1
|
Kidwai N, Chen M, Postow MA, Hassel J, Callahan M. Breaking the Mold: Trailblazing Melanoma Therapy Beyond Checkpoint Through Innovative Approaches. Am Soc Clin Oncol Educ Book 2024; 44:e432462. [PMID: 38768421 DOI: 10.1200/edbk_432462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Melanoma has long been a difficult malignancy to treat with low response rates to standard chemotherapies. In recent years, the use of immune checkpoint inhibitors have demonstrated promising results, paving the way for the use of the rapidly developing novel immune targeting therapies. In this review, we look beyond immune checkpoint inhibitor treatments and summarize several emerging treatment strategies for melanoma, including neoantigen vaccines, conventional antibody drug-conjugates, and bispecific T-cell engager therapies.
Collapse
Affiliation(s)
- Neiha Kidwai
- University of Connecticut School of Medicine, Farmington, CT
| | - Monica Chen
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael A Postow
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | | | | |
Collapse
|
2
|
Lang M, Schmidt LS, Wilson KM, Ricketts CJ, Sourbier C, Vocke CD, Wei D, Crooks DR, Yang Y, Gibbs BK, Zhang X, Klumpp-Thomas C, Chen L, Guha R, Ferrer M, McKnight C, Itkin Z, Wangsa D, Wangsa D, James A, Difilippantonio S, Karim B, Morís F, Ried T, Merino MJ, Srinivasan R, Thomas CJ, Linehan WM. High-throughput and targeted drug screens identify pharmacological candidates against MiT-translocation renal cell carcinoma. J Exp Clin Cancer Res 2023; 42:99. [PMID: 37095531 PMCID: PMC10127337 DOI: 10.1186/s13046-023-02667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.
Collapse
Affiliation(s)
- Martin Lang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, 39100, Italy
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Darmood Wei
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin K Gibbs
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Darawalee Wangsa
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danny Wangsa
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy James
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktir Karim
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Francisco Morís
- EntreChem SL, Vivero Ciencias de la Salud, Calle Colegio Santo Domingo Guzmán, Oviedo, AS, 33011, Spain
| | - Thomas Ried
- Genetics Branch, Cancer Genomics Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Yazdi SI, Sadeghi M, Saeedzadeh E, Jalilifar M. Radiation dosimetry of 89Zr labeled antibody estimated using the MIRD method and MCNP code. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Lazaratos AM, Annis MG, Siegel PM. GPNMB: a potent inducer of immunosuppression in cancer. Oncogene 2022; 41:4573-4590. [PMID: 36050467 DOI: 10.1038/s41388-022-02443-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
The immune system is comprised of both innate and adaptive immune cells, which, in the context of cancer, collectively function to eliminate tumor cells. However, tumors can actively sculpt the immune landscape to favor the establishment of an immunosuppressive microenvironment, which promotes tumor growth and progression to metastatic disease. Glycoprotein-NMB (GPNMB) is a transmembrane glycoprotein that is overexpressed in a variety of cancers. It can promote primary tumor growth and metastasis, and GPNMB expression correlates with poor prognosis and shorter recurrence-free survival in patients. There is growing evidence supporting an immunosuppressive role for GPNMB in the context of malignancy. This review provides a description of the emerging roles of GPNMB as an inducer of immunosuppression, with a particular focus on its role in mediating cancer progression by restraining pro-inflammatory innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada.,Department of Medicine, McGill University, Montréal, QC, Canada
| | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada. .,Department of Medicine, McGill University, Montréal, QC, Canada. .,Department of Biochemistry, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,Department of Oncology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
Teicher BA, Morris J. Antibody-Drug Conjugate Targets, Drugs and Linkers. Curr Cancer Drug Targets 2022; 22:463-529. [PMID: 35209819 DOI: 10.2174/1568009622666220224110538] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates offer the possibility of directing powerful cytotoxic agents to a malignant tumor while sparing normal tissue. The challenge is to select an antibody target expressed exclusively or at highly elevated levels on the surface of tumor cells and either not all or at low levels on normal cells. The current review explores 78 targets that have been explored as antibody-drug conjugate targets. Some of these targets have been abandoned, 9 or more are the targets of FDA-approved drugs, and most remain active clinical interest. Antibody-drug conjugates require potent cytotoxic drug payloads, several of these small molecules are discussed, as are the linkers between the protein component and small molecule components of the conjugates. Finally, conclusions regarding the elements for the successful antibody-drug conjugate are discussed.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| | - Joel Morris
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| |
Collapse
|
6
|
Huang YH, Chu PY, Chen JL, Huang CT, Huang CC, Tsai YF, Wang YL, Lien PJ, Tseng LM, Liu CY. Expression pattern and prognostic impact of glycoprotein non-metastatic B (GPNMB) in triple-negative breast cancer. Sci Rep 2021; 11:12171. [PMID: 34108545 PMCID: PMC8190094 DOI: 10.1038/s41598-021-91588-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/28/2021] [Indexed: 12/31/2022] Open
Abstract
Glycoprotein non-metastatic B (GPNMB) is a transmembrane protein overexpressed in numerous cancers including triple-negative breast cancers (TNBC). It has been linked to promote cancer aggressiveness and implicated as a novel target for GPNMB-expressing cancers. In current study, we aimed to explore the clinical significance of GPNMB in TNBC. Among 759 specimens, immunohistochemistry (IHC) exhibited GPNMB expressions were variable in different subtypes and significantly higher in TNBC. Kaplan-Meier analysis revealed GPNMB overexpression in TNBC was associated with worse prognosis especially distant metastasis (P = 0.020, HR = 2.515, CI 1.154-5.480). Multivariate analysis showed GPNMB expression was an independent prognostic factor in terms of recurrence and distant metastasis (P = 0.008, HR = 3.22, CI 1.36-7.61; P = 0.017, HR = 3.08, CI 1.22-7.74). In silico analysis showed high mRNA expression of GPNMB was associated with distant metastasis and GPNMB was overexpressed in TNBC. Furthermore, GPNMB positively correlated with epithelial-mesenchymal transition (EMT) regulators, mesenchymal marker vimentin, MMP and integrins. The protein levels of Twist and MMP2 were upregulated by GPNMB overexpression in TNBC cells. GPNMB-enhanced cell invasion was attenuated by broad spectrum MMP inhibitor (GM 6001) and the selective inhibitor of MMP-2 (ARP100). In summary, GPNMB expression is prevalent in TNBC and may be implicated as a prognostic biomarker in patients with TNBC.
Collapse
Affiliation(s)
- Yu-Hsiang Huang
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Division of Hematology & Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Fang Tsai
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Ling Wang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Ju Lien
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Experimental Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.
| |
Collapse
|
7
|
Anderson TS, Wooster AL, La-Beck NM, Saha D, Lowe DB. Antibody-drug conjugates: an evolving approach for melanoma treatment. Melanoma Res 2021; 31:1-17. [PMID: 33165241 DOI: 10.1097/cmr.0000000000000702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melanoma continues to be an aggressive and deadly form of skin cancer while therapeutic options are continuously developing in an effort to provide long-term solutions for patients. Immunotherapeutic strategies incorporating antibody-drug conjugates (ADCs) have seen varied levels of success across tumor types and represent a promising approach for melanoma. This review will explore the successes of FDA-approved ADCs to date compared to the ongoing efforts of melanoma-targeting ADCs. The challenges and opportunities for future therapeutic development are also examined to distinguish how ADCs may better impact individuals with malignancies such as melanoma.
Collapse
Affiliation(s)
| | | | - Ninh M La-Beck
- Departments of Immunotherapeutics and Biotechnology
- Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | | | - Devin B Lowe
- Departments of Immunotherapeutics and Biotechnology
| |
Collapse
|
8
|
Cahuzac H, Devel L. Analytical Methods for the Detection and Quantification of ADCs in Biological Matrices. Pharmaceuticals (Basel) 2020; 13:ph13120462. [PMID: 33327644 PMCID: PMC7765153 DOI: 10.3390/ph13120462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Understanding pharmacokinetics and biodistribution of antibody–drug conjugates (ADCs) is a one of the critical steps enabling their successful development and optimization. Their complex structure combining large and small molecule characteristics brought out multiple bioanalytical methods to decipher the behavior and fate of both components in vivo. In this respect, these methods must provide insights into different key elements including half-life and blood stability of the construct, premature release of the drug, whole-body biodistribution, and amount of the drug accumulated within the targeted pathological tissues, all of them being directly related to efficacy and safety of the ADC. In this review, we will focus on the main strategies enabling to quantify and characterize ADCs in biological matrices and discuss their associated technical challenges and current limitations.
Collapse
|
9
|
A Phase II Study of Glembatumumab Vedotin for Metastatic Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12082270. [PMID: 32823698 PMCID: PMC7465139 DOI: 10.3390/cancers12082270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Glembatumumab vedotin (CDX-011, GV) is a fully human Immunoglobulin G2 monoclonal antibody directed against glycoprotein NMB coupled via a peptide linker to monomethyl auristatin E (MMAE), a potent cytotoxic microtubule inhibitor. This phase II study evaluated the overall response rate and safety of GV, glycoprotein NMB (GPNMB) expression, and survival in patients with metastatic uveal melanoma. Eligible patients with metastatic uveal melanoma who had not previously been treated with chemotherapy received GV 1.9 mg/kg every three weeks. The primary endpoint was the objective response rate (ORR). Secondary endpoints included GPNMB expression, progression-free survival (PFS), overall survival (OS), and toxicity analysis. GPNMB expression was assessed pre- and post-treatment via immunohistochemistry for patients with available tumor tissue. Out of 35 patients who received treatment, two patients had confirmed partial responses (PRs; 6%), and 18 patients had a stable disease (SD; 51%) as the best objective response. 38% of the patients had stable disease >100 days. The grade 3 or 4 toxicities that occurred in two or more patients were neutropenia, rash, hyponatremia, and vomiting. The median progression-free survival was 3.1 months (95% CI: 1.5–5.6), and the median overall survival was 11.9 months (95% CI 9.0–16.9) in the evaluable study population. GV is well-tolerated in metastatic uveal melanoma. The disease control rate was 57% despite a low objective response rate. Exploratory immune correlation studies are underway to provide insight into target saturation, combination strategies, and antigen release.
Collapse
|
10
|
Abstract
Total antibody, conjugated antibody or antibody-conjugated drug, and free drug are key analytes required to establish exposure-response relationships for ADCs. Therefore, bioanalytical strategies for ADCs include ligand-binding assays (LBA) and LC-MS/MS methods. Here we describe detailed methodology to develop a solid-phase-based enzyme-linked immunosorbent assay (ELISA), which is the most widely used LBA to quantify large-molecule components of ADC in biological matrices such as plasma, serum, tumor, or tissue homogenates. The approach presented here is designed to quantify total antibody concentrations in ADC containing samples, and can be easily adapted to quantify conjugated antibody concentrations.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
11
|
Kopp LM, Malempati S, Krailo M, Gao Y, Buxton A, Weigel BJ, Hawthorne T, Crowley E, Moscow JA, Reid JM, Villalobos V, Randall RL, Gorlick R, Janeway KA. Phase II trial of the glycoprotein non-metastatic B-targeted antibody-drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: A report from the Children's Oncology Group. Eur J Cancer 2019; 121:177-183. [PMID: 31586757 DOI: 10.1016/j.ejca.2019.08.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/21/2019] [Accepted: 08/22/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND The prognosis is poor for children and adolescents with recurrent osteosarcoma (OS). Glycoprotein non-metastatic B (gpNMB) is a glycoprotein highly expressed in OS cells. We conducted a phase II study of glembatumumab vedotin (GV), a fully human IgG2 monoclonal antibody (CR011) against gpNMB conjugated to the microtubule inhibitor, monomethyl auristatin E. PATIENTS AND METHODS Patients aged ≥12 years and <50 years with relapsed or refractory OS were eligible. GV 1.9 mg/kg/dose was administered on day 1 of each 21 day cycle. Pharmacokinetics were mandatory in patients aged <15 years. gpNMB expression was measured by immunohistochemistry. The primary end-point was disease control at 4 months and Response Evaluation Criteria in Solid Tumours response. A 2-stage design was used to determine efficacy. RESULTS Twenty-two patients were enrolled, and all were evaluable for response. Antibody-drug conjugate levels were detectable in patients, although small numbers limit comparison to adult data. The toxicities observed were similar to the previous studies with GV. The most common grade III adverse event was rash. One death from end organ failure occurred possibly related to GV. Of the 22 patients, one patient had a partial response, and two had stable disease. There was no correlation between gpNMB expression and response to GV. CONCLUSIONS GV was well tolerated in this population. Although there was some antitumour activity, the extent of disease control in stage I did not meet the level required to proceed to stage II. TRIAL REGISTRATION NUMBERS NCT02487979.
Collapse
Affiliation(s)
- Lisa M Kopp
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| | - Suman Malempati
- Department of Pediatrics, Oregon Health & Sciences University, Portland, OR, USA
| | - Mark Krailo
- Children's Oncology Group, Monrovia, CA, USA; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yun Gao
- Children's Oncology Group, Monrovia, CA, USA
| | | | - Brenda J Weigel
- Department of Pediatrics, University of Minnesota Medical Center, Minneapolis, MN, USA
| | | | | | | | - Joel M Reid
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Richard Gorlick
- Division of Pediatrics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine A Janeway
- Pediatric Hematology-Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| |
Collapse
|
12
|
Parakh S, King D, Gan HK, Scott AM. Current Development of Monoclonal Antibodies in Cancer Therapy. Recent Results Cancer Res 2019; 214:1-70. [PMID: 31473848 DOI: 10.1007/978-3-030-23765-3_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exploiting the unique specificity of monoclonal antibodies has revolutionized the treatment and diagnosis of haematological and solid organ malignancies; bringing benefit to millions of patients over the past decades. Recent achievements include conjugating antibodies with toxic payloads resulting in superior efficacy and/or reduced toxicity, development of molecular imaging techniques targeting specific antigens for use as predictive and prognostic biomarkers, the development of novel bi- and tri-specific antibodies to enhance therapeutic benefit and abrogate resistance and the success of immunotherapy agents. In this chapter, we review an overview of antibody structure and function relevant to cancer therapy and provide an overview of pivotal clinical trials which have led to regulatory approval of monoclonal antibodies in cancer treatment. We further discuss resistance mechanisms and the unique side effects of each class of antibody and provide an overview of emerging therapeutic agents.
Collapse
Affiliation(s)
- Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Dylan King
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, Australia. .,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
13
|
Taya M, Hammes SR. Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB) and Cancer: A Novel Potential Therapeutic Target. Steroids 2018; 133:102-107. [PMID: 29097143 PMCID: PMC6166407 DOI: 10.1016/j.steroids.2017.10.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a transmembrane protein enriched on the cell surface of cancer cells, including melanoma, glioblastoma, and triple-negative breast cancer. There is growing evidence identifying GPNMB as a tumor-promoter; however, despite its biological and clinical significance, the molecular mechanisms engaged by GPNMB to promote tumorigenesis are not well understood. GPNMB promotes aggressive behaviors such as tumor cell proliferation, migration, and invasion. The extracellular domain of GPNMB shed from the cell surface interacts with integrins to facilitate in the recruitment of immune-suppressive and pro-angiogenic cells to the tumor microenvironment, thereby enhancing tumor migration and invasion. GPNMB also modulates receptor tyrosine kinases and integrin signaling in a cell autonomous fashion, leading to downstream kinase signaling that in turn triggers the expression and secretion of tumorigenic factors such as matrix metalloproteinases (MMPs) and cytokines. Therefore, GPNMB exerts its pro-tumorigenic role both intracellularly and in a paracrine fashion through shedding its extracellular domain. This review highlights the importance of GPNMB in cancer progression and discusses molecular mediators of GPNMB-induced tumor growth and invasion.
Collapse
Affiliation(s)
- Manisha Taya
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
14
|
Skobowiat C, Oak ASW, Kim TK, Yang CH, Pfeffer LM, Tuckey RC, Slominski AT. Noncalcemic 20-hydroxyvitamin D3 inhibits human melanoma growth in in vitro and in vivo models. Oncotarget 2018; 8:9823-9834. [PMID: 28039464 PMCID: PMC5354773 DOI: 10.18632/oncotarget.14193] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
A novel pathway of vitamin D3 (D3) metabolism, initiated by C20-hydroxylation of D3 by CYP11A1, has been confirmed to operate in vivo. Its major product, 20(OH)D3, exhibits antiproliferative activity in vitro comparable to that of 1,25(OH)2D3, but is noncalcemic in mice and rats. To further characterize the antimelanoma activity of 20(OH)D3, we tested its effect on colony formation of human melanoma cells in monolayer culture and anchorage-independent growth in soft agar. The migratory capabilities of the cells and cell-cell and cell-extracellular matrix interactions were also evaluated using transwell cell migration and spheroid toxicity assays. To assess the antimelanoma activity of 20(OH)D3in vivo, age-matched immunocompromised mice were subcutaneously implanted with luciferase-labelled SKMel-188 cells and were randomly assigned to be treated with either 20(OH)D3 or vehicle (n=10 per group). Tumor size was measured with caliper and live bioimaging methods, and overall health condition expressed as a total body score scale. The following results were observed: (i) 20(OH)D3 inhibited colony formation both in monolayer and soft agar conditions, (ii) 20(OH)D3 inhibited melanoma cells in both transwell migration and spheroid toxicity assays, and (iii) 20(OH)D3 inhibited melanoma tumor growth in immunocompromised mice without visible signs of toxicity. However, although the survival rate was 90% in both groups, the total body score was higher in the treatment group compared to control group (2.8 vs. 2.55). In conclusion, 20(OH)D3, an endogenously produced secosteroid, is an excellent candidate for further preclinical testing as an antimelanoma agent.
Collapse
Affiliation(s)
- Cezary Skobowiat
- Department of Dermatology, University of Alabama at Birmingham, AL, USA.,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Torun, Poland
| | - Allen S W Oak
- Department of Dermatology, University of Alabama at Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, AL, USA
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, USA.,Laboratory Service of the VA Medical Center, Birmingham, AL, USA.,Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
15
|
Tajima JY, Futamura M, Gaowa S, Mori R, Tanahashi T, Tanaka Y, Matsuhashi N, Takahashi T, Yamaguchi K, Miyazaki T, Yoshida K. Clinical Significance of Glycoprotein Non-metastatic B and Its Association with EGFR/HER2 in Gastrointestinal Cancer. J Cancer 2018; 9:358-366. [PMID: 29344282 PMCID: PMC5771343 DOI: 10.7150/jca.20266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Glycoprotein non-metastatic B (GPNMB), a type I transmembrane glycoprotein, is overexpressed in melanoma and breast cancer and promotes cancer-cell invasion and motility. We previously reported cross-talk between GPNMB and human epidermal growth factor receptor 2 (HER2) in breast cancer, suggesting that GPNMB might play an important role in resistance to anti-HER2 therapy in breast cancer. Here, we clarified the association between GPNMB and HER-family proteins in gastrointestinal cancer by examining their relationships using gastric and colorectal cancer cell lines. We found that GPNMB depletion of by small-interfering RNA increased epidermal growth factor receptor (EGFR) expression and phosphorylation through AKT8 virus oncogene cellular homolog (AKT) and mitogen-activated protein kinase (MAPK) pathways. Additionally, treatment with cetuximab (CTX) also increased GPNMB expression, and combination therapy consisting of GPNMB depletion and CTX treatment significantly suppressed cell growth in colorectal cancer cell lines, but not in gastric cancer cell lines. Furthermore, we also evaluated changes in GPNMB expression in vivo, with immunohistochemistry detecting GPNMB overexpression in a colorectal cancer patient following anti-EGFR therapy. These results suggested possible cross-talk between GPNMB and EGFR, and that GPNMB might play an important role in resistance to anti-EGFR therapy in gastrointestinal cancer.
Collapse
Affiliation(s)
- Jesse Yu Tajima
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Siqin Gaowa
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ryutaro Mori
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Toshiyuki Tanahashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Yoshihiro Tanaka
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takao Takahashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kazuya Yamaguchi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | | | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
16
|
Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JA, Kremer L. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness. Front Immunol 2017; 8:1804. [PMID: 29312320 PMCID: PMC5742572 DOI: 10.3389/fimmu.2017.01804] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin) and bevacizumab (Avastin), respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.
Collapse
Affiliation(s)
- Isabel Corraliza-Gorjón
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Silvia Santamaria
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Jose A Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| |
Collapse
|
17
|
Antibody–Drug Conjugates for the Treatment of Solid Tumors: Clinical Experience and Latest Developments. Target Oncol 2017; 12:719-739. [DOI: 10.1007/s11523-017-0535-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Marquez-Nostra BV, Lee S, Laforest R, Vitale L, Nie X, Hyrc K, Keler T, Hawthorne T, Hoog J, Li S, Dehdashti F, Ma CX, Lapi SE. Preclinical PET imaging of glycoprotein non-metastatic melanoma B in triple negative breast cancer: feasibility of an antibody-based companion diagnostic agent. Oncotarget 2017; 8:104303-104314. [PMID: 29262642 PMCID: PMC5732808 DOI: 10.18632/oncotarget.22228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
High levels of expression of glycoprotein non-metastatic B (gpNMB) in triple negative breast cancer (TNBC) and its association with metastasis and recurrence make it an attractive target for therapy with the antibody drug conjugate, glembatumumab vedotin (CDX-011). This report describes the development of a companion PET-based diagnostic imaging agent using 89Zr-labeled glembatumumab ([89Zr]DFO-CR011) to potentially aid in the selection of patients most likely to respond to targeted treatment with CDX-011. [89Zr]DFO-CR011 was characterized for its pharmacologic properties in TNBC cell lines. Preclinical studies determined that [89Zr]DFO-CR011 binds specifically to gpNMB with high affinity (Kd = 25 ± 5 nM), immunoreactivity of 2.2-fold less than the native CR011, and its cellular uptake correlates with gpNMB expression (r = 0.95). In PET studies at the optimal imaging timepoint of 7 days p.i., the [89Zr]DFO-CR011 tumor uptake in gpNMB-expressing MDA-MB-468 xenografts had a mean SUV of 2.9, while significantly lower in gpNMB-negative MDA-MB-231 tumors with a mean SUV of 1.9. [89Zr]DFO-CR011 was also evaluated in patient-derived xenograft models of TNBC, where tumor uptake in vivo had a positive correlation with total gpNMB protein expression via ELISA (r = 0.79), despite the heterogeneity of gpNMB expression within the same group of PDX mice. Lastly, the radiation dosimetry calculated from biodistribution studies in MDA-MB-468 xenografts determined the effective dose for human use would be 0.54 mSv/MBq. Overall, these studies demonstrate that [89Zr]DFO-CR011 is a potential companion diagnostic imaging agent for CDX-011 which targets gpNMB, an emerging biomarker for TNBC.
Collapse
Affiliation(s)
- Bernadette V Marquez-Nostra
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Supum Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Xingyu Nie
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Krzysztof Hyrc
- The Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Jeremy Hoog
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Farrokh Dehdashti
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia X Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol Ther 2017; 179:127-141. [PMID: 28546082 DOI: 10.1016/j.pharmthera.2017.05.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GPNMB has emerged as an immunomodulator and an important positive mediator of tumor progression and metastasis in numerous solid cancers. Tumor intrinsic GPNMB-mediated effects on cellular signaling, coupled with the ability of GPNMB to influence the primary tumor and metastatic microenvironments in a non-cell autonomous fashion, combine to augment malignant cancer phenotypes. In addition, GPNMB is often overexpressed in a variety of cancers, making it an attractive therapeutic target. In this regard, glembatumumab vedotin, an antibody-drug conjugate (ADC) that targets GPNMB, is currently in clinical trials as a single agent in multiple cancers. In this review, we will describe the physiological functions of GPNMB in normal tissues and summarize the processes through which GPNMB augments tumor growth and metastasis. We will review the pre-clinical and clinical development of glembatumumab vedotin, evaluate on-going clinical trials, explore emerging opportunities for this agent in new disease indications and discuss exciting possibilities for this ADC in the context of combination therapies.
Collapse
Affiliation(s)
- April A N Rose
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Marco Biondini
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
20
|
Arosarena OA, Barr EW, Thorpe R, Yankey H, Tarr JT, Safadi FF. Osteoactivin regulates head and neck squamous cell carcinoma invasion by modulating matrix metalloproteases. J Cell Physiol 2017; 233:409-421. [PMID: 28295306 DOI: 10.1002/jcp.25900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022]
Abstract
Nearly 60% of patients with head and neck squamous cell carcinoma (HNSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell migration and invasion, which are in part dependent on extracellular matrix degradation by matrix metalloproteinases. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies, and has been shown to upregulate matrix metalloproteinase (MMP) expression and activity. To determine how OA modulates MMP expression and activity in HNSCC, and to investigate OA effects on cell invasion, we assessed effects of OA treatment on MMP mRNA and protein expression, as well as gelatinase and caseinolytic activity in HNSCC cell lines. We assessed the effects of OA gene silencing on MMP expression, gelatinase and caseinolytic activity, and cell invasion. OA treatment had differential effects on MMP mRNA expression. OA treatment upregulated MMP-10 expression in UMSCC14a (p = 0.0431) and SCC15 (p < 0.0001) cells, but decreased MMP-9 expression in UMSCC14a cells (p = 0.0002). OA gene silencing decreased MMP-10 expression in UMSCC12 cells (p = 0.0001), and MMP-3 (p = 0.0005) and -9 (p = 0.0036) expression in SCC25 cells. In SCC15 and SCC25 cells, OA treatment increased MMP-2 (p = 0.0408) and MMP-9 gelatinase activity (p < 0.0001), respectively. OA depletion decreased MMP-2 (p = 0.0023) and -9 (p < 0.0001) activity in SCC25 cells. OA treatment increased 70 kDa caseinolytic activity in UMSCC12 cells consistent with tissue type plasminogen activator (p = 0.0078). OA depletion decreased invasive capacity of UMSCC12 cells (p < 0.0001). OA's effects on MMP expression in HNSCC are variable, and may promote cancer cell invasion.
Collapse
Affiliation(s)
- Oneida A Arosarena
- Department of Otolaryngology-Head and Neck Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Eric W Barr
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Ryan Thorpe
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Hilary Yankey
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Joseph T Tarr
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
21
|
Coyne CP, Narayanan L. Dexamethasone-(C21-phosphoramide)-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549). Drug Des Devel Ther 2016; 10:2575-97. [PMID: 27574398 PMCID: PMC4990379 DOI: 10.2147/dddt.s102075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively "target" delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. MATERIALS AND METHODS The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. RESULTS The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10(-9) M and 10(-5) M. Rapid increases in antineoplastic cytotoxicity were observed at and between the dexamethasone equivalent concentrations of 10(-9) M and 10(-7) M where cancer cell death increased from 7.7% to a maximum of 64.9% (92.3%-35.1% residual survival), respectively, which closely paralleled values for "free" noncovalently bound dexamethasone. DISCUSSION Organic chemistry reaction regimens were optimized to develop a multiphase synthesis regimen for dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Attributes of dexamethasone-(C21-phosphoramide)-[anti-EGFR] include a high dexamethasone molar incorporation-index, lack of extraneous chemical group introduction, retained EGFR-binding avidity ("targeted" delivery properties), and potential to enhance long-term pharmaceutical moiety effectiveness.
Collapse
Affiliation(s)
| | - Lakshmi Narayanan
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
22
|
Abstract
With the rapid succession of new effective agents for melanoma in the recent years, the paradigm for treatment of metastatic melanoma is changing. The success of combining multiple effective agents compared with outcomes of monotherapy also brings increasing complexity in the treatment algorithm for various subsets of metastatic melanoma patients. We reviewed the recent reports on novel melanoma therapy to shed light on rational decision-making in treating these patients.
Collapse
|
23
|
Abstract
INTRODUCTION Osteoactivin (OA) was first discovered in an osteopetrotic rat model using mRNA differential display a decade ago and has been studied recently. OA in bone tissue can directly or indirectly regulate the differentiation of osteoblasts by influencing cell behaviours, such as proliferation and adhesion, as well as inducing serial signal cascades, which would be of great importance in the field of tissue engineering. The results of recent studies have further demonstrated that OA plays a critical role in the differentiation and function of cells, especially in bone formation and fracture healing. Areas covered: The discovery, structure, and function of OA as well as its therapeutic potential in tissue regeneration of bone defects, kidney injury, liver damage, and muscle atrophy. Expert opinion: OA has great potential in promoting the regeneration of damaged tissues, particularly bone tissue, which is supported by a large body of data. Future studies should focus on exploring the underlying mechanism of OA as well as pursuing the ideal form of OA-related regenerative medicine.
Collapse
Affiliation(s)
- Yuyang Huang
- a Department of Orthopaedic Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Bo Bai
- a Department of Orthopaedic Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Yongchang Yao
- a Department of Orthopaedic Surgery , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China.,b Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
24
|
New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol 2016; 40:14-23. [DOI: 10.1016/j.coi.2016.02.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 01/05/2023]
|
25
|
Arosarena OA, Dela Cadena RA, Denny MF, Bryant E, Barr EW, Thorpe R, Safadi FF. Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas. J Cell Physiol 2016; 231:1761-70. [PMID: 26636434 DOI: 10.1002/jcp.25279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/26/2022]
Abstract
Nearly 50% of patients with oral squamous cell carcinoma (OSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell adhesion, migration, and invasion. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies. The aims were to determine how integrin interactions modulate OA-induced OSCC cell migration; and to investigate OA effects on cell survival and proliferation. We confirmed OA mRNA and protein overexpression in OSCC cell lines. We assessed OA's interactions with integrins using adhesion inhibition assays, fluorescent immunocytochemistry and co-immunoprecipitation. We investigated OA-mediated activation of mitogen-activated protein kinases (MAPKs) and cell survival. Integrin inhibition effects on OA-mediated cell migration were determined. We assessed effects of OA knock-down on cell migration and proliferation. OA is overexpressed in OSCC cell lines, and serves as a migration-promoting adhesion molecule. OA co-localized with integrin subunits, and co-immunoprecipitated with the subunits. Integrin blocking antibodies, especially those directed against the β1 subunit, inhibited cell adhesion (P = 0.03 for SCC15 cells). Adhesion to OA activated MAPKs in UMSCC14a cells and OA treatment promoted survival of SCC15 cells. Integrin-neutralizing antibodies enhanced cell migration with OA in the extracellular matrix. OA knock-down resulted in decreased proliferation of SCC15 and SCC25 cells, but did not inhibit cell migration. OA in the extracellular matrix promotes OSCC cell adhesion and migration, and may be a novel target in the prevention of HNSCC spread. J. Cell. Physiol. 231: 1761-1770, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Oneida A Arosarena
- Department of Otolaryngology-Head and Neck Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania.,Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Raul A Dela Cadena
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania.,Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Michael F Denny
- Department of Medicine, Section of Rheumatology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Evan Bryant
- Pennsylvania State University, University Park, Pennsylvania
| | - Eric W Barr
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ryan Thorpe
- Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
26
|
Geier B, Kurmashev D, Kurmasheva RT, Houghton PJ. Preclinical Childhood Sarcoma Models: Drug Efficacy Biomarker Identification and Validation. Front Oncol 2015; 5:193. [PMID: 26380223 PMCID: PMC4549564 DOI: 10.3389/fonc.2015.00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Over the past 35 years, cure rates for pediatric cancers have increased dramatically. However, it is clear that further dose intensification using cytotoxic agents or radiation therapy is not possible without enhancing morbidity and long-term effects. Consequently, novel, less genotoxic, agents are being sought to complement existing treatments. Here, we discuss preclinical human tumor xenograft models of pediatric cancers that may be used practically to identify novel agents for soft tissue and bone sarcomas, and "omics" approaches to identifying biomarkers that may identify sensitive and resistant tumors to these agents.
Collapse
Affiliation(s)
- Brian Geier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dias Kurmashev
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
27
|
Role of inflammation in the aging bones. Life Sci 2014; 123:25-34. [PMID: 25510309 DOI: 10.1016/j.lfs.2014.11.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 12/15/2022]
Abstract
Chronic inflammation in aging is characterized by increased inflammatory cytokines, bone loss, decreased adaptation, and defective tissue repair in response to injury. Aging leads to inherent changes in mesenchymal stem cell (MSC) differentiation, resulting in impaired osteoblastogenesis. Also, the pro-inflammatory cytokines increase with aging, leading to enhanced myelopoiesis and osteoclastogenesis. Bone marrow macrophages (BMMs) play pivotal roles in osteoblast differentiation, the maintenance of hematopoietic stem cells (HSCs), and subsequent bone repair. However, during aging, little is known about the role of macrophages in the differentiation and function of MSC and HSC. Aged mammals have higher circulating pro-inflammatory cytokines than young adults, supporting the hypothesis of increased inflammation with aging. This review will aid in the understanding of the potential role(s) of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in differentiation and function of osteoblasts and osteoclasts in relation to aging.
Collapse
|
28
|
Bendell J, Saleh M, Rose AA, Siegel PM, Hart L, Sirpal S, Jones S, Green J, Crowley E, Simantov R, Keler T, Davis T, Vahdat L. Phase I/II Study of the Antibody-Drug Conjugate Glembatumumab Vedotin in Patients With Locally Advanced or Metastatic Breast Cancer. J Clin Oncol 2014; 32:3619-25. [DOI: 10.1200/jco.2013.52.5683] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Glycoprotein NMB (gpNMB), a novel transmembrane protein overexpressed in 40% to 60% of breast cancers, promotes metastases in animal models and is a prognostic marker of a poor outcome in patients. The antibody-drug conjugate glembatumumab vedotin consists of a fully human anti-gpNMB monoclonal antibody, conjugated via a cleavable linker to monomethyl auristatin E. Glembatumumab vedotin is generally well tolerated, with observed objective responses in advanced melanoma. This is, to our knowledge, the first study of glembatumumab vedotin in breast cancer. Patients and Methods Eligible patients had advanced/metastatic breast cancer with at least two prior chemotherapy regimens, including taxane, anthracycline, and capecitabine. A standard 3+3 dose escalation was followed by a phase II expansion. Immunohistochemistry for gpNMB was performed retrospectively for patients with available tumor tissue. Results Forty-two patients were enrolled. Dose-limiting toxicity (DLT) consisted of worsening neuropathy at 1.34 mg/kg. After excluding patients with baseline neuropathy more than grade 1, no DLT occurred through 1.88 mg/kg (the phase II dose). The phase II primary activity end point was met (12-week progression-free survival [PFS12] = 9 of 27 patients; 33%). Sixteen of 19 (84%) patients tested had gpNMB-positive tumors. At the phase II dose, median PFS was 9.1 weeks for all patients, 17.9 weeks for patients with triple-negative breast cancer (TNBC), and 18.0 weeks for patients with gpNMB-positive tumors. Two patients had confirmed partial responses; both had gpNMB-positive tumors and one had TNBC. Conclusion Glembatumumab vedotin has an acceptable safety profile. Preliminary evidence of activity in treatment-resistant metastatic breast cancer requires confirmation, such as the phase II randomized trial (EMERGE) that also examines the relationship between activity and gpNMB distribution/intensity.
Collapse
Affiliation(s)
- Johanna Bendell
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Mansoor Saleh
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - April A.N. Rose
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Peter M. Siegel
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Lowell Hart
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Surendra Sirpal
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Suzanne Jones
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Jennifer Green
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Elizabeth Crowley
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Ronit Simantov
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Tibor Keler
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Thomas Davis
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| | - Linda Vahdat
- Johanna Bendell and Suzanne Jones, Sarah Cannon Research Institute, Nashville, TN; Mansoor Saleh, Georgia Cancer Specialists, Atlanta, GA; April A.N. Rose and Peter M. Siegel, Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada; Lowell Hart, Florida Cancer Specialists, Fort Myers; Surendra Sirpal, Hematology Oncology Associates, Lake Worth, FL; Jennifer Green, Elizabeth Crowley, Ronit Simantov, Tibor Keler, and Thomas Davis, Celldex Therapeutics; and Linda Vahdat, Weill Cornell
| |
Collapse
|
29
|
Abstract
Antibody drug conjugates (ADCs) are an emerging class of targeted therapeutics with the potential to improve therapeutic index over traditional chemotherapy. Drugs and linkers have been the current focus of ADC development, in addition to antibody and target selection. Recently, however, the importance of conjugate homogeneity has been realized. The current methods for drug attachment lead to a heterogeneous mixture, and some populations of that mixture have poor in vivo performance. New methods for site-specific drug attachment lead to more homogeneous conjugates and allow control of the site of drug attachment. These subtle improvements can have profound effects on in vivo efficacy and therapeutic index. This review examines current methods for site-specific drug conjugation to antibodies, and compares in vivo results with their non-specifically conjugated counterparts. The apparent improvement in pharmacokinetics and the reduced off target toxicity warrant further development of this site-specific modification approach for future ADC development.
Collapse
|
30
|
Kolb EA, Gorlick R, Billups CA, Hawthorne T, Kurmasheva RT, Houghton PJ, Smith MA. Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatr Blood Cancer 2014; 61:1816-21. [PMID: 24912408 PMCID: PMC4280502 DOI: 10.1002/pbc.25099] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/16/2014] [Indexed: 11/12/2022]
Abstract
BACKGROUND Glembatumumab vedotin is an antibody-auristatin conjugate that targets cells expressing the transmembrane glycoprotein NMB (GPNMB, also known as osteoactivin). It has entered clinical evaluation for adult cancers that express GPNMB, including melanoma and breast cancer. PROCEDURES Glembatumumab vedotin was administered intravenously at a dose of 2.5 mg/kg using a weekly × 3 schedule, and its antitumor activity was evaluated against selected Pediatric Preclinical Testing Program (PPTP) solid tumor xenografts using standard PPTP response metrics. RESULTS Among PPTP xenografts, GPNMB was primarily expressed on the osteosarcoma xenografts, all of which expressed GPNMB at the RNA level, although at varying levels. Protein expression assessed by immunohistochemistry (IHC) showed variation across the osteosarcoma xenografts with one model showing no tumor cell expression. Glembatumumab vedotin induced statistically significant differences (P < 0.05) in event-free survival (EFS) distribution compared to control in each of the six osteosarcoma models studied. Three of six osteosarcoma xenografts demonstrated a maintained complete response (MCR). Two other xenografts showed progressive disease with growth delay, while the final xenograft showed progressive disease with no growth delay. Two of the osteosarcoma xenografts with MCRs showed the highest GPNMB expression at the RNA level. Conversely, the xenograft with the lowest GPNMB mRNA expression had the poorest response to glembatumumab vedotin. Two rhabdomyosarcoma xenografts that did not express GPNMB showed limited responses to glembatumumab vedotin. CONCLUSIONS Glembatumumab vedotin yielded high-level activity against three of six osteosarcoma xenografts, with evidence for response being related to GPNMB expression levels.
Collapse
|
31
|
Ott PA, Hamid O, Pavlick AC, Kluger H, Kim KB, Boasberg PD, Simantov R, Crowley E, Green JA, Hawthorne T, Davis TA, Sznol M, Hwu P. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol 2014; 32:3659-66. [PMID: 25267741 DOI: 10.1200/jco.2013.54.8115] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The antibody-drug conjugate glembatumumab vedotin links a fully human immunoglobulin G2 monoclonal antibody against the melanoma-related glycoprotein NMB (gpNMB) to the potent cytotoxin monomethyl auristatin E. This study evaluated the safety and activity of glembatumumab vedotin in patients with advanced melanoma. PATIENTS AND METHODS Patients received glembatumumab vedotin every 3 weeks (schedule 1) in a dose escalation and phase II expansion at the maximum-tolerated dose (MTD). Dosing during 2 of 3 weeks (schedule 2) and weekly (schedule 3) was also assessed. The primary end points were safety and pharmacokinetics. The secondary end points included antitumor activity, gpNMB expression, and immunogenicity. RESULTS One hundred seventeen patients were treated using schedule 1 (n = 79), schedule 2 (n = 15), or schedule 3 (n = 23). The MTDs were 1.88, 1.5, and 1.0 mg/kg for schedules 1, 2, and 3, respectively. Grade 3/4 treatment-related toxicities that occurred in two or more patients included rash, neutropenia, fatigue, neuropathy, arthralgia, myalgia, and diarrhea. Three treatment-related deaths (resulting from pneumococcal sepsis, toxic epidermal necrolysis, and renal failure) occurred at doses exceeding the MTDs. In the schedule 1 phase II expansion cohort (n = 34), five patients (15%) had a partial response and eight patients (24%) had stable disease for ≥ 6 months. The objective response rate (ORR) was 2 of 6 (33%) for the schedule 2 MTD and 3 of 12 (25%) for the schedule 3 MTD. Rash was correlated with a greater ORR and improved progression-free survival. CONCLUSION Glembatumumab vedotin is active in advanced melanoma. The schedule 1 MTD (1.88 mg/kg once every 3 weeks) was associated with a promising ORR and was generally well tolerated. More frequent dosing was potentially associated with a greater ORR but increased toxicity.
Collapse
Affiliation(s)
- Patrick A Ott
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ.
| | - Omid Hamid
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Anna C Pavlick
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Harriet Kluger
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Kevin B Kim
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Peter D Boasberg
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Ronit Simantov
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Elizabeth Crowley
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Jennifer A Green
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Thomas Hawthorne
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Thomas A Davis
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Mario Sznol
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Patrick Hwu
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| |
Collapse
|
32
|
Fiorentini C, Bodei S, Bedussi F, Fragni M, Bonini SA, Simeone C, Zani D, Berruti A, Missale C, Memo M, Spano P, Sigala S. GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity. Exp Cell Res 2014; 323:100-111. [DOI: 10.1016/j.yexcr.2014.02.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/21/2014] [Accepted: 02/22/2014] [Indexed: 01/03/2023]
|
33
|
Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar Drugs 2014; 12:255-78. [PMID: 24424355 PMCID: PMC3917273 DOI: 10.3390/md12010255] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/17/2013] [Accepted: 01/07/2014] [Indexed: 01/08/2023] Open
Abstract
The marine habitat has produced a significant number of very potent marine-derived agents that have the potential to inhibit the growth of human tumor cells in vitro and, in a number of cases, in both in vivo murine models and in humans. Although many agents have entered clinical trials in cancer, to date, only Cytarabine, Yondelis® (ET743), Eribulin (a synthetic derivative based on the structure of halichondrin B), and the dolastatin 10 derivative, monomethylauristatin E (MMAE or vedotin) as a warhead, have been approved for use in humans (Adcetris®). In this review, we show the compounds derived from marine sources that are currently in clinical trials against cancer. We have included brief discussions of the approved agents, where they are in trials to extend their initial approved activity (a common practice once an agent is approved), and have also included an extensive discussion of the use of auristatin derivatives as warheads, plus an area that has rarely been covered, the use of marine-derived agents to ameliorate the pain from cancers in humans, and to act as an adjuvant in immunological therapies.
Collapse
|
34
|
Tian F, Liu C, Wu Q, Qu K, Wang R, Wei J, Meng F, Liu S, Chang H. Upregulation of glycoprotein nonmetastatic B by colony-stimulating factor-1 and epithelial cell adhesion molecule in hepatocellular carcinoma cells. Oncol Res 2013; 20:341-50. [PMID: 23924854 DOI: 10.3727/096504013x13657689382851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Considerable effort has been made in elucidating the appropriate biomarkers and the mechanism and functional significance of these biomarkers in hepatocellular carcinoma (HCC). Glycoprotein nonmetastatic B (GPNMB) overexpression occurs in cutaneous melanomas and breast cancer, and it is an attractive candidate for cancer therapy. However, little is known about the expression and regulation of GPNMB in HCC. In this study, we investigated the expression of GPNMB in HCC histochemically and tested the regulation effects of the epithelial cell adhesion molecule (EpCAM) and colony-stimulating factor (CSF-1) on the expression of GPNMB in HCC cells. Our results demonstrated that GPNMB levels were significantly enhanced in HCC compared with adjacent normal liver tissues. In HCC cells, GPNMB expression was regulated by EpCAM and CSF-1 partly through their common downstream product c-myc. Taken together, these results suggest that GPNMB, the expression of which was regulated in HCC cells by the highly coordinated function of various proteins, may be a potential target for HCC therapy.
Collapse
Affiliation(s)
- Feng Tian
- Department of Hepatobiliary Surgery, Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Maric G, Rose AA, Annis MG, Siegel PM. Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer. Onco Targets Ther 2013; 6:839-52. [PMID: 23874106 PMCID: PMC3711880 DOI: 10.2147/ott.s44906] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecularly targeted therapies are rapidly growing with respect to their clinical development and impact on cancer treatment due to their highly selective anti-tumor action. However, many aggressive cancers such as triple-negative breast cancer (TNBC) currently lack well-defined therapeutic targets against which such agents can be developed. The identification of tumor-associated antigens and the generation of antibody drug-conjugates represent an emerging area of intense interest and growth in the field of cancer therapeutics. Glycoprotein non-metastatic b (GPNMB) has recently been identified as a gene that is over-expressed in numerous cancers, including TNBC, and often correlates with the metastatic phenotype. In breast cancer, GPNMB expression in the tumor epithelium is associated with a reduction in disease-free and overall survival. Based on these findings, glembatumumab vedotin (CDX-011), an antibody-drug conjugate that selectively targets GPNMB, is currently being investigated in clinical trials for patients with metastatic breast cancer and unresectable melanoma. This review discusses the physiological and potential pathological roles of GPNMB in normal and cancer tissues, respectively, and details the clinical advances and challenges in targeting GPNMB-expressing malignancies.
Collapse
Affiliation(s)
- Gordana Maric
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada ; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
36
|
Li YN, Zhang L, Li XL, Cui DJ, Zheng HD, Yang SY, Yang WL. Glycoprotein nonmetastatic B as a prognostic indicator in small cell lung cancer. APMIS 2013; 122:140-6. [PMID: 23656629 DOI: 10.1111/apm.12107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/17/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Ying-Na Li
- Department of Geriatrics; The Second Affiliated Hospital; Medical School of Xi'an Jiaotong University Xi'an; Xi'an China
| | - Lin Zhang
- Department of Geriatrics; The Second Affiliated Hospital; Medical School of Xi'an Jiaotong University Xi'an; Xi'an China
| | - Xiu-Li Li
- Department of Geriatrics; The Second Affiliated Hospital; Medical School of Xi'an Jiaotong University Xi'an; Xi'an China
| | - Da-Jiang Cui
- Department of Geriatrics; The Second Affiliated Hospital; Medical School of Xi'an Jiaotong University Xi'an; Xi'an China
| | - Hua-Dong Zheng
- Department of Geriatrics; The Second Affiliated Hospital; Medical School of Xi'an Jiaotong University Xi'an; Xi'an China
| | - Shuan-Ying Yang
- Department of Respiratory Medicine; The Second Affiliated Hospital; Medical School of Xi'an Jiaotong University; Xi'an China
| | - Wei-Lin Yang
- Department of Geriatrics; The Second Affiliated Hospital; Medical School of Xi'an Jiaotong University Xi'an; Xi'an China
| |
Collapse
|
37
|
Kozak KR, Tsai SP, Fourie-O'Donohue A, dela Cruz Chuh J, Roth L, Cook R, Chan E, Chan P, Darwish M, Ohri R, Raab H, Zhang C, Lin K, Wong WLT. Total antibody quantification for MMAE-conjugated antibody-drug conjugates: impact of assay format and reagents. Bioconjug Chem 2013; 24:772-9. [PMID: 23578050 DOI: 10.1021/bc300491k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibody-drug conjugates (ADCs) are target-specific anticancer agents consisting of cytotoxic drugs covalently linked to a monoclonal antibody. The number of ADCs in the clinic is growing, and therefore thorough characterization of the quantitative assays used to measure ADC concentrations in support of pharmacokinetic, efficacy, and safety studies is of increasing importance. Cytotoxic drugs such as the tubulin polymerization inhibiting auristatin, monomethyl auristatin E, have been conjugated to antibodies via cleavable linkers (MC-vc-PAB) through internal cysteines. This results in a heterogeneous mixture of antibody species with drug-to-antibody ratios (DAR) ranging from 0 to 8. In order to characterize the assays used to quantitate total MC-vc-PAB-MMAE ADCs (conjugated and unconjugated antibody), we used purified fractions with defined DARs from 6 therapeutic antibodies to evaluate different assay formats and reagents. Our investigations revealed that for quantitation of total antibody, including all unconjugated and conjugated antibody species, sandwich ELISA formats did not always allow for recovery of all purified DAR fractions (DAR 0-8) to within ±20% of the expected values at the reagent concentrations tested. In evaluating alternative approaches, we found that the recovery of DAR fractions with semihomogeneous assay (SHA) formats, in which sample, capture, and detection reagents are preincubated in solution, were less affected by the antibody's MMAE drug load as compared to traditional stepwise sandwich ELISAs. Thus, choosing the optimal assay format and reagents for total antibody assays is valuable for developing accurate quantitative assays.
Collapse
Affiliation(s)
- Katherine R Kozak
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sapra P, Shor B. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol Ther 2013; 138:452-69. [PMID: 23507041 DOI: 10.1016/j.pharmthera.2013.03.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 12/25/2022]
Abstract
Conventional anticancer therapeutics often suffer from lack of specificity, resulting in toxicities to normal healthy tissues and poor therapeutic index. Antibody-mediated delivery of anticancer drugs or toxins to tumor cells through tumor selective or overexpressed antigens is progressively being recognized as an effective strategy for increasing the therapeutic index of anticancer drugs. In this review we focus on three therapeutic modalities in the field of antibody-mediated targeting, including antibody-drug conjugates (ADCs), immunotoxins (ITs) and immunoliposomes (ILs). Design considerations for development of each of the above therapeutic modalities are discussed. Furthermore, an overview of ADCs, ITs or ILs approved for use in clinical oncology and those currently in clinical development is provided. Challenges encountered by the field of antibody-based targeting are discussed and concepts around development of the next generation of antibody therapeutics are presented.
Collapse
Affiliation(s)
- Puja Sapra
- Bioconjugates Discovery and Development, Oncology Research Unit, Pfizer Worldwide Research and Development, 401 North Middletown Road, Pearl River, NY, 10965, USA.
| | | |
Collapse
|
39
|
Stefano JE, Busch M, Hou L, Park A, Gianolio DA. Micro- and mid-scale maleimide-based conjugation of cytotoxic drugs to antibody hinge region thiols for tumor targeting. Methods Mol Biol 2013; 1045:145-171. [PMID: 23913146 DOI: 10.1007/978-1-62703-541-5_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Currently, the principal chemistries for the preparation of antibody-drug conjugates (ADC) target either lysines or cysteines for coupling cytotoxic drugs for delivery to target cells expressing tumor-specific antigens. All of these chemistries generate populations of molecules which differ in critical properties which are known to affect efficacy, pharmacokinetics, and the therapeutic window. Of key interest are methods to minimize this heterogeneity to achieve reproducible product profiles and efficacy. A current trend in the development of ADC is the evaluation of suitable targets, antibodies, and payloads, occurring well before process development to produce conjugates of clinical quality. This creates a need for an ability to generate comparably high-quality products early in development and at sufficient scale for evaluating in vitro potency and in vivo efficacy, as well as the early identification of any deficiencies in critical quality attributes including solubility and stability. Here we elaborate detailed protocols using maleimide-based chemistry for the conjugation to reduce hinge disulfides in antibodies by several cytotoxic drugs. We present a method for the initial characterization of the reduction/alkylation reaction using polyethylene-glycol (PEG) as a drug surrogate, a 5 mg scale drug conjugation to provide material for initial characterization including cell proliferation assays and a 150 mg scale process for performing efficacy studies in small animals. These methods yield well-defined predictable product profiles at high yield and with low impurities. These procedures include details relevant to the execution of these methods in a safe and contained manner within a typical laboratory environment.
Collapse
Affiliation(s)
- James E Stefano
- Transitional Research, Genzyme, a Sanofi Company, Framingham, MA, USA
| | | | | | | | | |
Collapse
|
40
|
Janthur WD, Cantoni N, Mamot C. Drug conjugates such as Antibody Drug Conjugates (ADCs), immunotoxins and immunoliposomes challenge daily clinical practice. Int J Mol Sci 2012; 13:16020-45. [PMID: 23443108 PMCID: PMC3546676 DOI: 10.3390/ijms131216020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022] Open
Abstract
Drug conjugates have been studied extensively in preclinical in vitro and in vivo models but to date only a few compounds have progressed to the clinical setting. This situation is now changing with the publication of studies demonstrating a significant impact on clinical practice and highlighting the potential of this new class of targeted therapies. This review summarizes the pharmacological and molecular background of the main drug conjugation systems, namely antibody drug conjugates (ADCs), immunotoxins and immunoliposomes. All these compounds combine the specific targeting moiety of an antibody or similar construct with the efficacy of a toxic drug. The aim of this strategy is to target tumor cells specifically while sparing normal tissue, thus resulting in high efficacy and low toxicity. Recently, several strategies have been investigated in phase I clinical trials and some have entered phase III clinical development. This review provides a detailed overview of various strategies and critically discusses the most relevant achievements. Examples of the most advanced compounds include T-DM1 and brentuximab vedotin. However, additional promising strategies such as immunotoxins and immunoliposmes are already in clinical development. In summary, targeted drug delivery by drug conjugates is a new emerging class of anti-cancer therapy that may play a major role in the future.
Collapse
Affiliation(s)
- Wolf-Dieter Janthur
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| | - Nathan Cantoni
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| | - Christoph Mamot
- Division of Hematology/Oncology, Cantonal Hospital of Aarau, CH-5001 Aarau, Switzerland; E-Mails: (W.-D.J.); (N.C.)
| |
Collapse
|
41
|
Huang JJ, Ma WJ, Yokoyama S. Expression and immunolocalization of Gpnmb, a glioma-associated glycoprotein, in normal and inflamed central nervous systems of adult rats. Brain Behav 2012; 2:85-96. [PMID: 22574278 PMCID: PMC3345354 DOI: 10.1002/brb3.39] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/03/2012] [Indexed: 01/16/2023] Open
Abstract
Glycoprotein nonmetastatic melanoma B (Gpnmb) is a type I transmembrane protein implicated in cell differentiation, inflammation, tissue regeneration, and tumor progression. Gpnmb, which is highly expressed in glioblastoma cells, is a potential therapeutic target. However, little is known about its expression, cellular localization, and roles in non-tumorous neural tissues. In this study, we examined Gpnmb expression in the central nervous system of adult rats under both normal and inflammatory conditions. Reverse transcription-polymerase chain reaction analysis revealed that Gpnmb mRNA was expressed in the cerebrum, cerebellum, brain stem, and spinal cord of normal adult rats. Immunoperoxidase staining revealed that Gpnmb-immunoreactive cells were widely distributed in the parenchyma of all brain regions examined, with the cells being most prevalent in the hippocampal dentate gyrus, cerebellar cortex, spinal dorsal horn, choroid plexus, ependyma, periventricular regions, and in layers II and III of the cerebral cortex. Double immunofluorescence staining showed that these cells were co-stained most frequently with the microglia/macrophage marker OX42, and occasionally with the radial glia marker RC2 or the neuronal marker NeuN. Furthermore, an intraperitoneal injection of bacterial endotoxin lipopolysaccharide increased the number of Gpnmb and OX42 double-positive cells in the area postrema, which is one of the circumventricular organs, indicating infiltration of hematogenous macrophages. These results suggest that Gpnmb, which is expressed in microglia and macrophages in non-tumorous neural tissues, plays an important role in the regulation of immune/inflammatory responses.
Collapse
Affiliation(s)
- Jian-Jun Huang
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medicine Kanazawa 920-8640, Japan
| | | | | |
Collapse
|
42
|
Abstract
Antibody conjugates are a diverse class of therapeutics consisting of a cytotoxic agent linked covalently to an antibody or antibody fragment directed toward a specific cell surface target expressed by tumor cells. The notion that antibodies directed toward targets on the surface of malignant cells could be used for drug delivery is not new. The history of antibody conjugates is marked by hurdles that have been identified and overcome. Early conjugates used mouse antibodies; cytotoxic agents that were immunogenic (proteins), too toxic, or not sufficiently potent; and linkers that were not sufficiently stable in circulation. Investigators have explored 4 main avenues using antibodies to target cytotoxic agents to malignant cells: antibody-protein toxin (or antibody fragment-protein toxin fusion) conjugates, antibody-chelated radionuclide conjugates, antibody-small-molecule drug conjugates, and antibody-enzyme conjugates administered along with small-molecule prodrugs that require metabolism by the conjugated enzyme to release the activated species. Only antibody-radionuclide conjugates and antibody-drug conjugates have reached the regulatory approval stage, and nearly 20 antibody conjugates are currently in clinical trials. The time may have come for this technology to become a major contributor to improving treatment for cancer patients.
Collapse
Affiliation(s)
- Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
43
|
Coyne CP, Jones T, Bear R. Synthesis of a covalent epirubicin-(C(3)-amide)-anti-HER2/neu immunochemotherapeutic utilizing a UV-photoactivated anthracycline intermediate. Cancer Biother Radiopharm 2012; 27:41-55. [PMID: 22191802 PMCID: PMC4361169 DOI: 10.1089/cbr.2011.1097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The C(3)-monoamine on the carbohydrate moiety (daunosamine -NH(2)-3') of epirubicin was reacted under anhydrous conditions with succinimidyl 4,4-azipentanoate to create a covalent UV-photoactivated epirubicin-(C(3)-amide) intermediate with primary amine-reactive properties. A synthetic covalent bond between the UV-photoactivated epirubicin-(C(3)-amide) intermediate and the ɛ-amine of lysine residues within the amino acid sequence of anti-HER2/neu monoclonal immunoglobulin was subsequently created by exposure to UV light (354 nm) for 15 minutes. Size-separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis combined with immunodetection analysis and chemiluminescent autoradiographic imaging revealed a lack of IgG-IgG polymerization or degradative protein fragmentation of the covalent epirubicin-(C(3)-amide)-[anti-HER2/neu] immunochemotherapeutic. Retained binding-avidity of epirubicin-(C(3)-amide)-[anti-HER2/neu] was validated by cell-ELISA utilizing monolayer populations of chemotherapeutic-resistant mammary adenocarcinoma SKBr-3 which highly overexpress membrane-associated HER2/neu complexes. Between epirubicin-equivalent concentrations of 10(-10) to 10(-6) M the covalent epirubicin-(C(3)-amide)-[anti-HER2/neu] immunochemotherapeutic consistently evoked levels of cytotoxic anti-neoplastic potency that were highly analogous to chemotherapeutic-equivalent concentrations of epirubicin. Cytotoxic anti-neoplastic potency of epirubicin-(C(3)-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma SKBr-3 challenged with epirubicin-(C(3)-amide)-[anti-HER2/neu] at an epirubicin-equivalent concentration of 10(-6) M was 88.5% (e.g., 11.5% residual survival). Between final epirubicin-equivalent concentrations of 10(-8) and 10(-7) M there was a marked threshold increase in the mean cytotoxic anti-neoplastic activity for epirubicin-(C(3)-amide)-[anti-HER2/neu] from 9.9% to 66.9% (90.2% to 33.1% residual survival).
Collapse
Affiliation(s)
- Cody P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA.
| | | | | |
Collapse
|
44
|
Keir CH, Vahdat LT. The use of an antibody drug conjugate, glembatumumab vedotin (CDX-011), for the treatment of breast cancer. Expert Opin Biol Ther 2012; 12:259-63. [PMID: 22229970 DOI: 10.1517/14712598.2012.642357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most common malignancy in women in the USA. Despite the multi-modality treatments that are currently available, advanced BC has a persistent and unacceptable mortality rate. The need for new therapeutic strategies is extremely high. Experimental approaches with targeted therapies such as antibody drug conjugates provide hope for future treatment possibilities. AREAS COVERED The development status and the possible role of antibody-mediated cytotoxic therapy are discussed in the setting of advanced BC. An overview of, mechanism of action, preclinical and Phase I/II results of glembatumumab vedotin (CDX-011) are discussed. EXPERT OPINION The evidence that the glycoprotein NBM (GPNMB) target is a relevant target in BC, along with data showing that CDX-011 is safe and active in patients with advanced BC, provide a strong rationale to continue to explore this drug in patients with GPNMB-expressing breast tumors.
Collapse
Affiliation(s)
- Christopher H Keir
- Weill Cornell Medical College, Division of Hematology and Oncology, Department of Medicine, 425 East 61st Street, 8th floor, NY 10065, USA
| | | |
Collapse
|
45
|
Arosarena OA, Del Carpio-Cano FE, Dela Cadena RA, Rico MC, Nwodim E, Safadi FF. Comparison of bone morphogenetic protein-2 and osteoactivin for mesenchymal cell differentiation: effects of bolus and continuous administration. J Cell Physiol 2011; 226:2943-52. [PMID: 21302290 DOI: 10.1002/jcp.22639] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Current osteoinductive protein therapy utilizes bolus administration of large doses of bone morphogenetic proteins (BMPs), which is costly, and may not replicate normal bone healing. The limited in vivo biologic activity of BMPs requires the investigation of growth factors that may enhance this activity. In this study, we utilized the C3H10T1/2 murine mesenchymal stem cell line to test the hypotheses that osteoactivin (OA) has comparable osteoinductive effects to bone morphogenetic protein-2 (BMP-2), and that sustained administration of either growth factor would result in increased osteoblastic differentiation as compared to bolus administration. Sustained release biodegradable hydrogels were designed, and C3H10T1/2 cells were grown on hydrogels loaded with BMP-2 or OA. Controls were grown on unloaded hydrogels, and positive controls were exposed to bolus growth factor administration. Cells were harvested at several time points to assess osteoblastic differentiation. Alkaline phosphatase (ALP) staining and activity, and gene expression of ALP and osteocalcin were assessed. Treatment with OA or BMP-2 resulted in comparable effects on osteoblastic marker expression. However, cells grown on hydrogels demonstrated osteoblastic differentiation that was not as robust as cells treated with bolus administration. This study shows that OA has comparable effects to BMP-2 on osteoblastic differentiation using both bolus administration and continuous release, and that bolus administration of OA has a more profound effect than administration using hydrogels for sustained release. This study will lead to a better understanding of appropriate delivery methods of osteogenic growth factors like OA for repair of fractures and segmental bone defects.
Collapse
Affiliation(s)
- Oneida A Arosarena
- Department of Otolaryngology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Sapra P, Hooper AT, O'Donnell CJ, Gerber HP. Investigational antibody drug conjugates for solid tumors. Expert Opin Investig Drugs 2011; 20:1131-49. [DOI: 10.1517/13543784.2011.582866] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Challenges in developing bioanalytical assays for characterization of antibody–drug conjugates. Bioanalysis 2011; 3:677-700. [DOI: 10.4155/bio.11.30] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With more than 34 targets being investigated and nearly 20 clinical trials at various phases of development, antibody–drug conjugates (ADCs) hold a lot of promise for improving oncological malignancy therapy. This therapeutic strategy designed to specifically or preferentially deliver a cytotoxic agent to tumor cells through conjugation to a monoclonal antibody is not new. Although this approach is relatively simple conceptually, the history of ADCs clearly attests to the high degree of complexity in their development. Each component of an ADC is important to achieve efficacy with minimal toxicity, and the ability to monitor this multicomponent therapeutic entity is deemed to be critical for their successful optimization. In this article we review the different bioanalytical strategies that have been implemented to characterize various ADCs and discuss the challenges and issues associated with these approaches.
Collapse
|
48
|
Gold from the sea: marine compounds as inhibitors of the hallmarks of cancer. Biotechnol Adv 2011; 29:531-47. [PMID: 21371549 DOI: 10.1016/j.biotechadv.2011.02.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/17/2011] [Accepted: 02/22/2011] [Indexed: 12/12/2022]
Abstract
Cancer is one of the most deadly diseases in the world. Although advances in the field of chemo-preventive and therapeutic medicine have been made regularly over the last ten years, the search for novel anticancer treatments continues. In this field, the marine environment, with its rich variety of organisms, is a largely untapped source of novel compounds with potent antitumor activity. Although many reviews of marine anticancer compounds have been published, we focus here on selected marine compounds that act on the six hallmarks of cancer presented namely self-sufficiency in growth signals, insensitivity to anti-growth signals, evasion of apoptosis, limitless replication, sustained angiogenesis and tissue invasion and metastasis.
Collapse
|
49
|
Abdelmagid SM, Barbe MF, Hadjiargyrou M, Owen TA, Razmpour R, Rehman S, Popoff SN, Safadi FF. Temporal and spatial expression of osteoactivin during fracture repair. J Cell Biochem 2011; 111:295-309. [PMID: 20506259 DOI: 10.1002/jcb.22702] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously identified osteoactivin (OA) as a novel secreted osteogenic factor with high expression in developing long bones and calvaria, and that stimulates osteoblast differentiation and matrix mineralization in vitro. In this study, we report on OA mRNA and protein expression in intact long bone and growth plate, and in fracture calluses collected at several time points up to 21 days post-fracture (PF). OA mRNA and protein were highly expressed in osteoblasts localized in the metaphysis of intact tibia, and in hypertrophic chondrocytes localized in growth plate, findings assessed by in situ hybridization and immunohistochemistry, respectively. Using a rat fracture model, Northern blot analysis showed that expression of OA mRNA was significantly higher in day-3 and day-10 PF calluses than in intact rat femurs. Using in situ hybridization, we examined OA mRNA expression during fracture healing and found that OA was temporally regulated, with positive signals seen as early as day-3 PF, reaching a maximal intensity at day-10 PF, and finally declining at day-21 PF. At day-5 PF, which correlates with chondrogenesis, OA mRNA levels were significantly higher in the soft callus than in intact femurs. Similarly, we detected high OA protein immunoexpression throughout the reparative phase of the hard callus compared to intact femurs. Interestingly, the secreted OA protein was also detected within the newly made cartilage matrix and osteoid tissue. Taken together, these results suggest the possibility that OA plays an important role in bone formation and serves as a positive regulator of fracture healing.
Collapse
Affiliation(s)
- Samir M Abdelmagid
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Rose AAN, Grosset AA, Dong Z, Russo C, Macdonald PA, Bertos NR, St-Pierre Y, Simantov R, Hallett M, Park M, Gaboury L, Siegel PM. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res 2010; 16:2147-56. [PMID: 20215530 DOI: 10.1158/1078-0432.ccr-09-1611] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Although the murine orthologue of glycoprotein nonmetastatic B (GPNMB), Osteoactivin, promotes breast cancer metastasis in an in vivo mouse model, its importance in human breast cancer is unknown. We have examined the significance of GPNMB expression as a prognostic indicator of recurrence and assessed its potential as a novel therapeutic target in breast cancer. EXPERIMENTAL DESIGN The clinical significance of GPNMB expression in breast cancer was addressed by analyzing GPNMB levels in several published gene expression data sets and two independent tissue microarrays derived from human breast tumors. GPNMB-expressing human breast cancer cell lines were further used to validate a toxin-conjugated anti-GPNMB antibody as a novel therapeutic agent. RESULTS GPNMB expression correlates with shorter recurrence times and reduced overall survival of breast cancer patients. Epithelial-specific GPNMB staining is an independent prognostic indicator for breast cancer recurrence. GPNMB is highly expressed in basal and triple-negative breast cancers and is associated with increased risk of recurrence within this subtype. GPNMB expression confers a more migratory and invasive phenotype on breast cancer cells and sensitizes them to killing by CDX-011 (glembatumumab vedotin), a GPNMB-targeted antibody-drug conjugate. CONCLUSIONS GPNMB expression is associated with the basal/triple-negative subtype and is a prognostic marker of poor outcome in patients with breast cancer. CDX-011 (glembatumumab vedotin) is a promising new targeted therapy for patients with metastatic triple-negative breast cancers, a patient population that currently lacks targeted-therapy options.
Collapse
Affiliation(s)
- April A N Rose
- Department of Medicine, Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West Montréal, Québec, Canada, H3A 1A3
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|