1
|
Katunin P, Zhou J, Shehata OM, Peden AA, Cadby A, Nikolaev A. An Open-Source Framework for Automated High-Throughput Cell Biology Experiments. Front Cell Dev Biol 2021; 9:697584. [PMID: 34631697 PMCID: PMC8498207 DOI: 10.3389/fcell.2021.697584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Modern data analysis methods, such as optimization algorithms or deep learning have been successfully applied to a number of biotechnological and medical questions. For these methods to be efficient, a large number of high-quality and reproducible experiments needs to be conducted, requiring a high degree of automation. Here, we present an open-source hardware and low-cost framework that allows for automatic high-throughput generation of large amounts of cell biology data. Our design consists of an epifluorescent microscope with automated XY stage for moving a multiwell plate containing cells and a perfusion manifold allowing programmed application of up to eight different solutions. Our system is very flexible and can be adapted easily for individual experimental needs. To demonstrate the utility of the system, we have used it to perform high-throughput Ca2+ imaging and large-scale fluorescent labeling experiments.
Collapse
Affiliation(s)
- Pavel Katunin
- Fresco Labs, London, United Kingdom
- Information Technologies and Programming Faculty, ITMO University, St. Petersburg, Russia
| | - Jianbo Zhou
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Ola M Shehata
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Andrew A Peden
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Ashley Cadby
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Anton Nikolaev
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
2
|
Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, Bosma A, Song JY, Zevenhoven J, Los-de Vries GT, Horlings H, Nuijen B, Beijnen JH, Schellens JH, Bernards R. An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential. Cell 2018; 173:1413-1425.e14. [DOI: 10.1016/j.cell.2018.04.012] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/14/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
|
3
|
Dankó B, Tóth S, Martins A, Vágvölgyi M, Kúsz N, Molnár J, Chang FR, Wu YC, Szakács G, Hunyadi A. Synthesis and SAR Study of Anticancer Protoflavone Derivatives: Investigation of Cytotoxicity and Interaction with ABCB1 and ABCG2 Multidrug Efflux Transporters. ChemMedChem 2017; 12:850-859. [DOI: 10.1002/cmdc.201700225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Balázs Dankó
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
| | - Szilárd Tóth
- Institute of Enzymology; Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Ana Martins
- Department of Medical Microbiology and Immunobiology; Faculty of Medicine; University of Szeged; Szeged Hungary
- Current address: Synthetic Systems Biology Unit; Institute of Biochemistry; Biological Research Centre; Temesvári krt. 62 6726 Szeged Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
| | - Joseph Molnár
- Department of Medical Microbiology and Immunobiology; Faculty of Medicine; University of Szeged; Szeged Hungary
| | - Fang-Rong Chang
- Graduate Institute of Natural Products; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
- Cancer Center; Kaohsiung Medical University Hospital; Kaohsiung Taiwan, R.O.C
- R&D Center of Chinese Herbal Medicines & New Drugs, College of Pharmacy; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
| | - Yang-Chang Wu
- Graduate Institute of Natural Products; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
- Research Center for Natural Products and Drug Development; Kaohsiung Medical University; Kaohsiung Taiwan, R.O.C
- Department of Medical Research; Kaohsiung Medical University Hospital; Kaohsiung Taiwan, R.O.C
| | - Gergely Szakács
- Institute of Enzymology; Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
- Institute of Cancer Research; Medical University Vienna; Vienna Austria
| | - Attila Hunyadi
- Institute of Pharmacognosy; University of Szeged; Szeged Hungary
- Interdisciplinary Centre for Natural Products; University of Szeged; Szeged Hungary
| |
Collapse
|
4
|
Zhao B, Sedlak JC, Srinivas R, Creixell P, Pritchard JR, Tidor B, Lauffenburger DA, Hemann MT. Exploiting Temporal Collateral Sensitivity in Tumor Clonal Evolution. Cell 2016; 165:234-246. [PMID: 26924578 DOI: 10.1016/j.cell.2016.01.045] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/19/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022]
Abstract
The prevailing approach to addressing secondary drug resistance in cancer focuses on treating the resistance mechanisms at relapse. However, the dynamic nature of clonal evolution, along with potential fitness costs and cost compensations, may present exploitable vulnerabilities-a notion that we term "temporal collateral sensitivity." Using a combined pharmacological screen and drug resistance selection approach in a murine model of Ph(+) acute lymphoblastic leukemia, we indeed find that temporal and/or persistent collateral sensitivity to non-classical BCR-ABL1 drugs arises in emergent tumor subpopulations during the evolution of resistance toward initial treatment with BCR-ABL1-targeted inhibitors. We determined the sensitization mechanism via genotypic, phenotypic, signaling, and binding measurements in combination with computational models and demonstrated significant overall survival extension in mice. Additional stochastic mathematical models and small-molecule screens extended our insights, indicating the value of focusing on evolutionary trajectories and pharmacological profiles to identify new strategies to treat dynamic tumor vulnerabilities.
Collapse
Affiliation(s)
- Boyang Zhao
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph C Sedlak
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Raja Srinivas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pau Creixell
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin R Pritchard
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bruce Tidor
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Douglas A Lauffenburger
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Michael T Hemann
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Svensen N, Jaffrey SR. Fluorescent RNA Aptamers as a Tool to Study RNA-Modifying Enzymes. Cell Chem Biol 2016; 23:415-25. [PMID: 26877022 DOI: 10.1016/j.chembiol.2015.11.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023]
Abstract
RNA-modifying enzymes are difficult to assay due to the absence of fluorometric substrates. Here we show that the Broccoli, a previously reported fluorescent RNA-dye complex, can be modified to contain N(6)-methyladenosine, a prevalent mRNA base modification. Methylated Broccoli is nonfluorescent but, upon demethylation by the RNA demethylases fat mass and obesity-associated protein (FTO) or ALKBH5, it binds and activates the fluorescence of its cognate fluorophore. We describe a high-throughput screen (HTS) for FTO inhibitors using the fluorogenic methylated Broccoli substrate HTS assay, which performs robustly with a Z' factor >0.8 in the LOPAC1280 library. This allowed the identification of novel high-affinity FTO inhibitors. Several of these compounds were selective for FTO over the related demethylase, ALKBH5, and increase methylation of endogenous FTO target mRNAs in cells. Lastly, we show that Broccoli can be modified to contain other base modifications, suggesting that this approach could be generally applicable for assaying diverse RNA-modifying enzymes.
Collapse
Affiliation(s)
- Nina Svensen
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Eriksson A, Österroos A, Hassan S, Gullbo J, Rickardson L, Jarvius M, Nygren P, Fryknäs M, Höglund M, Larsson R. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia. Blood Cancer J 2015; 5:e307. [PMID: 25885427 PMCID: PMC4450329 DOI: 10.1038/bcj.2015.31] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/06/2015] [Indexed: 01/21/2023] Open
Abstract
To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC1280 library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 μM drug concentration. Only one of these compounds, quinacrine, showed low activity in normal PBMCs and was therefore selected for further preclinical evaluation. Mining the NCI-60 and the NextBio databases demonstrated leukemia sensitivity and the ability of quinacrine to reverse myeloid leukemia gene expression. Mechanistic exploration was performed using the NextBio bioinformatic software using gene expression analysis of drug exposed acute myeloid leukemia cultures (HL-60) in the database. Analysis of gene enrichment and drug correlations revealed strong connections to ribosomal biogenesis nucleoli and translation initiation. The highest drug–drug correlation was to ellipticine, a known RNA polymerase I inhibitor. These results were validated by additional gene expression analysis performed in-house. Quinacrine induced early inhibition of protein synthesis supporting these predictions. The results suggest that quinacrine have repositioning potential for treatment of acute myeloid leukemia by targeting of ribosomal biogenesis.
Collapse
Affiliation(s)
- A Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - A Österroos
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - S Hassan
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - J Gullbo
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - L Rickardson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M Jarvius
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - P Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - M Fryknäs
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M Höglund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - R Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Wang H, Gutierrez-Uzquiza A, Garg R, Barrio-Real L, Abera MB, Lopez-Haber C, Rosemblit C, Lu H, Abba M, Kazanietz MG. Transcriptional regulation of oncogenic protein kinase Cϵ (PKCϵ) by STAT1 and Sp1 proteins. J Biol Chem 2014; 289:19823-38. [PMID: 24825907 DOI: 10.1074/jbc.m114.548446] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Overexpression of PKCϵ, a kinase associated with tumor aggressiveness and widely implicated in malignant transformation and metastasis, is a hallmark of multiple cancers, including mammary, prostate, and lung cancer. To characterize the mechanisms that control PKCϵ expression and its up-regulation in cancer, we cloned an ∼ 1.6-kb promoter segment of the human PKCϵ gene (PRKCE) that displays elevated transcriptional activity in cancer cells. A comprehensive deletional analysis established two regions rich in Sp1 and STAT1 sites located between -777 and -105 bp (region A) and -921 and -796 bp (region B), respectively, as responsible for the high transcriptional activity observed in cancer cells. A more detailed mutagenesis analysis followed by EMSA and ChIP identified Sp1 sites in positions -668/-659 and -269/-247 as well as STAT1 sites in positions -880/-869 and -793/-782 as the elements responsible for elevated promoter activity in breast cancer cells relative to normal mammary epithelial cells. RNAi silencing of Sp1 and STAT1 in breast cancer cells reduced PKCϵ mRNA and protein expression, as well as PRKCE promoter activity. Moreover, a strong correlation was found between PKCϵ and phospho-Ser-727 (active) STAT1 levels in breast cancer cells. Our results may have significant implications for the development of approaches to target PKCϵ and its effectors in cancer therapeutics.
Collapse
Affiliation(s)
- HongBin Wang
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Alvaro Gutierrez-Uzquiza
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Rachana Garg
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Laura Barrio-Real
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Mahlet B Abera
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Cynthia Lopez-Haber
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Cinthia Rosemblit
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Huaisheng Lu
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Martin Abba
- the Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Universidad Nacional de La Plata, CP1900 La Plata, Argentina
| | - Marcelo G Kazanietz
- From the Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| |
Collapse
|
8
|
Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ, Baubichon-Cortay H, Di Pietro A. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev 2014; 114:5753-74. [PMID: 24758331 PMCID: PMC4059772 DOI: 10.1021/cr4006236] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest 1117, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fryknäs M, Gullbo J, Wang X, Rickardson L, Jarvius M, Wickström M, Hassan S, Andersson C, Gustafsson M, Westman G, Nygren P, Linder S, Larsson R. Screening for phenotype selective activity in multidrug resistant cells identifies a novel tubulin active agent insensitive to common forms of cancer drug resistance. BMC Cancer 2013; 13:374. [PMID: 23919498 PMCID: PMC3751689 DOI: 10.1186/1471-2407-13-374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Drug resistance is a common cause of treatment failure in cancer patients and encompasses a multitude of different mechanisms. The aim of the present study was to identify drugs effective on multidrug resistant cells. METHODS The RPMI 8226 myeloma cell line and its multidrug resistant subline 8226/Dox40 was screened for cytotoxicity in response to 3,000 chemically diverse compounds using a fluorometric cytotoxicity assay (FMCA). Follow-up profiling was subsequently performed using various cellular and biochemical assays. RESULTS One compound, designated VLX40, demonstrated a higher activity against 8226/Dox40 cells compared to its parental counterpart. VLX40 induced delayed cell death with apoptotic features. Mechanistic exploration was performed using gene expression analysis of drug exposed tumor cells to generate a drug-specific signature. Strong connections to tubulin inhibitors and microtubule cytoskeleton were retrieved. The mechanistic hypothesis of VLX40 acting as a tubulin inhibitor was confirmed by direct measurements of interaction with tubulin polymerization using a biochemical assay and supported by demonstration of G2/M cell cycle arrest. When tested against a broad panel of primary cultures of patient tumor cells (PCPTC) representing different forms of leukemia and solid tumors, VLX40 displayed high activity against both myeloid and lymphoid leukemias in contrast to the reference compound vincristine to which myeloid blast cells are often insensitive. Significant in vivo activity was confirmed in myeloid U-937 cells implanted subcutaneously in mice using the hollow fiber model. CONCLUSIONS The results indicate that VLX40 may be a useful prototype for development of novel tubulin active agents that are insensitive to common mechanisms of cancer drug resistance.
Collapse
Affiliation(s)
- Mårten Fryknäs
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Comparative gene expression profiling of benign and malignant lesions reveals candidate therapeutic compounds for leiomyosarcoma. Sarcoma 2012; 2012:805614. [PMID: 22919280 PMCID: PMC3420093 DOI: 10.1155/2012/805614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/05/2012] [Indexed: 01/15/2023] Open
Abstract
Leiomyosarcoma (LMS) is a malignant, soft-tissue tumor for which few effective therapies exist. Previously, we showed that there are three molecular subtypes of LMS. Here, we analyzed genes differentially expressed in each of the three LMS subtypes as compared to benign leiomyomas and then used the Connectivity Map (cmap) to calculate enrichment scores for the 1309 cmap drugs in order to identify candidate molecules with the potential to induce a benign, leiomyoma-like phenotype in LMS cells. 11 drugs were selected and tested for their ability to inhibit the growth of three human LMS cell lines. We identified two drugs with in vitro efficacy against LMS, one of which had a strongly negative enrichment score (Cantharidin) and the other of which had a strongly positive enrichment score (MG-132). Given MG-132's strong inhibitory effect on LMS cell viability, we hypothesized that LMS cells may be sensitive to treatment with other proteasome inhibitors and demonstrated that bortezomib, a clinically-approved proteasome inhibitor not included in the original cmap screen, potently inhibited the viability of the LMS cell lines. These findings suggest that systematically linking LMS subtype-specific expression signatures with drug-associated expression profiles represents a promising approach for the identification of new drugs for LMS.
Collapse
|
11
|
Dimberg LY, Dimberg A, Ivarsson K, Fryknäs M, Rickardson L, Tobin G, Ekman S, Larsson R, Gullberg U, Nilsson K, Öberg F, Wiklund HJ. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma. BMC Cancer 2012; 12:318. [PMID: 22838736 PMCID: PMC3488543 DOI: 10.1186/1471-2407-12-318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/12/2012] [Indexed: 03/20/2023] Open
Abstract
Background Multiple myeloma (MM) is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN) treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat)1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. Methods To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS). Results To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA), geldanamycin (17-AAG), doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. Conclusion We conclude that Stat1 alters IL-6 induced Stat3 activity and the expression of pro-apoptotic genes. However, this shift alone is not sufficient to alter apoptosis sensitivity in MM cells, suggesting that Stat1 independent pathways are operative in IFN mediated apoptosis sensitization.
Collapse
Affiliation(s)
- Lina Y Dimberg
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, S- 751 85, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Khodarev NN, Roizman B, Weichselbaum RR. Molecular Pathways: Interferon/Stat1 Pathway: Role in the Tumor Resistance to Genotoxic Stress and Aggressive Growth. Clin Cancer Res 2012; 18:3015-21. [DOI: 10.1158/1078-0432.ccr-11-3225] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Hassan S, Laryea D, Mahteme H, Felth J, Fryknäs M, Fayad W, Linder S, Rickardson L, Gullbo J, Graf W, Påhlman L, Glimelius B, Larsson R, Nygren P. Novel activity of acriflavine against colorectal cancer tumor cells. Cancer Sci 2011; 102:2206-13. [PMID: 21910782 DOI: 10.1111/j.1349-7006.2011.02097.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A high-throughput screen of the cytotoxic activity of 2000 molecules from a commercial library in three human colon cancer cell lines and two normal cell types identified the acridine acriflavin to be a colorectal cancer (CRC) active drug. Acriflavine was active in cell spheroids, indicating good drug penetration and activity against hypoxic cells. In a validation step based on primary cultures of patient tumor cells, acriflavine was found to be more active against CRC than ovarian cancer and chronic lymphocytic leukemia. This contrasted to the activity pattern of the CRC active standard drugs 5-fluorouracil, irinotecan and oxaliplatin. Mechanistic studies indicated acriflavine to be a dual topoisomerase I and II inhibitor. In conclusion, the strategy used seems promising for identification of new diagnosis-specific cancer drugs.
Collapse
Affiliation(s)
- Saadia Hassan
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gullbo J, Fryknäs M, Rickardson L, Darcy P, Hägg M, Wickström M, Hassan S, Westman G, Brnjic S, Nygren P, Linder S, Larsson R. Phenotype-based drug screening in primary ovarian carcinoma cultures identifies intracellular iron depletion as a promising strategy for cancer treatment. Biochem Pharmacol 2011; 82:139-47. [PMID: 21531212 DOI: 10.1016/j.bcp.2011.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/07/2011] [Accepted: 04/14/2011] [Indexed: 01/07/2023]
Abstract
Primary cultures of patient tumor cells (PCPTC) have been used for prediction of diagnosis-specific activity and individual patient response to anticancer drugs, but have not been utilized as a model for identification of novel drugs in high throughput screening. In the present study, ovarian carcinoma cells from three patients were tested in response to a library of 3000 chemically diverse compounds. Eight hits were retrieved after counter screening using normal epithelial cells, and one of the two structurally related hit compounds was selected for further preclinical evaluation. This compound, designated VLX 50, demonstrated a broad spectrum of activity when tested in a panel of PCPTCs representing different forms of leukemia and solid tumors and displayed a high tumor to normal cell activity. VLX 50 induced delayed cell death with some features of classical apoptosis. Significant in vivo activity was confirmed on primary cultures of human ovarian carcinoma cells in mice using the hollow fiber model. Mechanistic exploration was performed using gene expression analysis of drug exposed tumor cells to generate a drug-specific signature. This query signature was analyzed using the Gene Set Enrichment Analysis and the Connectivity Map database. Strong connections to hypoxia inducible factor 1 and iron chelators were retrieved. The mechanistic hypothesis of intracellular iron depletion leading to hypoxia signaling was confirmed by a series of experiments. The results indicate the feasibility of using PCPTC for cancer drug screening and that intracellular iron depletion could be a potentially important strategy for cancer therapy.
Collapse
Affiliation(s)
- Joachim Gullbo
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University Hospital, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Eriksson A, Höglund M, Lindhagen E, Åleskog A, Hassan SB, Ekholm C, Fhölenhag K, Jensen AJ, Löthgren A, Scobie M, Larsson R, Parrow V. Identification of AKN-032, a novel 2-aminopyrazine tyrosine kinase inhibitor, with significant preclinical activity in acute myeloid leukemia. Biochem Pharmacol 2010; 80:1507-16. [DOI: 10.1016/j.bcp.2010.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 11/15/2022]
|
16
|
Hall MD, Handley MD, Gottesman MM. Is resistance useless? Multidrug resistance and collateral sensitivity. Trends Pharmacol Sci 2009; 30:546-56. [PMID: 19762091 DOI: 10.1016/j.tips.2009.07.003] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/14/2009] [Accepted: 07/21/2009] [Indexed: 01/19/2023]
Abstract
When cancer cells develop resistance to chemotherapeutics, it is frequently conferred by the ATP-dependent efflux pump P-glycoprotein (MDR1, P-gp, ABCB1). P-gp can efflux a wide range of cancer drugs; its expression confers cross-resistance, termed "multidrug resistance" (MDR), to a wide range of drugs. Strategies to overcome this resistance have been actively sought for more than 30 years, yet clinical solutions do not exist. A less understood aspect of MDR is the hypersensitivity of resistant cancer cells to other drugs, a phenomenon known as "collateral sensitivity" (CS). This review highlights the extent of this effect for the first time, and discusses hypotheses (e.g. generation of reactive oxygen species) to account for the underlying generality of this phenomenon, and proposes exploitation of CS as a strategy to improve response to chemotherapy.
Collapse
Affiliation(s)
- Matthew D Hall
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
17
|
Åleskog A, Norberg M, Nygren P, Rickardson L, Kanduri M, Tobin G, Åberg M, Gustafsson MG, Rosenquist R, Lindhagen E. Rapamycin shows anticancer activity in primary chronic lymphocytic leukemia cellsin vitro, as single agent and in drug combination. Leuk Lymphoma 2009; 49:2333-43. [DOI: 10.1080/10428190802475295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Wheeler GN, Brändli AW. Simple vertebrate models for chemical genetics and drug discovery screens: Lessons from zebrafish andXenopus. Dev Dyn 2009; 238:1287-308. [DOI: 10.1002/dvdy.21967] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis. Blood 2009; 114:1110-22. [PMID: 19478043 DOI: 10.1182/blood-2009-03-211771] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis and lymphangiogenesis are essential for organogenesis but also play important roles in tissue regeneration, chronic inflammation, and tumor progression. Here we applied in vivo forward chemical genetics to identify novel compounds and biologic mechanisms involved in (lymph)angiogenesis in Xenopus tadpoles. A novel 2-step screening strategy involving a simple phenotypic read-out (edema formation or larval lethality) followed by semiautomated in situ hybridization was devised and used to screen an annotated chemical library of 1280 bioactive compounds. We identified 32 active compounds interfering with blood vascular and/or lymphatic development in Xenopus. Selected compounds were also tested for activities in a variety of endothelial in vitro assays. Finally, in a proof-of-principle study, the adenosine A1 receptor antagonist 7-chloro-4-hydroxy-2-phenyl-1,8-naphthyridine, an inhibitor of blood vascular and lymphatic development in Xenopus, was shown to act also as a potent antagonist of VEGFA-induced adult neovascularization in mice. Taken together, the present chemical library screening strategy in Xenopus tadpoles represents a rapid and highly efficient approach to identify novel pathways involved in (lymph)angiogenesis. In addition, the recovered compounds represent a rich resource for in-depth analysis, and their drug-like features will facilitate further evaluation in preclinical models of inflammation and cancer metastasis.
Collapse
|
20
|
Hung MS, Xu Z, Lin YC, Mao JH, Yang CT, Chang PJ, Jablons DM, You L. Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library. BMC Cancer 2009; 9:135. [PMID: 19419583 PMCID: PMC2696466 DOI: 10.1186/1471-2407-9-135] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 05/06/2009] [Indexed: 11/10/2022] Open
Abstract
Background Casein kinase 2 (CK2) is dysregulated in various human cancers and is a promising target for cancer therapy. To date, there is no small molecular CK2 inhibitor in clinical trial yet. With the aim to identify novel CK2 inhibitors, we screened a natural product library. Methods We adopted cell-based proliferation and CK2 kinase assays to screen CK2 inhibitors from a natural compound library. Dose-dependent response of CK2 inhibitors in vitro was determined by a radioisotope kinase assay. Western blot analysis was used to evaluate down stream Akt phosphorylation and apoptosis. Apoptosis was also evaluated by annexin-V/propidium iodide (PI) labeling method using flow cytometry. Inhibition effects of CK2 inhibitors on the growth of cancer and normal cells were evaluated by cell proliferation and viability assays. Results Hematein was identified as a novel CK2 inhibitor that is highly selective among a panel of kinases. It appears to be an ATP non-competitive and partially reversible CK2 inhibitor with an IC50 value of 0.55 μM. In addition, hematein inhibited cancer cell growth partially through down-regulation of Akt phosphorylation and induced apoptosis in these cells. Furthermore, hematein exerted stronger inhibition effects on the growth of cancer cells than in normal cells. Conclusion In this study, we showed that hematein is a novel selective and cell permeable small molecule CK2 inhibitor. Hematein showed stronger growth inhibition effects to cancer cells when compared to normal cells. This compound may represent a promising class of CK2 inhibitors.
Collapse
Affiliation(s)
- Ming-Szu Hung
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rosén J, Rickardson L, Backlund A, Gullbo J, Bohlin L, Larsson R, Gottfries J. ChemGPS-NP Mapping of Chemical Compounds for Prediction of Anticancer Mode of Action. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/qsar.200810162] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Palmberg E, Johnsen JI, Paulsson J, Gleissman H, Wickström M, Edgren M, Ostman A, Kogner P, Lindskog M. Metronomic scheduling of imatinib abrogates clonogenicity of neuroblastoma cells and enhances their susceptibility to selected chemotherapeutic drugs in vitro and in vivo. Int J Cancer 2009; 124:1227-34. [PMID: 19058199 DOI: 10.1002/ijc.24069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Imatinib is currently in early clinical trials as targeted therapy for relapsed neuroblastomas and other childhood solid tumors expressing platelet-derived growth factor receptors (PDGFR) or c-Kit. Short-term treatment with imatinib in clinically achievable concentrations is ineffective in neuroblastoma in vitro. However, clinically, imatinib is administered daily over long time periods. The effects of combining imatinib with chemotherapy in neuroblastoma are unknown. Here, a panel of neuroblastoma cell lines (n = 5) were studied, representing tumors with different biological (MYCN-amplification +/-) and clinical (drug resistance) features. Using a protracted low-dose treatment schedule (1-3 weeks; 0.5-5microM) imatinib dose-dependently inhibited proliferation and clonogenic survival for all tested cell lines with IC50 <2.5microM. In contrast, short-term treatment (<96 hrs) was ineffective. Low-dose imatinib was synergistic in combination with doxorubicin and caused increased G2/M- and S-phase arrest and apoptosis as evidenced by enhanced caspase-3 activation and sub-G1 DNA accumulation. A significant but less pronounced effect was observed when imatinib was combined with etoposide or vincristine, as opposed to cisplatin, melphalan, or irinotecan. All cell lines expressed PDGFRbeta, whereas no protein expression of PDGFRalpha was detected in MYCN amplified cell lines. PDGF-BB caused PDGFRbeta phosphorylation and partially rescued neuroblastoma cells from doxorubicin-induced apoptosis, in an imatinib-sensitive manner. In vivo, treatment with imatinib in combination with doxorubicin induced a significant growth inhibition of established neuroblastoma xenografts. These findings suggest clinical testing of imatinib in combination with selected chemotherapeutic drugs, in particular doxorubicin, in children with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Ebba Palmberg
- Childhood Cancer Research Unit, Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wiberg K, Carlson K, Aleskog A, Larsson R, Nygren P, Lindhagen E. In vitro activity of bortezomib in cultures of patient tumour cells--potential utility in haematological malignancies. Med Oncol 2008; 26:193-201. [PMID: 19016012 DOI: 10.1007/s12032-008-9107-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Bortezomib represents a new class of anti-cancer drugs, the proteasome inhibitors. We evaluated the in vitro activity of bortezomib with regard to tumour-type specificity and possible mechanisms of drug resistance in 115 samples of tumour cells from patients and in a cell-line panel, using the short-term fluorometric microculture cytotoxicity assay. Bortezomib generally showed dose-response curves with a steep slope. In patient cells, bortezomib was more active in haematological than in solid tumour samples. Myeloma and chronic myeloid leukaemia were the most sensitive tumour types although with great variability in drug response between the individual samples. Colorectal and kidney cancer samples were the least sensitive. In the cell-line panel, only small differences in response were seen between the different cell lines, and the proteasome inhibitors, lactacystin and MG 262, showed an activity pattern similar to that of bortezomib. The cell-line data suggest that resistance to bortezomib was not mediated by MRP-, PgP, GSH-; tubulin and topo II-associated MDR. Combination experiments indicated synergy between bortezomib and arsenic trioxide or irinotecan. The data support the current use of bortezomib but also points to its potential utility in other tumour types and in combination with cytotoxic drugs.
Collapse
Affiliation(s)
- Kristina Wiberg
- Division of Clinical Pharmacology, Department of Medical Sciences, Uppsala University Hospital, entr 61, 4th floor, SE-751 85, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
24
|
Wickström M, Johnsen JI, Ponthan F, Segerström L, Sveinbjörnsson B, Lindskog M, Lövborg H, Viktorsson K, Lewensohn R, Kogner P, Larsson R, Gullbo J. The novel melphalan prodrug J1 inhibits neuroblastoma growth in vitro and in vivo. Mol Cancer Ther 2007; 6:2409-17. [PMID: 17876040 DOI: 10.1158/1535-7163.mct-07-0156] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood. The activity of J1 (l-melphalanyl-p-l-fluorophenylalanine ethyl ester), an enzymatically activated melphalan prodrug, was evaluated in neuroblastoma models in vitro and in vivo. Seven neuroblastoma cell lines with various levels of drug resistance were screened for cytotoxicity of J1 alone or in combination with standard cytotoxic drugs, using a fluorometric cytotoxicity assay. J1 displayed high cytotoxic activity in vitro against all neuroblastoma cell lines, with IC(50) values in the submicromolar range, significantly more potent than melphalan. The cytotoxicity of J1, but not melphalan, could be significantly inhibited by the aminopeptidase inhibitor bestatin. J1 induced caspase-3 cleavage and apoptotic morphology, had additive effects in combination with doxorubicin, cyclophosphamide, carboplatin, and vincristine, and synergistically killed otherwise drug-resistant cells when combined with etoposide. Athymic rats and mice carrying neuroblastoma xenografts [SH-SY5Y, SK-N-BE(2)] were treated with equimolar doses of melphalan, J1, or no drug, and effects on tumor growth and tissue morphology were analyzed. Tumor growth in vivo was significantly inhibited by J1 compared with untreated controls. Compared with melphalan, J1 more effectively inhibited the growth of mice with SH-SY5Y xenografts, was associated with higher caspase-3 activation, fewer proliferating tumor cells, and significantly decreased mean vascular density. In conclusion, the melphalan prodrug J1 is highly active in models of neuroblastoma in vitro and in vivo, encouraging further clinical development in this patient group.
Collapse
Affiliation(s)
- Malin Wickström
- Division of Clinical Pharmacology, Department of Medical Sciences, Entrance 61, 4th Floor Uppsala University Hospital, 75185 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The novel alkylating prodrug J1: diagnosis directed activity profile ex vivo and combination analyses in vitro. Invest New Drugs 2007; 26:195-204. [PMID: 17922077 DOI: 10.1007/s10637-007-9092-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 09/18/2007] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The dipeptide J1 acts as a prodrug of melphalan with a significant increased potency in vitro resulting from activation by cellular aminopeptidases. The current study was performed to evaluate the ex vivo profile of J1 using 176 primary tumor cell cultures from patients. In addition, the activity of J1 in combination with eight standard drugs, representing different mechanistic classes, was studied in nine different human tumor cell lines of different histopathological origin. METHODS Ex vivo evaluation of tumor type selectivity, was performed using the established fluorometric microculture cytotoxicity assay (FMCA). Combinations between J1 and eight standard chemotherapeutic drugs were analyzed using the median-effect method. RESULTS The prodrug J1 expressed approximately 50- to 100-fold higher potency but similar activity profile as that of its metabolite, melphalan. The difference was greater in some diagnoses (e.g. breast cancer, NHL and AML), and exceptionally high in some breast cancer samples with aggressive phenotypes. Combination analysis of J1 and standard chemotherapeutics yielded several potentially additive and synergistic interactions, most striking for etoposide with significant synergism in all studied cell lines. CONCLUSIONS In conclusion, the ex vivo profile suggests that further evaluation of J1 as the alkylating agent in for example aggressive breast cancer might be of particular interest, preferentially in combination with DNA-topoisomerase II inhibitors like etoposide.
Collapse
|
26
|
Shelat AA, Guy RK. The interdependence between screening methods and screening libraries. Curr Opin Chem Biol 2007; 11:244-51. [PMID: 17524728 DOI: 10.1016/j.cbpa.2007.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 05/03/2007] [Indexed: 11/22/2022]
Abstract
The most common methods for discovery of chemical compounds capable of manipulating biological function involves some form of screening. The success of such screens is highly dependent on the chemical materials - commonly referred to as libraries - that are assayed. Classic methods for the design of screening libraries have depended on knowledge of target structure and relevant pharmacophores for target focus, and on simple count-based measures to assess other properties. The recent proliferation of two novel screening paradigms, structure-based screening and high-content screening, prompts a profound rethink about the ideal composition of small-molecule screening libraries. We suggest that currently utilized libraries are not optimal for addressing new targets by high-throughput screening, or complex phenotypes by high-content screening.
Collapse
Affiliation(s)
- Anang A Shelat
- Department of Chemical Biology and Therapeutics, Saint Jude Children's Research Hospital, Memphis, TN 38103, USA
| | | |
Collapse
|
27
|
Ponthan F, Wickström M, Gleissman H, Fuskevåg OM, Segerström L, Sveinbjörnsson B, Redfern CPF, Eksborg S, Kogner P, Johnsen JI. Celecoxib Prevents Neuroblastoma Tumor Development and Potentiates the Effect of Chemotherapeutic Drugs In vitro and In vivo. Clin Cancer Res 2007; 13:1036-44. [PMID: 17289900 DOI: 10.1158/1078-0432.ccr-06-1908] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Neuroblastoma is the most common and deadly solid tumor of childhood. Cyclooxygenase-2 is expressed in clinical neuroblastoma tumors and cell lines and inhibitors of this enzyme induce apoptosis in human neuroblastoma cells in vitro and in neuroblastoma xenografts in vivo. We hypothesized that the cyclooxygenase-2-specific inhibitor celecoxib could enhance the cytotoxic effect of chemotherapeutic drugs currently used in neuroblastoma treatment. Furthermore, we investigated if prophylactic treatment with celecoxib could prevent neuroblastoma tumor development in vivo. EXPERIMENTAL DESIGN Neuroblastoma cell cytotoxicity of chemotherapeutic drugs in combination with celecoxib was examined. In vivo, athymic rats carrying established SH-SY5Y xenografts were treated with celecoxib in combination with irinotecan, doxorubicin or etoposide, or with either drug alone. For prevention studies, rats received celecoxib in the diet, 250 to 2,500 ppm, from the time of tumor cell injection. RESULTS Celecoxib induced a synergistic or an additive cytotoxic effect in combination with doxorubicin, etoposide, irinotecan or vincristine in vitro. In vivo, treatment with celecoxib in combination with irinotecan or doxorubicin induced a significant growth inhibition of established neuroblastoma tumors. Rats receiving celecoxib in the diet showed a distinct dose-dependent delay in tumor development compared with untreated rats. Plasma levels of celecoxib were comparable with levels obtainable in humans. CONCLUSIONS Celecoxib potentiates the antitumor effect of chemotherapeutic drugs currently used in neuroblastoma treatment, which argues for clinical trials combining these drugs. Celecoxib could also be a potential drug for treatment of minimal residual disease.
Collapse
Affiliation(s)
- Frida Ponthan
- Childhood Cancer Research Unit, Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rickardson L, Wickström M, Larsson R, Lövborg H. Image-Based Screening for the Identification of Novel Proteasome Inhibitors. ACTA ACUST UNITED AC 2007; 12:203-10. [PMID: 17208922 DOI: 10.1177/1087057106297115] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The proteasome is a new, interesting target in cancer drug therapy, and the proteasome inhibitor bortezomib has shown an effect in myeloma patients. It is of interest to efficiently discover and evaluate new proteasome inhibitors. The authors describe the development of an image-based screening assay for the identification of compounds with proteasome-inhibiting activity. The stably transfected human embryo kidney cell line HEK 293 ZsGreen Proteasome Sensor Cell Line expressing the ZsProSensor-1 fusion protein was used for screening and evaluation of proteasome inhibitors. Inhibition of the proteasome leads to accumulation of the green fluorescent protein ZsGreen, which is measured in the ArrayScan® High Content Screening system, in which cell morphology is studied simultaneously. When screening the LOPAC1280 substance library, several compounds with effect on the proteasome were found; among the hits were disulfiram and ammonium pyrrolidinedithiocarbamate (PDTC). Cytotoxic analysis of disulfiram and PDTC showed that the compounds induced cytotoxicity in the myeloma cell line RPMI 8226. The average Z' value for the assay was 0.66. The results indicate that the assay rapidly identifies new proteasome-inhibiting substances, and it will be further used as a tool for image-based screening of other chemically diverse compound libraries.
Collapse
Affiliation(s)
- Linda Rickardson
- Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University Hospital, 751 85 Uppsala, Sweden.
| | | | | | | |
Collapse
|
29
|
Wickström M, Danielsson K, Rickardson L, Gullbo J, Nygren P, Isaksson A, Larsson R, Lövborg H. Pharmacological profiling of disulfiram using human tumor cell lines and human tumor cells from patients. Biochem Pharmacol 2007; 73:25-33. [PMID: 17026967 DOI: 10.1016/j.bcp.2006.08.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/15/2006] [Accepted: 08/21/2006] [Indexed: 11/26/2022]
Abstract
The thiocarbamate drug disulfiram has been used for decades in the treatment of alcohol abuse. Disulfiram induces apoptosis in a number of tumor cell lines and was recently by us proposed to act as a 26S proteasome inhibitor. In this work we characterized disulfiram in vitro with regard to tumor-type specificity, possible mechanisms of action and drug resistance and cell death in human tumor cell lines and in 78 samples of tumor cells from patients using the fluorometric microculture cytotoxicity assay and the automated fluorescence-imaging microscope ArrayScan((R)). Disulfiram induced cytotoxicity in a biphasic pattern in both cell lines and patient tumor cells. Disulfiram induced apoptosis as measured by cell membrane permeability, nuclear fragmentation/condensation and caspase-3/7 activation using high content screening assays. For many of the cell lines tested disulfiram was active in sub-micromolar concentrations. When comparing the logIC(50) patterns with other cytotoxic agents, disulfiram showed low correlation (R<0.5) with all drugs except lactacystin (R=0.69), a known proteasome inhibitor, indicating that the two substances may share mechanistic pathways. Disulfiram was more active in hematological than in solid tumor samples, but substantial activity was observed in carcinomas of the ovary and the breast and in non-small cell lung cancer. Disulfiram also displayed higher cytotoxic effect in cells from chronic lymphocytic leukemia than in normal lymphocytes (p<0.05), which may indicate some tumor selectivity. These results together with large clinical experience and relatively mild side effects encourage clinical studies of disulfiram as an anti-cancer agent.
Collapse
Affiliation(s)
- Malin Wickström
- Department of Medical Sciences, Division of Clinical Pharmacology, Entrance 61, 4th floor Uppsala University Hospital, SE-75185 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|