1
|
Nafar S, Hosseini K, Shokrgozar N, Farahmandi AY, Alamdari-Palangi V, Saber Sichani A, Fallahi J. An Investigation into Cell-Free DNA in Different Common Cancers. Mol Biotechnol 2024; 66:3462-3474. [PMID: 38071680 DOI: 10.1007/s12033-023-00976-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/23/2023] [Indexed: 11/15/2024]
Abstract
Diagnosis is the most important step in different diseases, especially in cancers and blood malignancies. There are different methods in order to better diagnose of cancer, but many of them are invasive and also, some of them are not useful for immediate diagnosis. Cell-free DNA (cfDNA) or liquid biopsy easily accessible in peripheral blood is one of the non-invasive prognostic biomarkers in various areas of cancer management. In fact, amounts of cfDNA in serum or plasma can be used for diagnosis. In this review, we have considered some cancers such as hepatocellular carcinoma, lung cancer, breast cancer, and hematologic malignancies to compare the various methods of cfDNA diagnosis.
Collapse
Affiliation(s)
- Samira Nafar
- Medical Genetic Department, Shiraz University of Medical Science, Shiraz, Iran
| | - Kamran Hosseini
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Shokrgozar
- Hematology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Saber Sichani
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Wijnands C, Armony G, Noori S, Gloerich J, Bonifay V, Caillon H, Luider TM, Brehmer S, Pfennig L, Srikumar T, Trede D, Kruppa G, Dejoie T, van Duijn MM, van Gool AJ, Jacobs JFM, Wessels HJCT. An automated workflow based on data independent acquisition for practical and high-throughput personalized assay development and minimal residual disease monitoring in multiple myeloma patients. Clin Chem Lab Med 2024; 62:2507-2518. [PMID: 38872409 DOI: 10.1515/cclm-2024-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVES Minimal residual disease (MRD) status in multiple myeloma (MM) is an important prognostic biomarker. Personalized blood-based targeted mass spectrometry detecting M-proteins (MS-MRD) was shown to provide a sensitive and minimally invasive alternative to MRD-assessment in bone marrow. However, MS-MRD still comprises of manual steps that hamper upscaling of MS-MRD testing. Here, we introduce a proof-of-concept for a novel workflow using data independent acquisition-parallel accumulation and serial fragmentation (dia-PASEF) and automated data processing. METHODS Using automated data processing of dia-PASEF measurements, we developed a workflow that identified unique targets from MM patient sera and personalized protein sequence databases. We generated patient-specific libraries linked to dia-PASEF methods and subsequently quantitated and reported M-protein concentrations in MM patient follow-up samples. Assay performance of parallel reaction monitoring (prm)-PASEF and dia-PASEF workflows were compared and we tested mixing patient intake sera for multiplexed target selection. RESULTS No significant differences were observed in lowest detectable concentration, linearity, and slope coefficient when comparing prm-PASEF and dia-PASEF measurements of serial dilutions of patient sera. To improve assay development times, we tested multiplexing patient intake sera for target selection which resulted in the selection of identical clonotypic peptides for both simplex and multiplex dia-PASEF. Furthermore, assay development times improved up to 25× when measuring multiplexed samples for peptide selection compared to simplex. CONCLUSIONS Dia-PASEF technology combined with automated data processing and multiplexed target selection facilitated the development of a faster MS-MRD workflow which benefits upscaling and is an important step towards the clinical implementation of MS-MRD.
Collapse
Affiliation(s)
- Charissa Wijnands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gad Armony
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Somayya Noori
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Hélène Caillon
- Biochemistry Laboratory, Hospital of Nantes, Nantes, France
| | - Theo M Luider
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | - Thomas Dejoie
- Biochemistry Laboratory, Hospital of Nantes, Nantes, France
| | - Martijn M van Duijn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Alain J van Gool
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joannes F M Jacobs
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Witzig TE, Taylor WR, Mahoney DW, Bamlet WR, Foote PH, Burger KN, Doering KA, Devens ME, Arndt JR, O'Connell MC, Berger CK, Novak AJ, Cerhan JR, Hennek J, Katerov S, Allawi HT, Jevremovic D, Dao LN, Graham RP, Kisiel JB. Blood Plasma Methylated DNA Markers in the Detection of Lymphoma: Discovery, Validation, and Clinical Pilot. Am J Hematol 2024. [PMID: 39564730 DOI: 10.1002/ajh.27533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Lymphoma is one of the leading causes of cancer and cancer deaths and yet has not been amenable to population screening. The role of methylated DNA markers (MDMs) in the detection of lymphoma has not been extensively studied. We aimed to discover, validate, and test tissue-derived MDMs of lymphoma in archival plasma specimens. Reduced representation bisulfite sequencing (RRBS) was performed on a discovery set of frozen tissues. MDMs identified were converted to methylation-specific PCR assays and validated on independent formalin-fixed, paraffin-embedded (FFPE) tissues. Target enrichment long-probe quantitative-amplified signal (TELQAS) assays were developed and assayed in plasma-extracted, bisulfite-converted DNA from independent treatment-naïve lymphoma patients and healthy controls. Prediction of cancer status was modeled using random forest model with in silico cross-validation. After discovery and validation in tissue, 16 TELQAS assays (ZNF503, VWA5B1, HOXA9, GABRG3, ITGA5, MAX.chr17.7190, BNC1, CDK20, MAX.chr4.4069, TPBG, DNAH14, SYT6, CACNG8, FAM110B, ADRA1D, and NRN1) were selected for testing in plasma. These detected 78% (95% CI, 74%-82%) of lymphoma cases at 90% specificity. Excluding marginal zone and T-cell lymphomas, sensitivity increased to 84% (80%-88%). MDMs in plasma show promise to detect lymphoma and are candidates for inclusion in multi-cancer detection studies.
Collapse
Affiliation(s)
- Thomas E Witzig
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - William R Taylor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas W Mahoney
- Department of Qualitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - William R Bamlet
- Department of Qualitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick H Foote
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kelli N Burger
- Department of Qualitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Karen A Doering
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary E Devens
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacquelyn R Arndt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria C O'Connell
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Calise K Berger
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - James R Cerhan
- Department of Qualitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Slava Katerov
- Exact Sciences Development Company, Madison, Wisconsin, USA
| | - Hatim T Allawi
- Exact Sciences Development Company, Madison, Wisconsin, USA
| | - Dragan Jevremovic
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Linda N Dao
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rondell P Graham
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Vigliotta I, Solli V, Armuzzi S, Martello M, Poletti A, Taurisano B, Pistis I, Mazzocchetti G, Borsi E, Pantani L, Marzocchi G, Testoni N, Zamagni E, Terracciano M, Tononi P, Garonzi M, Ferrarini A, Manaresi N, Cavo M, Terragna C. Circulating Multiple Myeloma Cells (CMMCs) as Prognostic and Predictive Markers in Multiple Myeloma and Smouldering MM Patients. Cancers (Basel) 2024; 16:2929. [PMID: 39272787 PMCID: PMC11393854 DOI: 10.3390/cancers16172929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
In recent years, liquid biopsy has emerged as a promising alternative to the bone marrow (BM) examination, since it is a minimally invasive technique allowing serial monitoring. Circulating multiple myeloma cells (CMMCs) enumerated using CELLSEARCH® were correlated with patients' prognosis and measured under treatment to assess their role in monitoring disease dynamics. Forty-four MM and seven smouldering MM (SMM) patients were studied. The CMMC medians at diagnosis were 349 (1 to 39,940) and 327 (range 22-2463) for MM and SMM, respectively. In the MM patients, the CMMC count was correlated with serum albumin, calcium, β2-microglobulin, and monoclonal components (p < 0.04). Under therapy, the CMMCs were consistently detectable in 15/40 patients (coMMstant = 1) and were undetectable or decreasing in 25/40 patients (coMMstant = 0). High-quality response rates were lower in the coMMstant = 1 group (p = 0.04), with a 7.8-fold higher risk of death (p = 0.039), suggesting that continuous CMMC release is correlated with poor responses. In four MM patients, a single-cell DNA sequencing analysis on residual CMMCs confirmed the genomic pattern of the aberrations observed in the BM samples, also highlighting the presence of emerging clones. The CMMC kinetics during treatment were used to separate the patients into two subgroups based on the coMMstant index, with different responses and survival probabilities, providing evidence that CMMC persistence is associated with a poor disease course.
Collapse
Affiliation(s)
- Ilaria Vigliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", 40138 Bologna, Italy
| | - Vincenza Solli
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Silvia Armuzzi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marina Martello
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Andrea Poletti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Barbara Taurisano
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Ignazia Pistis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", 40138 Bologna, Italy
| | - Gaia Mazzocchetti
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Enrica Borsi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", 40138 Bologna, Italy
| | - Lucia Pantani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", 40138 Bologna, Italy
| | - Giulia Marzocchi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Nicoletta Testoni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Mario Terracciano
- Menarini Silicon Biosystems SpA, Via Giuseppe di Vittorio, Castel Maggiore, 40013 Bologna, Italy
| | - Paola Tononi
- Menarini Silicon Biosystems SpA, Via Giuseppe di Vittorio, Castel Maggiore, 40013 Bologna, Italy
| | - Marianna Garonzi
- Menarini Silicon Biosystems SpA, Via Giuseppe di Vittorio, Castel Maggiore, 40013 Bologna, Italy
| | - Alberto Ferrarini
- Menarini Silicon Biosystems SpA, Via Giuseppe di Vittorio, Castel Maggiore, 40013 Bologna, Italy
| | - Nicolò Manaresi
- Menarini Silicon Biosystems SpA, Via Giuseppe di Vittorio, Castel Maggiore, 40013 Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Carolina Terragna
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", 40138 Bologna, Italy
| |
Collapse
|
5
|
Li AY, Kamangar F, Holtzman NG, Rapoport AP, Kocoglu MH, Atanackovic D, Badros AZ. A Clinical Perspective on Plasma Cell Leukemia: A Single-Center Experience. Cancers (Basel) 2024; 16:2149. [PMID: 38893268 PMCID: PMC11172213 DOI: 10.3390/cancers16112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Circulating plasma cells (CPCs) are detected in most multiple myeloma (MM) patients, both at diagnosis and on relapse. A small subset, plasma cell leukemia (PCL), represents a different biology and has a poor prognosis. In this retrospective analysis, we evaluated patients with primary (pPCL, n = 35) or secondary (sPCL, n = 49), with ≥5% CPCs and a smaller subset with lower CPCs of 1-4% (n = 20). The median age was 61 years; 45% were men and 54% were Black. High-risk cytogenetics were found in 87% and extramedullary disease in 47%. For the entire cohort, 75% received a proteasome inhibitor, 70% chemotherapy, 54% an immunomodulatory drug, 24% a daratumumab-based regimen and 26% an autologous stem cell transplant (ASCT). The treatments marginally improved the overall survival (OS) for pPCL vs. sPCL (13 vs. 3.5 months p = 0.002). However, the 5-year survival for the whole cohort was dismal at 11%. High-risk cytogenetics, low platelets, extramedullary disease and high LDH were independently associated with poor outcomes. Further research is urgently needed to expand the treatment options and improve the outcomes in PCL.
Collapse
Affiliation(s)
- Andrew Y. Li
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA; (A.Y.L.); (A.P.R.); (M.H.K.); (D.A.)
| | - Farin Kamangar
- Department of Biology, School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA;
| | - Noa G. Holtzman
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA;
| | - Aaron P. Rapoport
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA; (A.Y.L.); (A.P.R.); (M.H.K.); (D.A.)
| | - Mehmet H. Kocoglu
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA; (A.Y.L.); (A.P.R.); (M.H.K.); (D.A.)
| | - Djordje Atanackovic
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA; (A.Y.L.); (A.P.R.); (M.H.K.); (D.A.)
| | - Ashraf Z. Badros
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA; (A.Y.L.); (A.P.R.); (M.H.K.); (D.A.)
- Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Quivoron C, Michot JM, Danu A, Lecourt H, Saada V, Saleh K, Vergé V, Cotteret S, Bernard OA, Ribrag V. Sensitivity, specificity, and accuracy of molecular profiling on circulating cell-free DNA in refractory or relapsed multiple myeloma patients, results of MM-EP1 study. Leuk Lymphoma 2024; 65:789-799. [PMID: 38433500 DOI: 10.1080/10428194.2024.2320258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
As a promising alternative to bone marrow aspiration (BMA), mutational profiling on blood-derived circulating cell-free tumor DNA (cfDNA) is a harmless and simple technique to monitor molecular response and treatment resistance of patients with refractory/relapsed multiple myeloma (R/R MM). We evaluated the sensitivity and specificity of cfDNA compared to BMA CD138 positive myeloma plasma cells (PCs) in a series of 45 R/R MM patients using the 29-gene targeted panel (AmpliSeq) NGS. KRAS, NRAS, FAM46C, DIS3, and TP53 were the most frequently mutated genes. The average sensitivity and specificity of cfDNA detection were 65% and 97%, respectively. The concordance per gene between the two samples was good to excellent according to Cohen's κ coefficients interpretation. An increased number of mutations detected in cfDNA were associated with a decreased overall survival. In conclusion, we demonstrated cfDNA NGS analysis feasibility and accuracy in R/R MM patients who may benefit from early phase clinical trial.
Collapse
Affiliation(s)
- C Quivoron
- Translational Hematology Laboratory, AMMICa, INSERM US23/CNRS UAR3655, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - J-M Michot
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Drug Development Department: Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - A Danu
- Hematology Department, Gustave Roussy, Villejuif, France
| | - H Lecourt
- Translational Hematology Laboratory, AMMICa, INSERM US23/CNRS UAR3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - V Saada
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - K Saleh
- Hematology Department, Gustave Roussy, Villejuif, France
| | - V Vergé
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - S Cotteret
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - O A Bernard
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - V Ribrag
- Translational Hematology Laboratory, AMMICa, INSERM US23/CNRS UAR3655, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Drug Development Department: Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
7
|
Tembhare PR, Sriram H, Khanka T, Gawai S, Bagal B, Ghogale SG, Deshpande N, Girase K, Patil J, Hasan SK, Shetty D, Ghosh K, Chatterjee G, Rajpal S, Patkar NV, Jain H, Punatar S, Gokarn A, Nayak L, Mirgh S, Jindal N, Sengar M, Khattry N, Subramanian PG, Gujral S. Circulating tumor plasma cells and peripheral blood measurable residual disease assessment in multiple myeloma patients not planned for upfront transplant. Hemasphere 2024; 8:e63. [PMID: 38566804 PMCID: PMC10983024 DOI: 10.1002/hem3.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Circulating tumor plasma cells (CTPCs) provide a noninvasive alternative for measuring tumor burden in newly diagnosed multiple myeloma (NDMM). Moreover, measurable residual disease (MRD) assessment in peripheral blood (PBMRD) can provide an ideal alternative to bone marrow MRD, which is limited by its painful nature and technical challenges. However, the clinical significance of PBMRD in NDMM still remains uncertain. Additionally, data on CTPC in NDMM patients not treated with transplant are scarce. We prospectively studied CTPC and PBMRD in 141 NDMM patients using highly sensitive multicolor flow cytometry (HS-MFC). PBMRD was monitored at the end of three cycles (PBMRD1) and six cycles (PBMRD2) of chemotherapy in patients with detectable baseline CTPC. Patients received bortezomib-based triplet therapy and were not planned for an upfront transplant. Among baseline risk factors, CTPC ≥ 0.01% was independently associated with poor progression-free survival (PFS) (hazard ratio [HR] = 2.77; p = 0.0047) and overall survival (OS) (HR = 2.9; p = 0.023) on multivariate analysis. In patients with detectable baseline CTPC, undetectable PBMRD at both subsequent time points was associated with longer PFS (HR = 0.46; p = 0.0037), whereas detectable PBMRD at any time point was associated with short OS (HR = 3.25; p = 0.004). Undetectable combined PBMRD (PBMRD1 and PBMRD2) outperformed the serum-immunofixation-based response. On multivariate analysis, detectable PBMRD at any time point was independently associated with poor PFS (HR = 2.0; p = 0.025) and OS (HR = 3.97; p = 0.013). Thus, our findings showed that CTPC and PBMRD assessment using HS-MFC provides a robust, noninvasive biomarker for NDMM patients not planned for an upfront transplant. Sequential PBMRD monitoring has great potential to improve the impact of the existing risk stratification and response assessment models.
Collapse
Affiliation(s)
- Prashant R. Tembhare
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Harshini Sriram
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Twinkle Khanka
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Sanghamitra Gawai
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Bhausaheb Bagal
- Department of Medical Oncology, Tata Memorial CentreHBNI UniversityMumbaiMaharashtraIndia
| | - Sitaram G. Ghogale
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Nilesh Deshpande
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Karishma Girase
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Jagruti Patil
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Syed Khaizer Hasan
- Hasan Laboratory, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Dhanalaxmi Shetty
- Department of Cancer Cytogenetics, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Kinjalka Ghosh
- Department of Biochemistry, Tata Memorial CentreHBNI UniversityMumbaiMaharashtraIndia
| | - Gaurav Chatterjee
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Sweta Rajpal
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Nikhil V. Patkar
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Hasmukh Jain
- Department of Medical Oncology, Tata Memorial CentreHBNI UniversityMumbaiMaharashtraIndia
| | - Sachin Punatar
- Bone Marrow Transplant Unit, Department of Medical Oncology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Anant Gokarn
- Bone Marrow Transplant Unit, Department of Medical Oncology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Lingaraj Nayak
- Bone Marrow Transplant Unit, Department of Medical Oncology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Sumeet Mirgh
- Bone Marrow Transplant Unit, Department of Medical Oncology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Nishant Jindal
- Bone Marrow Transplant Unit, Department of Medical Oncology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial CentreHBNI UniversityMumbaiMaharashtraIndia
| | - Navin Khattry
- Bone Marrow Transplant Unit, Department of Medical Oncology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Papagudi G. Subramanian
- Department of Hematopathology, ACTREC, Tata Memorial CentreHBNI UniversityNavi MumbaiMaharashtraIndia
| | - Sumeet Gujral
- Department of Pathology, Tata Memorial Hospital, Tata Memorial CentreHBNI UniversityMumbaiMaharashtraIndia
| |
Collapse
|
8
|
Marx A, Osváth M, Szikora B, Pipek O, Csabai I, Nagy Á, Bödör C, Matula Z, Nagy G, Bors A, Uher F, Mikala G, Vályi-Nagy I, Kacskovics I. Liquid biopsy-based monitoring of residual disease in multiple myeloma by analysis of the rearranged immunoglobulin genes-A feasibility study. PLoS One 2023; 18:e0285696. [PMID: 37235573 DOI: 10.1371/journal.pone.0285696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The need for sensitive monitoring of minimal/measurable residual disease (MRD) in multiple myeloma emerged as novel therapies led to deeper responses. Moreover, the potential benefits of blood-based analyses, the so-called liquid biopsy is prompting more and more studies to assess its feasibility. Considering these recent demands, we aimed to optimize a highly sensitive molecular system based on the rearranged immunoglobulin (Ig) genes to monitor MRD from peripheral blood. We analyzed a small group of myeloma patients with the high-risk t(4;14) translocation, using next-generation sequencing of Ig genes and droplet digital PCR of patient-specific Ig heavy chain (IgH) sequences. Moreover, well established monitoring methods such as multiparametric flow cytometry and RT-qPCR of the fusion transcript IgH::MMSET (IgH and multiple myeloma SET domain-containing protein) were utilized to evaluate the feasibility of these novel molecular tools. Serum measurements of M-protein and free light chains together with the clinical assessment by the treating physician served as routine clinical data. We found significant correlation between our molecular data and clinical parameters, using Spearman correlations. While the comparisons of the Ig-based methods and the other monitoring methods (flow cytometry, qPCR) were not statistically evaluable, we found common trends in their target detection. Regarding longitudinal disease monitoring, the applied methods yielded complementary information thus increasing the reliability of MRD evaluation. We also detected indications of early relapse before clinical signs, although this implication needs further verification in a larger patient cohort.
Collapse
Affiliation(s)
- Anita Marx
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Magdolna Osváth
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bence Szikora
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Pipek
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ákos Nagy
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, HCEMM-SE Molecular Oncohematology Research Group, Semmelweis University, Budapest, Hungary
| | - Zsolt Matula
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Ginette Nagy
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - András Bors
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Ferenc Uher
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Gábor Mikala
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - István Vályi-Nagy
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, Budapest, Hungary
| | - Imre Kacskovics
- Department of Immunology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
9
|
Bezzi D, Ambrosini V, Nanni C. Clinical Value of FDG-PET/CT in Multiple Myeloma: An Update. Semin Nucl Med 2023; 53:352-370. [PMID: 36446644 DOI: 10.1053/j.semnuclmed.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/28/2022]
Abstract
FDG-PET/CT is a standardized imaging technique that has reached a great importance in the management of patients affected by Multiple Myeloma. It is proved, in fact, that it allows a deep evaluation of therapy efficacy and provides several prognostic indexes both at staging and after therapy. For this reason, it is now recognised as a gold standard for therapy assessment. Beside this, in reacent years FDG-PET/CT contribution to the understanding of Multiple Myeloma has progressively grown. Papers have been published analyzing the prognostic value of active disease volume measurement and standardization issues, the meaning of FDG positive paramedullary and extrameduallary disease, the prognostic impact of FDG positive minimal residual disease, the relation between focal lesions and clonal eterogenity of this disease and the comparison with whole body DWI-MR in terms of detection and therapy assessment. These newer aspects not of clinical impact yet, of FDG-PET/CT in Multiple Myeloma will be presented and discussed in this review.
Collapse
Affiliation(s)
- Davide Bezzi
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy; Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
10
|
Li S, Zhang E, Cai Z. Liquid biopsy by analysis of circulating myeloma cells and cell-free nucleic acids: a novel noninvasive approach of disease evaluation in multiple myeloma. Biomark Res 2023; 11:27. [PMID: 36890597 PMCID: PMC9997021 DOI: 10.1186/s40364-023-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/26/2023] [Indexed: 03/10/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological cancer with high spatial- and temporal-heterogeneity. Invasive single-point bone marrow sampling cannot capture the tumor heterogeneity and is difficult to repeat for serial assessments. Liquid biopsy is a technique for identifying and analyzing circulating MM cells and cell products produced by tumors and released into the circulation, allowing for the minimally invasive and comprehensive detection of disease burden and molecular alterations in MM and monitoring treatment response and disease progression. Furthermore, liquid biopsy can provide complementary information to conventional detection approaches and improve their prognostic values. This article reviewed the technologies and applications of liquid biopsy in MM.
Collapse
Affiliation(s)
- Shuchan Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79, Qingchun Road, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Kriegsmann K, Manta C, Schwab R, Mai EK, Raab MS, Salwender HJ, Fenk R, Besemer B, Dürig J, Schroers R, von Metzler I, Hänel M, Mann C, Asemissen AM, Heilmeier B, Bertsch U, Huhn S, Müller-Tidow C, Goldschmidt H, Hundemer M. Comparison of bone marrow and peripheral blood aberrant plasma cell assessment by NGF in patients with MM. Blood Adv 2023; 7:379-383. [PMID: 35914229 PMCID: PMC9898596 DOI: 10.1182/bloodadvances.2022008005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Katharina Kriegsmann
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Calin Manta
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ricarda Schwab
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Elias K. Mai
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc S. Raab
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans J. Salwender
- Asklepios Tumorzentrum Hamburg, AK Altona and AK St. Georg, Hamburg, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Britta Besemer
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Jan Dürig
- Department for Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Roland Schroers
- Department of Hematology and Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Ivana von Metzler
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Mathias Hänel
- Department of Internal Medicine III, Clinic Chemnitz, Chemnitz, Germany
| | - Christoph Mann
- Department for Hematology, Oncology and Immunology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Anne M. Asemissen
- Department of Oncology, Hematology and Bone Marrow Transplant, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard Heilmeier
- Clinic for Oncology and Hematology, Hospital Barmherzige Brueder Regensburg, Regensburg, Germany
| | - Uta Bertsch
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefanie Huhn
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Medizinisches Versorgungszentrum am Kreiskrankenhaus Bergstraße gGmbH, Heppenheim, Germany
| |
Collapse
|