1
|
van Dijk AD, Hoff FW, Qiu Y, Hubner SE, Go RL, Ruvolo VR, Leonti AR, Gerbing RB, Gamis AS, Aplenc R, Kolb EA, Alonzo TA, Meshinchi S, de Bont ESJM, Horton TM, Kornblau SM. Chromatin Profiles Are Prognostic of Clinical Response to Bortezomib-Containing Chemotherapy in Pediatric Acute Myeloid Leukemia: Results from the COG AAML1031 Trial. Cancers (Basel) 2024; 16:1448. [PMID: 38672531 PMCID: PMC11048007 DOI: 10.3390/cancers16081448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children's Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array. A relatively high expression of 16 HME was associated with lower EFS and higher 3-year relapse risk after AML standard treatment compared to low expressions (52% vs. 29%, p = 0.005). The high-HME profile correlated with more transposase-accessible chromatin, as demonstrated via ATAC-sequencing, and the bortezomib addition improved the 3-year overall survival compared with standard therapy (62% vs. 75%, p = 0.033). These data suggest that there are pediatric AML populations that respond well to bortezomib-containing chemotherapy.
Collapse
Affiliation(s)
- Anneke D. van Dijk
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Fieke W. Hoff
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Yihua Qiu
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Stefan E. Hubner
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Robin L. Go
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Vivian R. Ruvolo
- Department of Molecular Therapy and Hematology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Amanda R. Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Alan S. Gamis
- Department of Hematology-Oncology, Children’s Mercy Hospitals and Clinics, Kansas City, MO 64108, USA
| | - Richard Aplenc
- Division of Pediatric Oncology and Stem Cell Transplant, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward A. Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Todd A. Alonzo
- COG Statistics and Data Center, Monrovia, CA 91016, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eveline S. J. M. de Bont
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
| | - Terzah M. Horton
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven M. Kornblau
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| |
Collapse
|
2
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Revisiting Proteasome Inhibitors: Molecular Underpinnings of Their Development, Mechanisms of Resistance and Strategies to Overcome Anti-Cancer Drug Resistance. Molecules 2022; 27:molecules27072201. [PMID: 35408601 PMCID: PMC9000344 DOI: 10.3390/molecules27072201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Proteasome inhibitors have shown relevant clinical activity in several hematological malignancies, namely in multiple myeloma and mantle cell lymphoma, improving patient outcomes such as survival and quality of life, when compared with other therapies. However, initial response to the therapy is a challenge as most patients show an innate resistance to proteasome inhibitors, and those that respond to the therapy usually develop late relapses suggesting the development of acquired resistance. The mechanisms of resistance to proteasome inhibition are still controversial and scarce in the literature. In this review, we discuss the development of proteasome inhibitors and the mechanisms of innate and acquired resistance to their activity—a major challenge in preclinical and clinical therapeutics. An improved understanding of these mechanisms is crucial to guiding the design of new and more effective drugs to tackle these devastating diseases. In addition, we provide a comprehensive overview of proteasome inhibitors used in combination with other chemotherapeutic agents, as this is a key strategy to combat resistance.
Collapse
|
4
|
Kyca T, Pavlíková L, Boháčová V, Mišák A, Poturnayová A, Breier A, Sulová Z, Šereš M. Insight into Bortezomib Focusing on Its Efficacy against P-gp-Positive MDR Leukemia Cells. Int J Mol Sci 2021; 22:ijms22115504. [PMID: 34071136 PMCID: PMC8197160 DOI: 10.3390/ijms22115504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
In this paper, we compared the effects of bortezomib on L1210 (S) cells with its effects on P-glycoprotein (P-gp)-positive variant S cells, which expressed P-gp either after selection with vincristine (R cells) or after transfection with a human gene encoding P-gp (T cells). Bortezomib induced the death-related effects in the S, R, and T cells at concentrations not exceeding 10 nM. Bortezomib-induced cell cycle arrest in the G2/M phase was more pronounced in the S cells than in the R or T cells and was related to the expression levels of cyclins, cyclin-dependent kinases, and their inhibitors. We also observed an increase in the level of polyubiquitinated proteins (via K48-linkage) and a decrease in the gene expression of some deubiquitinases after treatment with bortezomib. Resistant cells expressed higher levels of genes encoding 26S proteasome components and the chaperone HSP90, which is involved in 26S proteasome assembly. After 4 h of preincubation, bortezomib induced a more pronounced depression of proteasome activity in S cells than in R or T cells. However, none of these changes alone or in combination sufficiently suppressed the sensitivity of R or T cells to bortezomib, which remained at a level similar to that of S cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Bortezomib/pharmacology
- Cell Cycle/drug effects
- Cell Division
- Cell Line, Tumor
- Deubiquitinating Enzymes
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Fluoresceins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, cdc/drug effects
- Humans
- Inhibitory Concentration 50
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/pathology
- Mice
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protease Inhibitors/pharmacology
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Recombinant Proteins/metabolism
- Transcription, Genetic/drug effects
- Ubiquitinated Proteins/metabolism
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Tomáš Kyca
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Viera Boháčová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Anton Mišák
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia;
| | - Alexandra Poturnayová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava 1, Slovakia
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (T.K.); (L.P.); (V.B.); (A.P.)
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
- Correspondence: (A.B.); (Z.S.); (M.Š.); Tel.: +421-2-593-25-514 or +421-918-674-514 (A.B.); +421-2-3229-5510 (Z.S.)
| |
Collapse
|
5
|
Mynott RL, Wallington-Beddoe CT. Drug and Solute Transporters in Mediating Resistance to Novel Therapeutics in Multiple Myeloma. ACS Pharmacol Transl Sci 2021; 4:1050-1065. [PMID: 34151200 DOI: 10.1021/acsptsci.1c00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Multiple myeloma remains an incurable malignancy of plasma cells. Novel therapies, notably proteasome inhibitors and immunomodulatory drugs, have improved the survival of multiple myeloma patients; however, patients either present with, or develop resistance to, these therapies. Resistance to traditional chemotherapeutic agents can be caused by cellular drug efflux via adenosine triphosphate (ATP)-binding cassette (ABC) transporters, but it is still not clear whether these transporters mediate resistance to proteasome inhibitors and immunomodulatory drugs in multiple myeloma. Solute carrier (SLC) transporters also play a role in cancer drug resistance due to changes in cell homeostasis caused by their abnormal expression and changes in the solutes they transport. In this review, we evaluate resistance to novel therapies used to treat multiple myeloma, as mediated by drug and solute transporters.
Collapse
Affiliation(s)
- Rachel L Mynott
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Craig T Wallington-Beddoe
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia.,Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.,Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, South Australia 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
6
|
Mynott RL, Wallington-Beddoe CT. Inhibition of P-Glycoprotein Does Not Increase the Efficacy of Proteasome Inhibitors in Multiple Myeloma Cells. ACS Pharmacol Transl Sci 2021; 4:713-729. [PMID: 33860196 DOI: 10.1021/acsptsci.0c00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 12/14/2022]
Abstract
P-Glycoprotein is a well-known drug transporter associated with chemotherapy resistance in a number of cancers, but its role in modulating proteasome inhibitor efficacy in multiple myeloma is not well understood. The second-generation proteasome inhibitor carfilzomib is thought to be a substrate of P-glycoprotein whose efficacy may correlate with P-glycoprotein activity; however, research concerning the first-in-class proteasome inhibitor bortezomib is inconsistent. We show that while P-glycoprotein gene expression increases with the disease stages leading to multiple myeloma it does not affect the survival of newly diagnosed patients treated with bortezomib. Moreover, RNA-seq on LP-1 cells demonstrated minimal basal P-glycoprotein expression which did not increase after exposure to bortezomib or carfilzomib. Only one (KMS-18) of nine multiple myeloma cell lines expressed P-glycoprotein, including RPMI-8226 cells that are resistant to bortezomib or carfilzomib. We hypothesized that by inhibiting P-glycoprotein multiple myeloma cell sensitivity to proteasome inhibitors would increase; however, the sensitivity of multiple myeloma cells lines to proteasome inhibition was not enhanced by the specific P-glycoprotein inhibitor tariquidar. In addition, targeting glucosylceramide synthase with eliglustat did not inhibit P-glycoprotein activity nor improve proteasome inhibitor efficacy except at a high concentration. To confirm these negative findings, tariquidar did not substantially increase the cytotoxicity of bortezomib or carfilzomib in P-glycoprotein-expressing K562/ADM cells. We conclude the following: P-glycoprotein expression may not correlate with the survival of newly diagnosed multiple myeloma patients treated with proteasome inhibitors. P-glycoprotein is poorly expressed in many multiple myeloma cell lines, and its inhibition does not appreciably enhance the efficacy of proteasome inhibitors.
Collapse
Affiliation(s)
- Rachel L Mynott
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Craig T Wallington-Beddoe
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia.,Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.,Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, South Australia 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
7
|
Mofers A, Perego P, Selvaraju K, Gatti L, Gullbo J, Linder S, D'Arcy P. Analysis of determinants for in vitro resistance to the small molecule deubiquitinase inhibitor b-AP15. PLoS One 2019; 14:e0223807. [PMID: 31639138 PMCID: PMC6804958 DOI: 10.1371/journal.pone.0223807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND b-AP15/VLX1570 are small molecule inhibitors of the ubiquitin specific peptidase 14 (USP14) and ubiquitin carboxyl-terminal hydrolase 5 (UCHL5) deubiquitinases (DUBs) of the 19S proteasome. b-AP15/VLX1570 have been shown to be cytotoxic to cells resistant to bortezomib, raising the possibility that this class of drugs can be used as a second-line therapy for treatment-resistant multiple myeloma. Limited information is available with regard to potential resistance mechanisms to b-AP15/VLX1570. RESULTS We found that b-AP15-induced cell death is cell-cycle dependent and that non-cycling tumor cells may evade b-AP15-induced cell death. Such non-cycling cells may re-enter the proliferative state to form colonies of drug-sensitive cells. Long-term selection of cells with b-AP15 resulted in limited drug resistance (~2-fold) that could be reversed by buthionine sulphoximine, implying altered glutathione (GSH) metabolism as a resistance mechanism. In contrast, drug uptake and overexpression of drug efflux transporters were found not to be associated with b-AP15 resistance. CONCLUSIONS The proteasome DUB inhibitors b-AP15/VLX1570 are cell cycle-active. The slow and incomplete development of resistance towards these compounds is an attractive feature in view of future clinical use.
Collapse
Affiliation(s)
- Arjan Mofers
- Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Karthik Selvaraju
- Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Laura Gatti
- Cerebrovascular Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Joachim Gullbo
- Department of Radiology, Oncology and Radiation Science, Section of Oncology, Uppsala University, Uppsala, Sweden
| | - Stig Linder
- Department of Medicine and Health, Linköping University, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Padraig D'Arcy
- Department of Medicine and Health, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
8
|
Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019; 47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance develops and thus relapse emerges, resulting in increased mortality. Our attempts to understand the molecular basis underlying these drug resistance phenotypes in pre-clinical models and patient specimens revealed the extreme plasticity and adaptive pathways employed by tumor cells, being under sustained stress and extensive genomic/proteomic instability due to the applied therapeutic regimens. Subsequent efforts have yielded more effective inhibitors and combinatorial approaches (e.g. the use of specific pharmacologic inhibitors with immunotherapy) that exhibit synergistic effects against tumor cells, hence enhancing therapeutic indices. Furthermore, new advanced methodologies that allow for the early detection of genetic/epigenetic alterations that lead to drug chemoresistance and prospective validation of biomarkers which identify patients that will benefit from certain drug classes, have started to improve the clinical outcome. This review discusses emerging principles of drug resistance to cancer therapies targeting a wide array of oncogenic kinases, along with hedgehog pathway and the proteasome and apoptotic inducers, as well as epigenetic and metabolic modulators. We further discuss mechanisms of resistance to monoclonal antibodies, immunomodulators and immune checkpoint inhibitors, potential biomarkers of drug response/drug resistance, along with possible new therapeutic avenues for the clinicians to combat devastating drug resistant malignancies. It is foreseen that these topics will be major areas of focused multidisciplinary translational research in the years to come.
Collapse
Affiliation(s)
- Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
9
|
Horton TM, Whitlock JA, Lu X, O'Brien MM, Borowitz MJ, Devidas M, Raetz EA, Brown PA, Carroll WL, Hunger SP. Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: a report from the Children's Oncology Group. Br J Haematol 2019; 186:274-285. [PMID: 30957229 DOI: 10.1111/bjh.15919] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
Abstract
While survival in paediatric acute lymphoblastic leukaemia (ALL) is excellent, survival following relapse is poor. Previous studies suggest proteasome inhibition with chemotherapy improves relapse ALL response rates. This phase 2 Children's Oncology Group study tested the hypothesis that adding the proteasome inhibitor bortezomib to chemotherapy increases complete response rates (CR2). Evaluable patients (n = 135, 103 B-ALL, 22 T-ALL, 10 T-lymphoblastic lymphoma) were treated with reinduction chemotherapy plus bortezomib. Overall CR2 rates were 68 ± 5% for precursor B-ALL patients (<21 years of age), 63 ± 7% for very early relapse (<18 months from diagnosis) and 72 ± 6% for early relapse (18-36 months from diagnosis). Relapsed T-ALL patients had an encouraging CR2 rate of 68 ± 10%. End of induction minimal residual disease (MRD) significantly predicted survival. MRD negative (MRDneg; MRD <0·01%) rates increased from 29% (post-cycle 1) to 64% following cycle 3. Very early relapse, end-of-induction MRDneg precursor B-ALL patients had 70 ± 14% 3-year event-free (EFS) and overall survival (OS) rates, vs. 3-year EFS/OS of 0-3% (P = 0·0001) for MRDpos (MRD ≥0·01) patients. Early relapse patients had similar outcomes (MRDneg 3-year EFS/OS 58-65% vs. MRDpos 10-19%, EFS P = 0·0014). These data suggest that adding bortezomib to chemotherapy in certain ALL subgroups, such as T-cell ALL, is worthy of further investigation. This study is registered at http://www.clinical.trials.gov as NCT00873093.
Collapse
Affiliation(s)
- Terzah M Horton
- Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, TX, USA
| | - James A Whitlock
- Division of Pediatric Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaomin Lu
- Children's Oncology Group - Operations Center, Monrovia, CA, USA
| | | | - Michael J Borowitz
- Johns Hopkins University/Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | | | - Elizabeth A Raetz
- Division of Pediatric Oncology, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Patrick A Brown
- Johns Hopkins University/Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | - William L Carroll
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Khan I, Halasi M, Patel A, Schultz R, Kalakota N, Chen YH, Aardsma N, Liu L, Crispino JD, Mahmud N, Frankfurt O, Gartel AL. FOXM1 contributes to treatment failure in acute myeloid leukemia. JCI Insight 2018; 3:121583. [PMID: 30089730 PMCID: PMC6129129 DOI: 10.1172/jci.insight.121583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with NPM1 mutations demonstrate a superior response to standard chemotherapy treatment. Our previous work has shown that these favorable outcomes are linked to the cytoplasmic relocalization and inactivation of FOXM1 driven by mutated NPM1. Here, we went on to confirm the important role of FOXM1 in increased chemoresistance in AML. A multiinstitution retrospective study was conducted to link FOXM1 expression to clinical outcomes in AML. We establish nuclear FOXM1 as an independent clinical predictor of chemotherapeutic resistance in intermediate-risk AML in a multivariate analysis incorporating standard clinicopathologic risk factors. Using colony assays, we show a dramatic decrease in colony size and numbers in AML cell lines with knockdown of FOXM1, suggesting an important role for FOXM1 in the clonogenic activity of AML cells. In order to further prove a potential role for FOXM1 in AML chemoresistance, we induced an FLT3-ITD-driven myeloid neoplasm in a FOXM1-overexpressing transgenic mouse model and demonstrated significantly higher residual disease after standard chemotherapy. This suggests that constitutive overexpression of FOXM1 in this model induces chemoresistance. Finally, we performed proof-of-principle experiments using a currently approved proteasome inhibitor, ixazomib, to target FOXM1 and demonstrated a therapeutic response in AML patient samples and animal models of AML that correlates with the suppression of FOXM1 and its transcriptional targets. Addition of low doses of ixazomib increases sensitization of AML cells to chemotherapy backbone drugs cytarabine and the hypomethylator 5-azacitidine. Our results underscore the importance of FOXM1 in AML progression and treatment, and they suggest that targeting it may have therapeutic benefit in combination with standard AML therapies.
Collapse
Affiliation(s)
- Irum Khan
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Marianna Halasi
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | | | - Rachael Schultz
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Nandini Kalakota
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University, Chicago, Illinois, USA
| | - Nathan Aardsma
- Department of Pathology, University of Illinois, Chicago, Illinois, USA
| | - Li Liu
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois, Chicago, Illinois, USA
| | | | - Nadim Mahmud
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | | | - Andrei L Gartel
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
11
|
Cloos J, Roeten MS, Franke NE, van Meerloo J, Zweegman S, Kaspers GJ, Jansen G. (Immuno)proteasomes as therapeutic target in acute leukemia. Cancer Metastasis Rev 2018; 36:599-615. [PMID: 29071527 PMCID: PMC5721123 DOI: 10.1007/s10555-017-9699-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The clinical efficacy of proteasome inhibitors in the treatment of multiple myeloma has encouraged application of proteasome inhibitor containing therapeutic interventions in (pediatric) acute leukemia. Here, we summarize the positioning of bortezomib, as first-generation proteasome inhibitor, and second-generation proteasome inhibitors in leukemia treatment from a preclinical and clinical perspective. Potential markers for proteasome inhibitor sensitivity and/or resistance emerging from leukemia cell line models and clinical sample studies will be discussed focusing on the role of immunoproteasome and constitutive proteasome (subunit) expression, PSMB5 mutations, and alternative mechanisms of overcoming proteolytic stress.
Collapse
Affiliation(s)
- Jacqueline Cloos
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Margot Sf Roeten
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels E Franke
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan van Meerloo
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Departments of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan Jl Kaspers
- Departments of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Princess Màxima Center, Utrecht, The Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Franke NE, Kaspers GL, Assaraf YG, van Meerloo J, Niewerth D, Kessler FL, Poddighe PJ, Kole J, Smeets SJ, Ylstra B, Bi C, Chng WJ, Horton TM, Menezes RX, Musters RJP, Zweegman S, Jansen G, Cloos J. Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors. Oncotarget 2018; 7:74779-74796. [PMID: 27542283 PMCID: PMC5342701 DOI: 10.18632/oncotarget.11340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
PSMB5 mutations and upregulation of the β5 subunit of the proteasome represent key determinants of acquired resistance to the proteasome inhibitor bortezomib (BTZ) in leukemic cells in vitro. We here undertook a multi-modality (DNA, mRNA, miRNA) array-based analysis of human CCRF-CEM leukemia cells and BTZ-resistant subclones to determine whether or not complementary mechanisms contribute to BTZ resistance. These studies revealed signatures of markedly reduced expression of proteolytic stress related genes in drug resistant cells over a broad range of BTZ concentrations along with a high upregulation of myristoylated alanine-rich C-kinase substrate (MARCKS) gene expression. MARCKS upregulation was confirmed on protein level and also observed in other BTZ-resistant tumor cell lines as well as in leukemia cells with acquired resistance to other proteasome inhibitors. Moreover, when MARCKS protein expression was demonstrated in specimens derived from therapy-refractory pediatric leukemia patients (n = 44), higher MARCKS protein expression trended (p = 0.073) towards a dismal response to BTZ-containing chemotherapy. Mechanistically, we show a BTZ concentration-dependent association of MARCKS protein levels with the emergence of ubiquitin-containing vesicles in BTZ-resistant CEM cells. These vesicles were found to be extruded and taken up in co-cultures with proteasome-proficient acceptor cells. Consistent with these observations, MARCKS protein associated with ubiquitin-containing vesicles was also more prominent in clinical leukemic specimen with ex vivo BTZ resistance compared to BTZ-sensitive leukemia cells. Collectively, we propose a role for MARCKS in a novel mechanism of BTZ resistance via exocytosis of ubiquitinated proteins in BTZ-resistant cells leading to quenching of proteolytic stress.
Collapse
Affiliation(s)
- Niels E Franke
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan L Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Johan van Meerloo
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Denise Niewerth
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Floortje L Kessler
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Pino J Poddighe
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen Kole
- Department of Physiology, VU University, Amsterdam, The Netherlands
| | - Serge J Smeets
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Chonglei Bi
- Department of Experimental Therapeutics, Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Current address: BGI-Shenzhen, Shenzhen, China
| | - Wee Joo Chng
- Department of Experimental Therapeutics, Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Terzah M Horton
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rene X Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology, Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Oerlemans R, Berkers CR, Assaraf YG, Scheffer GL, Peters GJ, Verbrugge SE, Cloos J, Slootstra J, Meloen RH, Shoemaker RH, Dijkmans BAC, Scheper RJ, Ovaa H, Jansen G. Proteasome inhibition and mechanism of resistance to a synthetic, library-based hexapeptide. Invest New Drugs 2018; 36:797-809. [PMID: 29442210 PMCID: PMC6153520 DOI: 10.1007/s10637-018-0569-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
Background The hexapeptide 4A6 (Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-Glu(OtBu)-Gly-Bza) was isolated from a peptide library constructed to identify peptide-based transport inhibitors of multidrug resistance (MDR) efflux pumps including P-glycoprotein and Multidrug Resistance-associated Protein 1. 4A6 proved to be a substrate but not an inhibitor of these MDR efflux transporters. In fact, 4A6 and related peptides displayed potent cytotoxic activity via an unknown mechanism. Objective To decipher the mode of cytotoxic activity of 4A6. Methods Screening of 4A6 activity was performed against the NCI60 panel of cancer cell lines. Possible interactions of 4A6 with the 26S proteasome were assessed via proteasome activity and affinity labeling, and cell growth inhibition studies with leukemic cells resistant to the proteasome inhibitor bortezomib (BTZ). Results The NCI60 panel COMPARE analysis revealed that 4A6 had an activity profile overlapping with BTZ. Consistently, 4A6 proved to be a selective and reversible inhibitor of β5 subunit (PSMB5)-associated chymotrypsin-like activity of the 26S proteasome. This conclusion is supported by several lines of evidence: (i) inhibition of chymotrypsin-like proteasome activity by 4A6 and related peptides correlated with their cell growth inhibition potencies; (ii) 4A6 reversibly inhibited functional β5 active site labeling with the affinity probe BodipyFL-Ahx3L3VS; and (iii) human myeloid THP1 cells with acquired BTZ resistance due to mutated PSMB5 were highly (up to 287-fold) cross-resistant to 4A6 and its related peptides. Conclusion 4A6 is a novel specific inhibitor of the β5 subunit-associated chymotrypsin-like proteasome activity. Further exploration of 4A6 as a lead compound for development as a novel proteasome-targeted drug is warranted.
Collapse
Affiliation(s)
- Ruud Oerlemans
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - George L Scheffer
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sue Ellen Verbrugge
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | | | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ben A C Dijkmans
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Rik J Scheper
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Chemical Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerrit Jansen
- Departments of Rheumatology, Amsterdam Rheumatology and Immunology Center, Cancer Center Amsterdam, Rm 2.46, VU University Medical Center, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Deshmukh RR, Kim S, Elghoul Y, Dou QP. P-Glycoprotein Inhibition Sensitizes Human Breast Cancer Cells to Proteasome Inhibitors. J Cell Biochem 2017; 118:1239-1248. [PMID: 27813130 DOI: 10.1002/jcb.25783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022]
Abstract
Although effective for the treatment of hematological malignancies, the FDA approved proteasome inhibitors bortezomib and carfilzomib have limited efficacy in solid tumors including triple negative breast cancer (TNBC). Chemotherapy is the only option for treating TNBC due to the absence of specific therapeutic targets. Therefore, development of new TNBC therapeutic strategies has been warranted. We studied whether P-glycoprotein (P-gp) inhibition could sensitize TNBC cells to proteasome inhibitors. When verapamil, a P-gp inhibitor, was combined with the proteasome inhibitor MG132, bortezomib, or carfilzomib, the cytotoxic effects and apoptosis in TNBC MDA-MB-231 cells were enhanced, compared to each treatment alone. Furthermore, addition of verapamil improved proteasome-inhibitory properties of MG132, bortezomib, or carfilzomib in MDA-MB-231 cells, as shown by the increased accumulation of ubiquitinated proteins and proteasome substrates such as IκBα and p27kip1 . Additionally, when nicardipine, another P-gp inhibitor, was combined with bortezomib or carfilzomib, enhanced inhibition of MDA-MB-231 cell proliferation was observed. These findings indicate that P-gp inhibitors could sensitize TNBC cells to structurally and functionally diverse proteasome inhibitors and might provide new treatment strategy for TNBC. J. Cell. Biochem. 118: 1239-1248, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul R Deshmukh
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, 34211
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201-2013
| | - Yasmine Elghoul
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201-2013
| | - Q Ping Dou
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, 48201-2013.,Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
15
|
Abstract
Acute myeloid leukemia (AML) is deadly hematologic malignancy. Despite a well-characterized genetic and molecular landscape, targeted therapies for AML have failed to significantly improve clinical outcomes. Over the past decade, proteasome inhibition has been demonstrated to be an effective therapeutic strategy in several hematologic malignancies. Proteasome inhibitors, such as bortezomib and carfilzomib, have become mainstays of treatment for multiple myeloma and mantle cell lymphoma. In light of this success, there has been a surge of literature exploring both the role of the proteasome and the effects of proteasome inhibition in AML. Pre-clinical studies have demonstrated that proteasome inhibition disrupts proliferative cell signaling pathways, exhibits cytotoxic synergism with other chemotherapeutics and induces autophagy of cancer-related proteins. Meanwhile, clinical trials incorporating bortezomib into combination chemotherapy regimens have reported a range of responses in AML patients, with complete remission rates >80% in some cases. Taken together, this preclinical and clinical evidence suggests that inhibition of the proteasome may be efficacious in this disease. In an effort to focus further investigation into this area, these recent studies and their findings are reviewed here.
Collapse
|
16
|
Wu YX, Yang JH, Saitsu H. Bortezomib-resistance is associated with increased levels of proteasome subunits and apoptosis-avoidance. Oncotarget 2016; 7:77622-77634. [PMID: 27769058 PMCID: PMC5363609 DOI: 10.18632/oncotarget.12731] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022] Open
Abstract
Bortezomib (BTZ), a proteasome inhibitor, is the first proteasome inhibitor to be used in clinical practice. Here we investigated the mechanisms underlying acquired bortezomib resistance in hepatocellular carcinoma (HCC) cells. Using stepwise selection, we established two acquired bortezomib-resistant HCC cell lines, a bortezomib-resistant HepG2 cell line (HepG2/BTZ) and bortezomib-resistant HuH7 cell line (HuH7/BTZ). The 50% inhibitory concentration values of HepG2/BTZ and HuH7/BTZ were respectively 15- and 39-fold higher than those of parental cell lines. Sequence analysis of the bortezomib-binding pocket in the β5-subunit showed no mutation. However, bortezomib-resistant HCC cells had increased expression of β1 and β5 proteasome subunits. These alterations of proteasome expression were accompanied by a weak degree of proteasome inhibition in bortezomib-resistant cells than that in wild-type cells after bortezomib exposure. Furthermore, bortezomib-resistant HCC cells acquired resistance to apoptosis. Bortezomib up-regulated pro-apoptotic proteins of the Bcl-2 protein family, Bax and Noxa in wild-type HCC cells. However, in bortezomib-resistant HCC cells, resistance to apoptosis was accompanied by loss of the ability to stabilize and accumulate these proteins. Thus, increased expression and increased activity of proteasomes constitute an adaptive and auto regulatory feedback mechanism to allow cells to survive exposure bortezomib.
Collapse
Affiliation(s)
- Yi-Xin Wu
- 1 Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Jia-Hua Yang
- 2 Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hirotomo Saitsu
- 1 Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
17
|
Niewerth D, Kaspers GJL, Jansen G, van Meerloo J, Zweegman S, Jenkins G, Whitlock JA, Hunger SP, Lu X, Alonzo TA, van de Ven PM, Horton TM, Cloos J. Proteasome subunit expression analysis and chemosensitivity in relapsed paediatric acute leukaemia patients receiving bortezomib-containing chemotherapy. J Hematol Oncol 2016; 9:82. [PMID: 27599459 PMCID: PMC5011854 DOI: 10.1186/s13045-016-0312-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023] Open
Abstract
Background Drug combinations of the proteasome inhibitor bortezomib with cytotoxic chemotherapy are currently evaluated in phase 2 and 3 trials for the treatment of paediatric acute myeloid leukaemia (AML) and acute lymphocytic leukaemia (ALL). Methods We investigated whether expression ratios of immunoproteasome to constitutive proteasome in leukaemic cells correlated with response to bortezomib-containing re-induction chemotherapy in patients with relapsed and refractory acute leukaemia, enrolled in two Children’s Oncology Group phase 2 trials of bortezomib for ALL (COG-AALL07P1) and AML (COG-AAML07P1). Expression of proteasome subunits was examined in 72 patient samples (ALL n = 60, AML n = 12) obtained before start of therapy. Statistical significance between groups was determined by Mann-Whitney U test. Results Ratios of immunoproteasome to constitutive proteasome subunit expression were significantly higher in pre-B ALL cells than in AML cells for both β5i/β5 and β1i/β1 subunits (p = 0.004 and p < 0.001). These ratios correlated with therapy response in AML patients; β1i/β1 ratios were significantly higher (p = 0.028) between patients who did (n = 4) and did not reach complete remission (CR) (n = 8), although for β5i/β5 ratios, this did not reach significance. For ALL patients, the subunit ratios were also higher for patients who showed a good early response to therapy but this relation was not statistically significant. Overall, for this study, the patients were treated with combination therapy, so response was not only attributed to proteasome inhibition. Moreover, the leukaemic blast cells were not purified for these samples. Conclusions These first ex vivo results encourage further studies into relative proteasome subunit expression to improve proteasome inhibition-containing therapy and as a potential indicator of bortezomib response in acute leukaemia. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0312-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise Niewerth
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Amsterdam Rheumatology & Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan van Meerloo
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gaye Jenkins
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - James A Whitlock
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Stephen P Hunger
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | - Todd A Alonzo
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Terzah M Horton
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX, USA
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands. .,Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Citrin R, Foster JB, Teachey DT. The role of proteasome inhibition in the treatment of malignant and non-malignant hematologic disorders. Expert Rev Hematol 2016; 9:873-89. [DOI: 10.1080/17474086.2016.1216311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells. Sci Rep 2016; 6:19926. [PMID: 26822725 PMCID: PMC4731804 DOI: 10.1038/srep19926] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/21/2015] [Indexed: 01/08/2023] Open
Abstract
Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics.
Collapse
|
20
|
Chong KY, Hsu CJ, Hung TH, Hu HS, Huang TT, Wang TH, Wang C, Chen CM, Choo KB, Tseng CP. Wnt pathway activation and ABCB1 expression account for attenuation of proteasome inhibitor-mediated apoptosis in multidrug-resistant cancer cells. Cancer Biol Ther 2015; 16:149-59. [PMID: 25590413 DOI: 10.4161/15384047.2014.987093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple drug resistance (MDR) is a major obstacle to attenuating the effectiveness of chemotherapy to many human malignancies. Proteasome inhibition induces apoptosis in a variety of cancer cells and is recognized as a novel anticancer therapy approach. Despite its success, some multiple myeloma patients are resistant or become refractory to ongoing treatment by bortezomib suggesting that chemoresistant cancer cells may have developed a novel mechanism directed against the proteasome inhibitor. The present study aimed to investigate potential mechanism(s) of attenuation in a MDR cell line, MES-SA/Dx5. We found that compared to the parental human uterus sarcoma cell line MES-SA cells, MES-SA/Dx5 cells highly expressed the ABCB1 was more resistant to MG132 and bortezomib, escaping the proteasome inhibitor-induced apoptosis pathway. The resistance was reversed by co-treatment of MG132 and the ABCB1 inhibitor verapamil. The data indicated that ABCB1 might play a role in the efflux of MG132 from the MES-SA/Dx5 cells to reduce MG132-induced apoptosis. Furthermore, the canonical Wnt pathway was found activated only in the MES-SA/Dx5 cells through active β-catenin and related transactivation activities. Western blot analysis demonstrated that Wnt-targeting genes, including c-Myc and cyclin D1, were upregulated and were relevant in inhibiting the expression of p21 in MES-SA/Dx5 cells. On the other hand, MES-SA cells expressed high levels of p21 and downregulated cyclin D1 and caused cell cycle arrest. Together, our study demonstrated the existence and participation of ABCB1 and the Wnt pathway in an MDR cell line that attenuated proteasome inhibitor-induced apoptosis.
Collapse
Affiliation(s)
- Kowit Yu Chong
- a Department of Medical Biotechnology and Laboratory Science; College of Medicine ; Chang Gung University ; Tao-Yuan , Taiwan , Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Inhibition of proteasome deubiquitinase activity: a strategy to overcome resistance to conventional proteasome inhibitors? Drug Resist Updat 2015; 21-22:20-9. [DOI: 10.1016/j.drup.2015.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 11/19/2022]
|
22
|
Niewerth D, Jansen G, Assaraf YG, Zweegman S, Kaspers GJ, Cloos J. Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resist Updat 2015; 18:18-35. [DOI: 10.1016/j.drup.2014.12.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/28/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022]
|
23
|
Clemens J, Seckinger A, Hose D, Theile D, Longo M, Haefeli WE, Burhenne J, Weiss J. Cellular uptake kinetics of bortezomib in relation to efficacy in myeloma cells and the influence of drug transporters. Cancer Chemother Pharmacol 2014; 75:281-91. [PMID: 25477008 DOI: 10.1007/s00280-014-2643-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/01/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE Despite overall successful application to multiple myeloma patients, clinical efficacy of the proteasome inhibitor bortezomib is typically challenged by primary and secondary resistance of unknown origin. So far, the potential impact of intracellular concentrations on drug efficacy of bortezomib and the influence of drug transporters are unknown. METHODS We determined cellular bortezomib kinetics in nine myeloma cell lines using ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry. The potential influence of drug transporters on the uptake kinetics observed in these cell lines was investigated by testing substrate characteristics of bortezomib for several transporters in over-expressing model cells. Additionally, transporter mRNA expression was quantified in myeloma cell lines by real-time polymerase chain reaction (RT-PCR). RESULTS All myeloma cells revealed an extensive intracellular bortezomib accumulation (47.5-183 ng/ml) exceeding extracellular concentrations (0.04-0.17 ng/ml) by more than factor 1,000. Only organic anion-transporting polypeptide 1B1 facilitated the uptake in over-expressing cells, however, to a negligible extent (factor 1.36). Bortezomib efflux via P-glycoprotein was confirmed by demonstrating reduced sensitivity (IC50 11.6 vs. 2.8 ng/ml) and intracellular concentrations (-56.1%) in over-expressing cells compared to controls. RT-PCR revealed a varying but overall weak transporter expression in the studied myeloma cells without any correlation to intracellular concentrations. Although principally valid as demonstrated in the P-glycoprotein over-expressing cell model, there was no significant correlation between intracellular concentrations and bortezomib efficacy in myeloma cell lines. CONCLUSION Differences in intracellular concentrations in myeloma cell lines neither result from variable transporter expression nor represent the main factor determining bortezomib efficacy in vitro.
Collapse
Affiliation(s)
- Jannick Clemens
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Horton TM, Perentesis JP, Gamis AS, Alonzo TA, Gerbing RB, Ballard J, Adlard K, Howard DS, Smith FO, Jenkins G, Kelder A, Schuurhuis GJ, Moscow JA. A Phase 2 study of bortezomib combined with either idarubicin/cytarabine or cytarabine/etoposide in children with relapsed, refractory or secondary acute myeloid leukemia: a report from the Children's Oncology Group. Pediatr Blood Cancer 2014; 61:1754-60. [PMID: 24976003 PMCID: PMC4247259 DOI: 10.1002/pbc.25117] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/05/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND This Phase 2 study tested the tolerability and efficacy of bortezomib combined with reinduction chemotherapy for pediatric patients with relapsed, refractory or secondary acute myeloid leukemia (AML). Correlative studies measured putative AML leukemia initiating cells (AML-LIC) before and after treatment. PROCEDURE Patients with <400 mg/m(2) prior anthracycline received bortezomib combined with idarubicin (12 mg/m(2) days 1-3) and low-dose cytarabine (100 mg/m(2) days 1-7) (Arm A). Patients with ≥400 mg/m(2) prior anthracycline received bortezomib with etoposide (100 mg/m(2) on days 1-5) and high-dose cytarabine (1 g/m(2) every 12 hours for 10 doses) (Arm B). RESULTS Forty-six patients were treated with 58 bortezomib-containing cycles. The dose finding phase of Arm B established the recommended Phase 2 dose of bortezomib at 1.3 mg/m(2) on days 1, 4, and 8 with Arm B chemotherapy. Both arms were closed after failure to meet predetermined efficacy thresholds during the first stage of the two-stage design. The complete response (CR + CRp) rates were 29% for Arm A and 43% for Arm B. Counting additional CRi responses (CR with incomplete neutrophil recovery), the overall CR rates were 57% for Arm A and 48% for Arm B. The 2-year overall survival (OS) was 39 ± 15%. Correlative studies showed that LIC depletion after the first cycle was associated with clinical response. CONCLUSION Bortezomib is tolerable when added to chemotherapy regimens for relapsed pediatric AML, but the regimens did not exceed preset minimum response criteria to allow continued accrual. This study also suggests that AML-LIC depletion has prognostic value.
Collapse
Affiliation(s)
- Terzah M. Horton
- Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, Texas
| | | | - Alan S. Gamis
- Children's Mercy Hospitals & Clinics, Kansas City, Missouri
| | - Todd A. Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, California
- Children's Oncology Group—Operations Center, Monrovia, California
| | | | - Jennifer Ballard
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky
| | | | - Dianna S. Howard
- Division of Hematology and Oncology, Wake Forest University, Winston-Salem, NC
| | - Franklin O. Smith
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati Cancer Institute, Cincinnati, Ohio
| | - Gaye Jenkins
- Texas Children's Cancer and Hematology Centers at Baylor College of Medicine, Houston, Texas
| | - Angelé Kelder
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Gerrit J. Schuurhuis
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Jeffrey A. Moscow
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
25
|
Selmeczi A, Udvardy M, Illés A, Telek B, Kiss A, Batár P, Reményi G, Szász R, Ujj Z, Márton A, Ujfalusi A, Hevessy Z, Pinczés L, Bedekovics J, Rejtő L. [Treatment of acute myeloid leukemia -- a single center experience (2007-2013)]. Orv Hetil 2014; 155:653-8. [PMID: 24755447 DOI: 10.1556/oh.2014.29884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Mortality of acute myeloid leukemia is still 60-70% in young (<60 years) adults and 90% in elderly (≥60 years) patients. AIM The aim of the authors was to analyse the outcome of treatment in their patients with acute myeloid leukemia. METHOD From 2007 to 2013, 173 patients with acute myeloid leukemia were treated. Patients were classified according to the European LeukemiaNet prognostic guideline. Association between mortality and the type of acute myeloid leukemia (secondary or primary), dose of daunoblastin at induction of treatment, and the rate of minimal residual disease were investigated. RESULTS The 5-year survival probability was 25% in young adults and 2% in the elderly. The survival was significantly influenced by these prognostic factors. The 5-year survival rate was 50% in the young, favorable prognostic group. The 90 mg/m2 daunoblastin dose was found to be beneficial. Addition of bortezomib to the standard induction protocol had an additional beneficial effect. CONCLUSIONS The speed and depth of the response to induction therapy, and the initial white blood cell count had an apparent effect on survival.
Collapse
Affiliation(s)
- Anna Selmeczi
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Miklós Udvardy
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Arpád Illés
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Béla Telek
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Attila Kiss
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Péter Batár
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Gyula Reményi
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Róbert Szász
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Zsófia Ujj
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Adrienn Márton
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Anikó Ujfalusi
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Gyermekgyógyászati Intézet, Klinikai Genetikai Központ Debrecen
| | - Zsuzsanna Hevessy
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Laboratóriumi Medicina Intézet Debrecen
| | - László Pinczés
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Judit Bedekovics
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Pathológiai Intézet Debrecen
| | - László Rejtő
- Debreceni Egyetem, Klinikai Központ, Általános Orvostudományi Kar Belgyógyászati Intézet, Hematológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| |
Collapse
|
26
|
Alvarez-Berríos MP, Castillo A, Rinaldi C, Torres-Lugo M. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines. Int J Nanomedicine 2013; 9:145-53. [PMID: 24379665 PMCID: PMC3873208 DOI: 10.2147/ijn.s51435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The proteasome inhibitor bortezomib (BZ) has shown promising results in some types of cancer, but in others it has had minimal activity. Recent studies have reported enhanced efficacy of BZ when combined with hyperthermia. However, the use of magnetic nanoparticles to induce hyperthermia in combination with BZ has not been reported. This novel hyperthermia modality has shown better potentiation of chemotherapeutics over other types of hyperthermia. We hypothesized that inducing hyperthermia via magnetic nanoparticles (MFH) would enhance the cytotoxicity of BZ in BZ-sensitive and BZ-resistant cancer cells more effectively than hyperthermia using a hot water bath (HWH). Studies were conducted using BZ in combination with MFH in two BZ-sensitive cell lines (MDA-MB-468, Caco-2), and one BZ-resistant cell line (A2780) at two different conditions, ie, 43°C for 30 minutes and 45°C for 30 minutes. These experiments were compared with combined application of HWH and BZ. The results indicate enhanced potentiation between hyperthermic treatment and BZ. MFH combined with BZ induced cytotoxicity in sensitive and resistant cell lines to a greater extent than HWH under the same treatment conditions. The observation that MFH sensitizes BZ-resistant cell lines makes this approach a potentially effective anticancer therapy platform.
Collapse
Affiliation(s)
| | - Amalchi Castillo
- Department of Chemical Engineering, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Carlos Rinaldi
- Department of Chemical Engineering, University of Puerto Rico, Mayagüez, Puerto Rico ; J Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, USA ; Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Madeline Torres-Lugo
- Department of Chemical Engineering, University of Puerto Rico, Mayagüez, Puerto Rico
| |
Collapse
|
27
|
Espirito Santo A, Medeiros R. Pharmacogenetic considerations for non-Hodgkin's lymphoma therapy. Expert Opin Drug Metab Toxicol 2013; 9:1625-34. [PMID: 24053936 DOI: 10.1517/17425255.2013.835803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Chemotherapy is the current standard treatment for hematological malignancies for both curative and palliative purposes. Unfortunately, in the current treatment scenario chemotherapy resistance is an issue that is know to lead to a relapse in cancer. The multidrug resistance 1 (MDR1) gene is often involved in drug resistance and, so far, the best studied mechanism of resistance relates to the level of P-glycoprotein (P-gp) expression on cancer cells; however, correlation with single nucleotide polymorphism (SNP) in the MDR1 gene has also been observed via a number of different mechanisms that interfere with function and expression of P-gp. AREAS COVERED This article describes the influence of P-gp expression and SNP on the MDR1 gene in non-Hodgkin's lymphoma (NHL) and their effect on both its risk and outcome. The authors also provide a brief summary of the more important therapeutic options, which aim to overcome this drug resistance mechanism, and discuss their known mechanisms of action. EXPERT OPINION There is evidence pertaining to an association between the outcome of NHL and P-gp expression. However, the authors emphasize the need for more studies to reinforce this evidence. Furthermore, there is a definite need for the therapeutic targets, which provide tumor cellular lines of interest, to be tested in humans, in order to better evaluate their toxicity and overall effect on the outcome. The ultimate aim of this research is to develop specifically designed therapies that are tailored to the intrinsic characteristics of specific patients.
Collapse
Affiliation(s)
- Ana Espirito Santo
- Servico de OncoHematologia, Portuguese Institute of Oncology , Porto , Portugal
| | | |
Collapse
|
28
|
The interaction of bortezomib with multidrug transporters: implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemother Pharmacol 2013; 71:1357-68. [PMID: 23589314 DOI: 10.1007/s00280-013-2136-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/06/2013] [Indexed: 01/23/2023]
Abstract
PURPOSE Bortezomib is an important agent in multiple myeloma treatment, but resistance in cell lines and patients has been described. The main mechanisms of resistance described in cancer fall into one of two categories, pharmacokinetic resistance (PK), e.g. over expression of drug efflux pumps and pharmacodynamic resistance, e.g. apoptosis resistance or altered survival pathways, where the agent reaches an appropriate concentration, but this fails to propagate an appropriate cell death response. Of the known pump mechanisms, P-glycoprotein (P-gp) is the best studied and considered to be the most important in contributing to general PK drug resistance. Resistance to bortezomib is multifactorial and there are conflicting indications that cellular overexpression of P-gp may contribute to resistance agent. Hence, better characterization of the interactions of this drug with classical resistance mechanisms should identify improved treatment applications. METHODS Cell lines with different P-gp expression levels were used to determine the relationship between bortezomib and P-gp. Coculture system with stromal cells was used to determine the effect of the local microenvironment on the bortezomib-elacridar combination. To further assess P-gp function, intracellular accumulation of P-gp probe rhodamine-123 was utilised. RESULTS In the present study, we show that bortezomib is a substrate for P-gp, but not for the other drug efflux transporters. Bortezomib activity is affected by P-gp expression and conversely, the expression of P-gp affect bortezomib's ability to act as a P-gp substrate. The local microenvironment did not alter the cellular response to bortezomib. We also demonstrate that bortezomib directly affects the expression and function of P-gp. CONCLUSIONS Our findings strongly support a role for P-gp in bortezomib resistance and, therefore, suggest that combination of a P-gp inhibitor and bortezomib in P-gp positive myeloma would be a reasonable treatment combination to extend efficacy of this important drug.
Collapse
|
29
|
Lü S, Wang J. The resistance mechanisms of proteasome inhibitor bortezomib. Biomark Res 2013; 1:13. [PMID: 24252210 PMCID: PMC4177604 DOI: 10.1186/2050-7771-1-13] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 02/02/2013] [Indexed: 01/18/2023] Open
Abstract
The proteasome inhibitor, bortezomib, a boronic dipeptide which reversibly inhibit the chymotrypsin-like activity at the β5-subunit of proteasome (PSMB5), has marked efficacy against multiple myeloma and several non-Hodgkin's lymphoma subtypes, and has a potential therapeutic role against other malignancy diseases. However, intrinsic and acquired resistance to bortezomib may limit its efficacy. In this article, we discuss recent advances in the molecular understanding of bortezomib resistance. Resistance mechanisms discussed include mutations of PSMB5 and the up-regulation of proteasome subunits, alterations of gene and protein expression in stress response, cell survival and antiapoptotic pathways, and multidrug resistance.
Collapse
Affiliation(s)
- Shuqing Lü
- Department of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jianmin Wang
- Department of Hematology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
30
|
Warlick ED, Cao Q, Miller J. Bortezomib and vorinostat in refractory acute myelogenous leukemia and high-risk myelodysplastic syndromes: produces stable disease but at the cost of high toxicity. Leukemia 2013; 27:1789-91. [PMID: 23446311 DOI: 10.1038/leu.2013.61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Neilsen PM, Pehere AD, Pishas KI, Callen DF, Abell AD. New 26S proteasome inhibitors with high selectivity for chymotrypsin-like activity and p53-dependent cytotoxicity. ACS Chem Biol 2013. [PMID: 23190346 DOI: 10.1021/cb300549d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 26S proteasome has emerged over the past decade as an attractive therapeutic target in the treatment of cancers. Here, we report new tripeptide aldehydes that are highly specific for the chymotrypsin-like catalytic activity of the proteasome. These new specific proteasome inhibitors demonstrated high potency and specificity for sarcoma cells, with therapeutic windows superior to those observed for benchmark proteasome inhibitors, MG132 and Bortezomib. Constraining the peptide backbone into the β-strand geometry, known to favor binding to a protease, resulted in decreased activity in vitro and reduced anticancer activity. Using these new proteasome inhibitors, we show that the presence of an intact p53 pathway significantly enhances cytotoxic activity, thus suggesting that this tumor suppressor is a critical downstream mediator of cell death following proteasomal inhibition.
Collapse
Affiliation(s)
- Paul M. Neilsen
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - Ashok D. Pehere
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - Kathleen I. Pishas
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - David F. Callen
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| | - Andrew D. Abell
- Centre
for Personalised Cancer Medicine, Discipline of Medicine,
and ‡School of Chemistry
and Physics, The University of Adelaide, North Terrace,
Adelaide SA 5005, Australia
| |
Collapse
|
32
|
Attar EC, Johnson JL, Amrein PC, Lozanski G, Wadleigh M, DeAngelo DJ, Kolitz JE, Powell BL, Voorhees P, Wang ES, Blum W, Stone RM, Marcucci G, Bloomfield CD, Moser B, Larson RA. Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. J Clin Oncol 2012; 31:923-9. [PMID: 23129738 DOI: 10.1200/jco.2012.45.2177] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE The purpose of this study was to determine remission induction frequency when bortezomib was combined with daunorubicin and cytarabine in previously untreated older adults with acute myeloid leukemia (AML) and safety of bortezomib in combination with consolidation chemotherapy consisting of intermediate-dose cytarabine (Int-DAC). PATIENTS AND METHODS Ninety-five adults (age 60 to 75 years; median, 67 years) with previously untreated AML (including therapy-related and previous myelodysplastic syndrome) received bortezomib 1.3 mg/m(2) intravenously (IV) on days 1, 4, 8, and 11 with daunorubicin 60 mg/m(2) on days 1 through 3 and cytarabine 100 mg/m(2) by continuous IV infusion on days 1 through 7. Patients who achieved complete remission (CR) received up to two courses of consolidation chemotherapy with cytarabine 2 gm/m(2) on days 1 through 5 with bortezomib. Three cohorts with escalating dose levels of bortezomib were tested (0.7, 1.0, and 1.3 mg/m(2)). Dose-limiting toxicities were assessed during the first cycle of consolidation. The relationship between cell surface expression of CD74 and clinical outcome was assessed. RESULTS Frequency of CR was 65% (62 of 95), and 4% of patients (four of 95) achieved CR with incomplete platelet recovery (CRp). Eleven patients developed grade 3 sensory neuropathy. Bortezomib plus Int-DAC proved tolerable at the highest dose tested. Lower CD74 expression was associated with CR/CRp (P = .04) but not with disease-free or overall survival. CONCLUSION The addition of bortezomib to standard 3 + 7 daunorubicin and cytarabine induction chemotherapy for AML resulted in an encouraging remission rate. The maximum tested dose of bortezomib administered in combination with Int-DAC for remission consolidation was 1.3 mg/m(2) and proved tolerable. Further testing of this regimen is planned.
Collapse
Affiliation(s)
- Eyal C Attar
- Massachusetts General Hospital Cancer Center, 100 Blossom St, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kale AJ, Moore BS. Molecular mechanisms of acquired proteasome inhibitor resistance. J Med Chem 2012; 55:10317-27. [PMID: 22978849 DOI: 10.1021/jm300434z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of proteasome inhibitors (PIs) has transformed the treatment of multiple myeloma and mantle cell lymphoma. To date, two PIs have been FDA approved, the boronate peptide bortezomib and, most recently, the epoxyketone peptide carfilzomib. However, intrinsic and acquired resistance to PIs, for which the underlying mechanisms are poorly understood, may limit their efficacy. In this Perspective, we discuss recent advances in the molecular understanding of PI resistance through acquired bortezomib resistance in human cell lines and evolved salinosporamide A (marizomib) resistance in bacteria. Resistance mechanisms discussed include the up-regulation of proteasome subunits and mutations of the catalytic β-subunits. Additionally, we explore potential strategies to overcome PI resistance.
Collapse
Affiliation(s)
- Andrew J Kale
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
34
|
Maynadier M, Shi J, Vaillant O, Gary-Bobo M, Basile I, Gleizes M, Cathiard AM, Wah JLT, Sheikh MS, Garcia M. Roles of estrogen receptor and p21(Waf1) in bortezomib-induced growth inhibition in human breast cancer cells. Mol Cancer Res 2012; 10:1473-81. [PMID: 22964432 DOI: 10.1158/1541-7786.mcr-12-0133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proteasome inhibitors such as bortezomib constitute novel therapeutic agents that are currently in clinical use and in clinical trials. In some neoplasms, cyclin-dependent kinase inhibitors (CKI) such as p21(WAF1) have been proposed as key targets of proteasome inhibitors. p21(WAF1) expression can be modulated by p53, a tumor suppressor, and especially in breast cancer cells, by estrogen receptor alpha (ERα), which is highly relevant to cancer growth. We investigated the effects of bortezomib using a panel of six cancer cell lines with variable status of ERα or p53 and found that bortezomib inhibited the growth of all cell lines in the same concentration range irrespective of the ERα expression or the mutational status of p53. Bortezomib treatment significantly enhanced p21(WAF1) protein levels in all cell lines but with different mechanisms according to ERα status. In ERα-positive cells, bortezomib treatment caused a strong increase in p21(WAF1) mRNA, whereas in ERα-negative cells it predominantly enhanced p21(WAF1) protein levels suggesting a posttranslational mechanism of p21(WAF1) regulation in the ERα-negative cells. Moreover, the antiproliferative activity of bortezomib was prevented by ERα silencing or p21(WAF1) knockdown in ERα-positive cells. Collectively, our results highlight the potential roles of ERα and p21(WAF1) in growth inhibition of cancer cells mediated by proteasome inhibitors, such as bortezomib.
Collapse
Affiliation(s)
- Marie Maynadier
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Srivastava P, Yadav N, Lella R, Schneider A, Jones A, Marlowe T, Lovett G, O'Loughlin K, Minderman H, Gogada R, Chandra D. Neem oil limonoids induces p53-independent apoptosis and autophagy. Carcinogenesis 2012; 33:2199-207. [PMID: 22915764 DOI: 10.1093/carcin/bgs269] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tsubaki M, Satou T, Itoh T, Imano M, Komai M, Nishinobo M, Yamashita M, Yanae M, Yamazoe Y, Nishida S. Overexpression of MDR1 and survivin, and decreased Bim expression mediate multidrug-resistance in multiple myeloma cells. Leuk Res 2012; 36:1315-22. [PMID: 22819074 DOI: 10.1016/j.leukres.2012.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/07/2012] [Accepted: 07/02/2012] [Indexed: 01/12/2023]
Abstract
Multidrug resistance represents a major obstacle for the chemotherapy of a wide variety of human tumors. To investigate the underlying mechanisms associated with resistance to anti-cancer drugs, we established anti-cancer drug-resistant multiple myeloma (MM) cell lines RPMI8226/ADM, RPMI8226/VCR, RPMI8226/DEX, and RPMI8226/L-PAM, the 50% inhibitory concentration values of which were 77-, 58-, 79-, and 30-fold higher than their parental cell lines, respectively. The resistant cell lines overexpressed MDR1 and survivin, or showed decreased Bim expression. These results indicated that regulating these factors with inhibitors might be a viable approach to increasing the susceptibility of quiescent MM cells to chemotherapy.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ao L, Wu Y, Kim D, Jang ER, Kim K, Lee DM, Kim KB, Lee W. Development of peptide-based reversing agents for p-glycoprotein-mediated resistance to carfilzomib. Mol Pharm 2012; 9:2197-205. [PMID: 22734651 DOI: 10.1021/mp300044b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carfilzomib is a novel class of peptidyl epoxyketone proteasome inhibitor and has demonstrated promising activity in multiple clinical trials to treat patients with multiple myeloma and other types of cancers. Here, we investigated molecular mechanisms underlying acquired resistance to carfilzomib and a potential strategy to restore cellular sensitivity to carfilzomib. H23 and DLD-1 cells (human lung and colon adenocarcinoma cell lines) with acquired resistance to carfilzomib displayed marked cross-resistance to YU-101, a closely related proteasome inhibitor, and paclitaxel, a known substrate of Pgp. However, carfilzomib-resistant cells remained sensitive to bortezomib, a clinically used dipeptide with boronic acid pharmacophore. In accordance with these observations, carfilzomib-resistant H23 and DLD-1 cells showed marked upregulation of P-glycoprotein (Pgp) as compared to their parental controls, and coincubation with verapamil, a Pgp inhibitor, led to an almost complete restoration of cellular sensitivity to carfilzomib. These results indicate that Pgp upregulation plays a major role in the development of carfilzomib resistance in these cell lines. In developing a potential strategy to overcome carfilzomib resistance, we as a proof of concept prepared a small library of peptide analogues derived from the peptide backbone of carfilzomib and screened these molecules for their activity to restore carfilzomib sensitivity when cotreated with carfilzomib. We found that compounds as small as dipeptides are sufficient in restoring carfilzomib sensitivity. Taken together, we found that Pgp upregulation plays a major role in the development of resistance to carfilzomib in lung and colon adenocarcinoma cell lines and that small peptide analogues lacking the pharmacophore can be used as agents to reverse acquired carfilzomib resistance. Our findings may provide important information in developing a potential strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Lin Ao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, United States
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Huber EM, Groll M. Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew Chem Int Ed Engl 2012; 51:8708-20. [PMID: 22711561 DOI: 10.1002/anie.201201616] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 01/30/2023]
Abstract
Proteolytic degradation is an essential cellular process which is primarily carried out by the 20S proteasome core particle (CP), a protease of 720 kDa and 28 individual subunits. As a result of its central functional role, the proteasome represents an attractive drug target that has been extensively investigated during the last decade and validated by the approval of bortezomib by the US Food and Drug Administration (FDA). Currently, several optimized second-generation proteasome inhibitors are being explored as anticancer drugs in clinical trials, and most of them target both constitutive proteasomes (cCPs) and immunoproteasomes (iCPs). However, selective inhibition of the iCPs, a distinct class of proteasomes predominantly expressed in immune cells, appears to be a promising therapeutic rationale for the treatment of autoimmune disorders. Although a few selective agents have already been identified, the recently determined crystal structure of the iCP will further promote the development and optimization of iCP-selective compounds.
Collapse
Affiliation(s)
- Eva Maria Huber
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | |
Collapse
|
39
|
Huber EM, Groll M. Inhibitoren für das konstitutive Proteasom und das Immunoproteasom: aktuelle und zukünftige Tendenzen in der Medikamentenentwicklung. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201616] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Verbrugge SE, Assaraf YG, Dijkmans BAC, Scheffer GL, Al M, den Uyl D, Oerlemans R, Chan ET, Kirk CJ, Peters GJ, van der Heijden JW, de Gruijl TD, Scheper RJ, Jansen G. Inactivating PSMB5 mutations and P-glycoprotein (multidrug resistance-associated protein/ATP-binding cassette B1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno)proteasome inhibitors in mononuclear blood cells from patients with rheumatoid arthritis. J Pharmacol Exp Ther 2012; 341:174-182. [PMID: 22235146 DOI: 10.1124/jpet.111.187542] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Bortezomib (BTZ), a registered proteasome inhibitor (PI) for multiple myeloma, has also been proposed as a potential antirheumatic agent. Its reported side effects, however, make it unappealing for long-term administration, and resistance may also develop. To overcome this, second-generation PIs became available. Here, we investigated whether a novel class of peptide epoxyketone-based PIs, including carfilzomib, N-((S)-3-methoxy-1-(((S)-3-methoxy-1-(((S)-1-((R)-2-methyloxiran-2-yl)-1-oxo-3-phenylpropan-2-yl)amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)-2-methylthiazole-5-carboxamide (ONX0912), and (S)-3-(4-methoxyphenyl)-N-((S)-1-((S)-2-methyloxiran-2-yl)-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(2-morpholinoacetamido)propanamido)propanamide (ONX0914), might escape two established BTZ-resistance mechanisms: 1) mutations in the proteasome β5 subunit (PSMB5) targeted by these PIs, and 2) drug efflux mediated by ATP-binding cassette transporters. THP1 myeloid sublines with acquired resistance to BTZ (54- to 235-fold) caused by mutations in the PSMB5 gene displayed marked cross-resistance but less pronounced cross-resistance to carfilzomib (9- to 32-fold), ONX0912 (39- to 62-fold), and ONX0914 (27- to 97-fold). As for ATP-binding cassette transporter-mediated efflux, lymphoid CEM/VLB cells with P-glycoprotein (Pgp)/multidrug resistance 1 overexpression exhibited substantial resistance to carfilzomib (114-fold), ONX0912 (23-fold), and ONX0914 (162-fold), whereas less resistance to BTZ (4.5-fold) was observed. Consistently, β5 subunit-associated chymotrypsin-like proteasome activity was significantly less inhibited in these CEM/VLB cells. Ex vivo analysis of peripheral blood mononuclear cells from therapy-naive patients with rheumatoid arthritis revealed that, although basal Pgp levels were low, P-glycoprotein expression compromised the inhibitory effect of carfilzomib and ONX0914. However, the use of P121 (reversin 121), a Pgp transport inhibitor, restored parental cell inhibitory levels in both CEM/VLB cells and peripheral blood mononuclear cells. These results indicate that the pharmacologic activity of these PIs may be hindered by drug resistance mechanisms involving PSMB5 mutations and PI extrusion via Pgp.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Boronic Acids/pharmacology
- Boronic Acids/therapeutic use
- Bortezomib
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- HEK293 Cells
- Humans
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Mutation/genetics
- Oligopeptides/pharmacology
- Oligopeptides/therapeutic use
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- Pyrazines/pharmacology
- Pyrazines/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Sue Ellen Verbrugge
- Department of Rheumatology, VU Institute for Cancer and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Proteasome-based mechanisms of intrinsic and acquired bortezomib resistance in non-small cell lung cancer. Biochem Pharmacol 2012; 83:207-17. [PMID: 22027222 DOI: 10.1016/j.bcp.2011.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 01/17/2023]
|
42
|
Liesveld JL, Rosell KE, Bechelli J, Lu C, Messina P, Mulford D, Ifthikharuddin JJ, Jordan CT, Phillips Ii GL. Proteasome inhibition in myelodysplastic syndromes and acute myelogenous leukemia cell lines. Cancer Invest 2011; 29:439-50. [PMID: 21740082 PMCID: PMC4557209 DOI: 10.3109/07357907.2011.590567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this work, effects of bortezomib on apoptosis, clonal progenitor growth, cytokine production, and NF-κB expression in patients with MDS with cytopenias requiring transfusion support are examined. Bortezomib increased apoptosis in marrow mononuclear cells but had no effects on CFU-GM, BFU-E, or CFU-L content. No consistent effects on NF-κB activation in vivo were noted. To further define the role of bortezomib in AML and MDS, we examined it in combination with several targeted agents and chemotherapeutic agents in vitro. Combinations with arsenic trioxide, sorafenib, and cytarabine demonstrated synergistic in vitro effects in AML cell lines.
Collapse
Affiliation(s)
- Jane L Liesveld
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA. jane
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rushworth SA, Macewan DJ. The role of nrf2 and cytoprotection in regulating chemotherapy resistance of human leukemia cells. Cancers (Basel) 2011; 3:1605-21. [PMID: 24212776 PMCID: PMC3757381 DOI: 10.3390/cancers3021605] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/18/2011] [Accepted: 03/07/2011] [Indexed: 12/30/2022] Open
Abstract
The Nrf2 anti-oxidant response element (ARE) pathway plays an important role in regulating cellular anti-oxidants. Under normal cellular conditions Nrf2 can be described as an anti-tumor molecule due to its induction of cytoprotective genes which protect cells from electrophile and oxidative damage. However in cancerous cells, Nrf2 takes on a pro-tumoral identity as the same cytoprotective genes can enhance resistance of those cancer cells to chemotherapeutic drugs. Such Nrf2-regulated cytoprotective genes include heme oxygenase-1 (HO-1), which has been shown to protect human leukemia cells from apoptotic signals. Moreover, a relationship between Nrf2 and the nuclear factor-κB (NF-κB) signaling pathway has been recently identified, and is now recognized as an important cross-talk mechanism by which Nrf2 can overcome apoptosis and provide cells with reduced sensitivity towards chemotherapeutic agents. In recent years a number of important research papers have highlighted the role of Nrf2 in providing protection against both current and new chemotherapeutic drugs in blood cancer. This review will provide a synopsis of these research papers with an aim to carefully consider if targeting Nrf2 in combination with current or new chemotherapeutics is a viable strategy in the more effective treatment of blood cancers.
Collapse
|
44
|
Breccia M, Alimena G. NF-κB as a potential therapeutic target in myelodysplastic syndromes and acute myeloid leukemia. Expert Opin Ther Targets 2011; 14:1157-76. [PMID: 20858024 DOI: 10.1517/14728222.2010.522570] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD The inactive NF-κB-inhibitor of NF-κB (IκB) complex is activated by stimuli including pro-inflammatory cytokines, mitogens, growth factors and stress-inducing agents. The release of NF-κB facilitates its translocation to the nucleus, where it promotes cell survival by initiating transcription of genes encoding stress-response enzymes, cell-adhesion molecules, pro-inflammatory cytokines and anti-apoptotic proteins. NF-κB and associated regulatory factors (IκB kinase subunits and bcl-3) are implicated in hematological and solid tumour malignancies. NF-κB appears to be involved in cell proliferation control, apoptosis control, angiogenesis promotion and possibly regulation of diffusion of metastases. There are several reports that inhibition of NF-κB as a therapeutic target may have a role in tumour cell death or growth inhibition. AREA COVERED IN THIS REVIEW We review data about inhibition of NF-κB in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). We describe the molecular mechanisms underlying NF-κB deregulation in these haematological malignancies. WHAT THE READER WILL GAIN Constitutive activation of NF-κB in the nucleus has been reported in some varieties of MDS/AML. The in vitro and in vivo results of NF-κB inhibition in myeloid malignancies are highlighted. TAKE HOME MESSAGE NF-κB selective inhibitory drugs may be useful, either as single agents or associated with conventional chemotherapy.
Collapse
Affiliation(s)
- Massimo Breccia
- Sapienza University, Department of Human Biotechnologies and Hematology, Rome, Italy.
| | | |
Collapse
|
45
|
Buda G, Ricci D, Huang CC, Favis R, Cohen N, Zhuang SH, Harousseau JL, Sonneveld P, Bladé J, Orlowski RZ. Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann Hematol 2010; 89:1133-40. [PMID: 20532504 PMCID: PMC2940014 DOI: 10.1007/s00277-010-0992-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 05/11/2010] [Indexed: 11/30/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the multiple drug resistance protein 1 (MRP1) and P-glycoprotein 1 (MDR1) genes modulate their ability to mediate drug resistance. We therefore sought to retrospectively evaluate their influence on outcomes in relapsed and/or refractory myeloma patients treated with bortezomib or bortezomib with pegylated liposomal doxorubicin (PLD). The MRP1/R723Q polymorphism was found in five subjects among the 279 patient study population, all of whom received PLD + bortezomib. Its presence was associated with a longer time to progression (TTP; median 330 vs. 129 days; p = 0.0008), progression-free survival (PFS; median 338 vs. 129 days; p = 0.0006), and overall survival (p = 0.0045). MDR1/3435(C > T), which was in Hardy-Weinberg equilibrium, showed a trend of association with PFS (p = 0.0578), response rate (p = 0.0782) and TTP (p = 0.0923) in PLD + bortezomib patients, though no correlation was found in the bortezomib arm. In a recessive genetic model, MDR1/3435 T was significantly associated with a better TTP (p = 0.0405) and PFS (p = 0.0186) in PLD + bortezomib patients. These findings suggest a potential role for MRP1 and MDR1 SNPs in modulating the long-term outcome of relapsed and/or refractory myeloma patients treated with PLD + bortezomib. Moreover, they support prospective studies to determine if such data could be used to tailor therapy to the genetic makeup of individual patients.
Collapse
Affiliation(s)
- Gabriele Buda
- Department of Oncology, Transplants and Advanced Technologies, University of Pisa, Pisa, Italy
| | - Deborah Ricci
- Johnson & Johnson Pharmaceutical Research & Development, Raritan, NJ USA
| | - C. Chris Huang
- Johnson & Johnson Pharmaceutical Research & Development, Raritan, NJ USA
| | - Reyna Favis
- Johnson & Johnson Pharmaceutical Research & Development, Raritan, NJ USA
| | - Nadine Cohen
- Johnson & Johnson Pharmaceutical Research & Development, Raritan, NJ USA
| | - Sen H. Zhuang
- Johnson & Johnson Pharmaceutical Research & Development, Raritan, NJ USA
| | - Jean-Luc Harousseau
- Department of Clinical Haematology, University Hospital Hôtel-Dieu, Nantes, France
| | - Pieter Sonneveld
- Hematology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joan Bladé
- Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Robert Z. Orlowski
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX 77030-4009 USA
| |
Collapse
|
46
|
Panischeva LA, Kakpakova ES, Rybalkina EY, Stavrovskaya AA. The influence of proteasome inhibitor bortezamib on ABC transporters’ expression and activity in tumor cells. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2010. [DOI: 10.1134/s1990747810020145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Li X, Wood TE, Sprangers R, Jansen G, Franke NE, Mao X, Wang X, Zhang Y, Verbrugge SE, Adomat H, Li ZH, Trudel S, Chen C, Religa TL, Jamal N, Messner H, Cloos J, Rose DR, Navon A, Guns E, Batey RA, Kay LE, Schimmer AD. Effect of noncompetitive proteasome inhibition on bortezomib resistance. J Natl Cancer Inst 2010; 102:1069-82. [PMID: 20505154 DOI: 10.1093/jnci/djq198] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bortezomib and the other proteasome inhibitors that are currently under clinical investigation bind to the catalytic sites of proteasomes and are competitive inhibitors. We hypothesized that proteasome inhibitors that act through a noncompetitive mechanism might overcome some forms of bortezomib resistance. METHODS 5-amino-8-hydroxyquinoline (5AHQ) was identified through a screen of a 27-compound chemical library based on the quinoline pharmacophore to identify proteasome inhibitors. Inhibition of proteasome activity by 5AHQ was tested by measuring 7-amino-4-methylcoumarin (AMC) release from the proteasome substrate Suc-LLVY-AMC in intact human and mouse leukemia and myeloma cells and in tumor cell protein extracts. Cytotoxicity was assessed in 5AHQ-treated cell lines and primary cells from myeloma and leukemia patients using AlamarBlue fluorescence and MTS assays, trypan blue staining, and annexin V staining. 5AHQ-proteasome interaction was assessed by nuclear magnetic resonance. 5AHQ efficacy was evaluated in three leukemia xenograft mouse models (9-10 mice per group per model). All statistical tests were two-sided. RESULTS 5AHQ inhibited the proteasome when added to cell extracts and intact cells (the mean concentration inhibiting 50% [IC(50)] of AMC release in intact cells ranged from 0.57 to 5.03 microM), induced cell death in intact cells from leukemia and myeloma cell lines (mean IC(50) values for cell growth ranged from 0.94 to 3.85 microM), and preferentially induced cell death in primary myeloma and leukemia cells compared with normal hematopoietic cells. 5AHQ was equally cytotoxic to human myelomonocytic THP1 cells and to THP1/BTZ500 cells, which are 237-fold more resistant to bortezomib than wild-type THP1 cells because of their overexpression and mutation of the bortezomib-binding beta5 proteasome subunit (mean IC(50) for cell death in the absence of bortezomib, wild-type THP1: 3.7 microM, 95% confidence interval = 3.4 to 4.0 microM; THP1/BTZ500: 6.6 microM, 95% confidence interval = 5.9 to 7.5 microM). 5AHQ interacted with the alpha subunits of the 20S proteasome at noncatalytic sites. Orally administered 5AHQ inhibited tumor growth in all three mouse models of leukemia without overt toxicity (eg, OCI-AML2 model, median tumor weight [interquartile range], 5AHQ vs control: 95.7 mg [61.4-163.5 mg] vs 247.2 mg [189.4-296.2 mg], P = .002). CONCLUSIONS 5AHQ is a noncompetitive proteasome inhibitor that is cytotoxic to myeloma and leukemia cells in vitro and inhibits xenograft tumor growth in vivo. 5AHQ can overcome some forms of bortezomib resistance in vitro.
Collapse
Affiliation(s)
- Xiaoming Li
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kuo MT. Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2009; 11:99-133. [PMID: 18699730 PMCID: PMC2577715 DOI: 10.1089/ars.2008.2095] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of multidrug resistance to cancer chemotherapy is a major obstacle to the effective treatment of human malignancies. It has been established that membrane proteins, notably multidrug resistance (MDR), multidrug resistance protein (MRP), and breast cancer resistance protein (BCRP) of the ATP binding cassette (ABC) transporter family encoding efflux pumps, play important roles in the development of multidrug resistance. Overexpression of these transporters has been observed frequently in many types of human malignancies and correlated with poor responses to chemotherapeutic agents. Evidence has accumulated showing that redox signals are activated in response to drug treatments that affect the expression and activity of these transporters by multiple mechanisms, including (a) conformational changes in the transporters, (b) regulation of the biosynthesis cofactors required for the transporter's function, (c) regulation of the expression of transporters at transcriptional, posttranscriptional, and epigenetic levels, and (d) amplification of the copy number of genes encoding these transporters. This review describes various specific factors and their relevant signaling pathways that are involved in the regulation. Finally, the roles of redox signaling in the maintenance and evolution of cancer stem cells and their implications in the development of intrinsic and acquired multidrug resistance in cancer chemotherapy are discussed.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Molecular Pathology (Unit 951), The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
49
|
Wiberg K, Carlson K, Aleskog A, Larsson R, Nygren P, Lindhagen E. In vitro activity of bortezomib in cultures of patient tumour cells--potential utility in haematological malignancies. Med Oncol 2008; 26:193-201. [PMID: 19016012 DOI: 10.1007/s12032-008-9107-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022]
Abstract
Bortezomib represents a new class of anti-cancer drugs, the proteasome inhibitors. We evaluated the in vitro activity of bortezomib with regard to tumour-type specificity and possible mechanisms of drug resistance in 115 samples of tumour cells from patients and in a cell-line panel, using the short-term fluorometric microculture cytotoxicity assay. Bortezomib generally showed dose-response curves with a steep slope. In patient cells, bortezomib was more active in haematological than in solid tumour samples. Myeloma and chronic myeloid leukaemia were the most sensitive tumour types although with great variability in drug response between the individual samples. Colorectal and kidney cancer samples were the least sensitive. In the cell-line panel, only small differences in response were seen between the different cell lines, and the proteasome inhibitors, lactacystin and MG 262, showed an activity pattern similar to that of bortezomib. The cell-line data suggest that resistance to bortezomib was not mediated by MRP-, PgP, GSH-; tubulin and topo II-associated MDR. Combination experiments indicated synergy between bortezomib and arsenic trioxide or irinotecan. The data support the current use of bortezomib but also points to its potential utility in other tumour types and in combination with cytotoxic drugs.
Collapse
Affiliation(s)
- Kristina Wiberg
- Division of Clinical Pharmacology, Department of Medical Sciences, Uppsala University Hospital, entr 61, 4th floor, SE-751 85, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Impact of Novel MDR Modulators on Human Cancer Cells: Reversal Activities and Induction Studies. Pharm Res 2008; 26:182-8. [DOI: 10.1007/s11095-008-9736-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/22/2008] [Indexed: 10/21/2022]
|