMID: 36870198 PMCID: PMC9996386 DOI: 10.1016/j.ebiom.2023.104501] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are immunological disorders characterized by variable susceptibility to infections, immune dysregulation and/or malignancies, as a consequence of damaging germline variants in single genes. Though initially identified among patients with unusual, severe or recurrent infections, non-infectious manifestations and especially immune dysregulation in the form of autoimmunity or autoinflammation can be the first or dominant phenotypic aspect of IEIs. An increasing number of IEIs causing autoimmunity or autoinflammation, including rheumatic disease have been reported over the last decade. Despite their rarity, identification of those disorders provided insight into the pathomechanisms of immune dysregulation, which may be relevant for understanding the pathogenesis of systemic rheumatic disorders. In this review, we present novel IEIs primarily causing autoimmunity or autoinflammation along with their pathogenic mechanisms. In addition, we explore the likely pathophysiological and clinical relevance of IEIs in systemic rheumatic disorders.
Collapse
|
16
|
Gupta S, Agrawal A. Dendritic cells in inborn errors of immunity. Front Immunol 2023; 14:1080129. [PMID: 36756122 PMCID: PMC9899832 DOI: 10.3389/fimmu.2023.1080129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Dendritic cells (DCs) are crucial cells for initiating and maintaining immune response. They play critical role in homeostasis, inflammation, and autoimmunity. A number of molecules regulate their functions including synapse formation, migration, immunity, and induction of tolerance. A number of IEI are characterized by mutations in genes encoding several of these molecules resulting in immunodeficiency, inflammation, and autoimmunity in IEI. Currently, there are 465 Inborn errors of immunity (IEI) that have been grouped in 10 different categories. However, comprehensive studies of DCs have been reported in only few IEI. Here we have reviewed biology of DCs in IEI classified according to recently published IUIS classification. We have reviewed DCs in selected IEI in each group category and discussed in depth changes in DCs where significant data are available regarding role of DCs in clinical and immunological manifestations. These include severe immunodeficiency diseases, antibody deficiencies, combined immunodeficiency with associated and syndromic features, especially disorders of synapse formation, and disorders of immune regulation.
Collapse
Affiliation(s)
- Sudhir Gupta
- Division of Basic and Clinical Immunology, University of California, Irvine, CA, United States
| | | |
Collapse
|
17
|
Elgharbawy FM, Karim MY, Soliman DS, Hassan AS, Sudarsanan A, Gad A. Case report: Neonatal autoimmune lymphoproliferative syndrome with a novel pathogenic homozygous FAS variant effectively treated with sirolimus. Front Pediatr 2023; 11:1150179. [PMID: 37152306 PMCID: PMC10159173 DOI: 10.3389/fped.2023.1150179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background Autoimmune lymphoproliferative syndrome (ALPS) is a rare disease characterized by defective FAS signaling, which results in chronic, nonmalignant lymphoproliferation and autoimmunity accompanied by increased numbers of "double-negative" T-cells (DNTs) (T-cell receptor αβ+ CD4-CD8-) and an increased risk of developing malignancies later in life. Case presentation We herein report a case of a newborn boy with a novel germline homozygous variant identified in the FAS gene, exon 9, c.775del, which was considered pathogenic. The consequence of this sequence change was the creation of a premature translational stop signal p.(lle259*), associated with a severe clinical phenotype of ALPS-FAS. The elder brother of the proband was also affected by ALPS and has been found to have the same FAS homozygous variant associated with a severe clinical phenotype of ALPS-FAS, whereas the unaffected parents are heterozygous carriers of this variant. This new variant has not previously been described in population databases (gnomAD and ExAC) or in patients with FAS-related conditions. Treatment with sirolimus effectively improved the patient clinical manifestations with obvious reduction in the percentage of DNTs. Conclusion We described a new ALPS-FAS clinical phenotype-associated germline FAS homozygous pathogenic variant, exon 9, c.775del, that produces a premature translational stop signal p.(lle259*). Sirolimus significantly reduced DNTs and substantially relieved the patient's clinical symptoms.
Collapse
Affiliation(s)
- Fawzia M. Elgharbawy
- Neonatal Intensive Care Unit, Department of Pediatrics, AL Wakra Hospital, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine- Qatar (WCM-Q), Cornell University, Doha, Qatar
- Correspondence: Fawzia Elgharbawy
| | - Mohammed Yousuf Karim
- Immunopathology Section, Sidra Medicine, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Dina Sameh Soliman
- Weill Cornell Medicine- Qatar (WCM-Q), Cornell University, Doha, Qatar
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Amel Siddik Hassan
- Allergy and Immunology section, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Anoop Sudarsanan
- Neonatal Intensive Care Unit, Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Ashraf Gad
- Weill Cornell Medicine- Qatar (WCM-Q), Cornell University, Doha, Qatar
- Neonatal Intensive Care Unit, Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
18
|
Mocarski ES. Programmed Necrosis in Host Defense. Curr Top Microbiol Immunol 2023; 442:1-40. [PMID: 37563336 DOI: 10.1007/82_2023_264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Host control over infectious disease relies on the ability of cells in multicellular organisms to detect and defend against pathogens to prevent disease. Evolution affords mammals with a wide variety of independent immune mechanisms to control or eliminate invading infectious agents. Many pathogens acquire functions to deflect these immune mechanisms and promote infection. Following successful invasion of a host, cell autonomous signaling pathways drive the production of inflammatory cytokines, deployment of restriction factors and induction of cell death. Combined, these innate immune mechanisms attract dendritic cells, neutrophils and macrophages as well as innate lymphoid cells such as natural killer cells that all help control infection. Eventually, the development of adaptive pathogen-specific immunity clears infection and provides immune memory of the encounter. For obligate intracellular pathogens such as viruses, diverse cell death pathways make a pivotal contribution to early control by eliminating host cells before progeny are produced. Pro-apoptotic caspase-8 activity (along with caspase-10 in humans) executes extrinsic apoptosis, a nonlytic form of cell death triggered by TNF family death receptors (DRs). Over the past two decades, alternate extrinsic apoptosis and necroptosis outcomes have been described. Programmed necrosis, or necroptosis, occurs when receptor interacting protein kinase 3 (RIPK3) activates mixed lineage kinase-like (MLKL), causing cell leakage. Thus, activation of DRs, toll-like receptors (TLRs) or pathogen sensor Z-nucleic acid binding protein 1 (ZBP1) initiates apoptosis as well as necroptosis if not blocked by virus-encoded inhibitors. Mammalian cell death pathways are blocked by herpesvirus- and poxvirus-encoded cell death suppressors. Growing evidence has revealed the importance of Z-nucleic acid sensor, ZBP1, in the cell autonomous recognition of both DNA and RNA virus infection. This volume will explore the detente between viruses and cells to manage death machinery and avoid elimination to support dissemination within the host animal.
Collapse
Affiliation(s)
- Edward S Mocarski
- Robert W. Woodruff Professor Emeritus, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Professor Emeritus, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
19
|
Wang D, Cassady K, Zou Z, Zhang X, Feng Y. Progress on the efficacy and potential mechanisms of rapamycin in the treatment of immune thrombocytopenia. Hematology 2022; 27:1282-1289. [DOI: 10.1080/16078454.2022.2151230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dan Wang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | | | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University, Chongqing, People’s Republic of China
| | - Xi Zhang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Yimei Feng
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
20
|
Batlle-Masó L, Garcia-Prat M, Parra-Martínez A, Franco-Jarava C, Aguiló-Cucurull A, Velasco P, Antolín M, Rivière JG, Martín-Nalda A, Soler-Palacín P, Martínez-Gallo M, Colobran R. Detection and evolutionary dynamics of somatic FAS variants in autoimmune lymphoproliferative syndrome: Diagnostic implications. Front Immunol 2022; 13:1014984. [PMID: 36466883 PMCID: PMC9716137 DOI: 10.3389/fimmu.2022.1014984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a rare primary immune disorder characterized by impaired apoptotic homeostasis. The clinical characteristics include lymphoproliferation, autoimmunity (mainly cytopenia), and an increased risk of lymphoma. A distinctive biological feature is accumulation (>2.5%) of an abnormal cell subset composed of TCRαβ+ CD4-CD8- T cells (DNTs). The most common genetic causes of ALPS are monoallelic pathogenic variants in the FAS gene followed by somatic FAS variants, mainly restricted to DNTs. Identification of somatic FAS variants has been typically addressed by Sanger sequencing in isolated DNTs. However, this approach can be costly and technically challenging, and may not be successful in patients with normal DNT counts receiving immunosuppressive treatment. In this study, we identified a novel somatic mutation in FAS (c.718_719insGTCG) by Sanger sequencing on purified CD3+ cells. We then followed the evolutionary dynamics of the variant along time with an NGS-based approach involving deep amplicon sequencing (DAS) at high coverage (20,000-30,000x). Over five years of clinical follow-up, we obtained six blood samples for molecular study from the pre-treatment (DNTs>7%) and treatment (DNTs<2%) periods. DAS enabled detection of the somatic variant in all samples, even the one obtained after five years of immunosuppressive treatment (DNTs: 0.89%). The variant allele frequency (VAF) range was 4%-5% in pre-treatment samples and <1.5% in treatment samples, and there was a strong positive correlation between DNT counts and VAF (Pearson’s R: 0.98, p=0.0003). We then explored whether the same approach could be used in a discovery setting. In the last follow-up sample (DNT: 0.89%) we performed somatic variant calling on the FAS exon 9 DAS data from whole blood and purified CD3+ cells using VarScan 2. The c.718_719insGTCG variant was identified in both samples and showed the highest VAF (0.67% blood, 1.58% CD3+ cells) among >400 variants called. In summary, our study illustrates the evolutionary dynamics of a somatic FAS mutation before and during immunosuppressive treatment. The results show that pathogenic somatic FAS variants can be identified with the use of DAS in whole blood of ALPS patients regardless of their DNT counts.
Collapse
Affiliation(s)
- Laura Batlle-Masó
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Marina Garcia-Prat
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Alba Parra-Martínez
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Clara Franco-Jarava
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - Aina Aguiló-Cucurull
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - Pablo Velasco
- Pediatric Oncology and Hematology Department, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - Jacques G. Rivière
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Andrea Martín-Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Pere Soler-Palacín
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Department of Cell Biology, Autonomous University of Barcelona (UAB), Physiology and Immunology, Bellaterra, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Department of Cell Biology, Autonomous University of Barcelona (UAB), Physiology and Immunology, Bellaterra, Spain
- *Correspondence: Roger Colobran,
| |
Collapse
|
21
|
Costagliola G, Consolini R. Refractory immune thrombocytopenia: Lessons from immune dysregulation disorders. Front Med (Lausanne) 2022; 9:986260. [PMID: 36203772 PMCID: PMC9530977 DOI: 10.3389/fmed.2022.986260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
|
22
|
Delgadillo DM, Céspedes-Cruz AI, Ríos-Castro E, Rodríguez Maldonado MG, López-Nogueda M, Márquez-Gutiérrez M, Villalobos-Manzo R, Ramírez-Reyes L, Domínguez-Fuentes M, Tapia-Ramírez J. Differential Expression of Proteins in an Atypical Presentation of Autoimmune Lymphoproliferative Syndrome. Int J Mol Sci 2022; 23:5366. [PMID: 35628184 PMCID: PMC9140392 DOI: 10.3390/ijms23105366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a rare disease defined as a defect in the lymphocyte apoptotic pathway. Currently, the diagnosis of ALPS is based on clinical aspects, defective lymphocyte apoptosis and mutations in Fas, FasL and Casp 10 genes. Despite this, ALPS has been misdiagnosed. The aim of this work was to go one step further in the knowledge of the disease, through a molecular and proteomic analysis of peripheral blood mononuclear cells (PBMCs) from two children, a 13-year-old girl and a 6-year-old boy, called patient 1 and patient 2, respectively, with clinical data supporting the diagnosis of ALPS. Fas, FasL and Casp10 genes from both patients were sequenced, and a sample of the total proteins from patient 1 was analyzed by label-free proteomics. Pathway analysis of deregulated proteins from PBMCs was performed on the STRING and PANTHER bioinformatics databases. A mutation resulting in an in-frame premature stop codon and protein truncation was detected in the Fas gene from patient 2. From patient 1, the proteomic analysis showed differences in the level of expression of proteins involved in, among other processes, cell cycle, regulation of cell cycle arrest and immune response. Noticeably, the most down-regulated protein is an important regulator of the cell cycle process. This could be an explanation of the disease in patient 1.
Collapse
Affiliation(s)
- Dulce María Delgadillo
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Mexico City 07360, CP, Mexico
| | - Adriana Ivonne Céspedes-Cruz
- Unidad Médica de Alta Especialidad (UMAE), Centro Médico Nacional La Raza Hospital General, Mexico City 02990, CP, Mexico
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Mexico City 07360, CP, Mexico
| | | | - Mariel López-Nogueda
- Unidad Médica de Alta Especialidad (UMAE), Centro Médico Nacional La Raza Hospital General, Mexico City 02990, CP, Mexico
| | - Miguel Márquez-Gutiérrez
- Unidad Médica de Alta Especialidad (UMAE), Centro Médico Nacional La Raza Hospital General, Mexico City 02990, CP, Mexico
| | - Rocío Villalobos-Manzo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Mexico City 07360, CP, Mexico
| | - Lorena Ramírez-Reyes
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Mexico City 07360, CP, Mexico
| | - Misael Domínguez-Fuentes
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Mexico City 07360, CP, Mexico
| | - José Tapia-Ramírez
- Unidad de Genómica, Proteómica y Metabolómica, Laboratorio Nacional de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados, Mexico City 07360, CP, Mexico
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Mexico City 07360, CP, Mexico
| |
Collapse
|