1
|
van Eijk M, Yu H, Sawicki E, de Weger VA, Nuijen B, Dorlo TPC, Beijnen JH, Huitema ADR. Development of a population pharmacokinetic/pharmacodynamic model for various oral paclitaxel formulations co-administered with ritonavir and thrombospondin-1 based on data from early phase clinical studies. Cancer Chemother Pharmacol 2022; 90:71-82. [PMID: 35799067 PMCID: PMC9300539 DOI: 10.1007/s00280-022-04445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/04/2022] [Indexed: 11/21/2022]
Abstract
Purpose Orally administered paclitaxel offers increased patient convenience while providing a method to prolong exposure without long continuous, or repeated, intravenous infusions. The oral bioavailability of paclitaxel is improved through co-administration with ritonavir and application of a suitable pharmaceutical formulation, which addresses the dissolution-limited absorption of paclitaxel. We aimed to characterize the pharmacokinetics of different paclitaxel formulations, co-administered with ritonavir, and to investigate a pharmacodynamic relationship between low-dose metronomic (LDM) treatment with oral paclitaxel and the anti-angiogenic marker thrombospondin-1 (TSP-1). Methods Fifty-eight patients treated with different oral paclitaxel formulations were included for pharmacokinetic analysis. Pharmacodynamic data was available for 36 patients. All population pharmacokinetic/pharmacodynamic modelling was performed using non-linear mixed-effects modelling. Results A pharmacokinetic model consisting of gut, liver, central, and peripheral compartments was developed for paclitaxel. The gastrointestinal absorption rate was modelled with a Weibull function. Relative gut bioavailabilities of the tablet and capsule formulations, as fractions of the gut bioavailability of the drinking solution, were estimated to be 0.97 (95%CI: 0.67–1.33) and 0.46 (95%CI: 0.34–0.61), respectively. The pharmacokinetic/pharmacodynamic relationship between paclitaxel and TSP-1 was modelled using a turnover model with paclitaxel plasma concentrations driving an increase in TSP-1 formation rate following an Emax relationship with an EC50 of 284 ng/mL (95%CI: 122–724). Conclusion The developed pharmacokinetic model adequately described the paclitaxel plasma concentrations for the different oral formulations co-administered with ritonavir. This model, and the established pharmacokinetic/pharmacodynamic relationship with TSP-1, may facilitate future development of oral paclitaxel. Supplementary Information The online version contains supplementary material available at 10.1007/s00280-022-04445-z.
Collapse
Affiliation(s)
- Maarten van Eijk
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Huixin Yu
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Emilia Sawicki
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Modra Pharmaceuticals Holding B.V., Amsterdam, The Netherlands
| | - Vincent A de Weger
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Thomas P C Dorlo
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
2
|
Park M, Kim J, Kim T, Kim S, Park W, Ha KS, Cho SH, Won MH, Lee JH, Kwon YG, Kim YM. REDD1 is a determinant of low-dose metronomic doxorubicin-elicited endothelial cell dysfunction through downregulation of VEGFR-2/3 expression. Exp Mol Med 2021; 53:1612-1622. [PMID: 34697389 PMCID: PMC8568908 DOI: 10.1038/s12276-021-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Low-dose metronomic chemotherapy (LDMC) inhibits tumor angiogenesis and growth by targeting tumor-associated endothelial cells, but the molecular mechanism has not been fully elucidated. Here, we examined the functional role of regulated in development and DNA damage responses 1 (REDD1), an inhibitor of mammalian target of rapamycin complex 1 (mTORC1), in LDMC-mediated endothelial cell dysfunction. Low-dose doxorubicin (DOX) treatment induced REDD1 expression in cultured vascular and lymphatic endothelial cells and subsequently repressed the mRNA expression of mTORC1-dependent translation of vascular endothelial growth factor receptor (Vegfr)-2/3, resulting in the inhibition of VEGF-mediated angiogenesis and lymphangiogenesis. These regulatory effects of DOX-induced REDD1 expression were additionally confirmed by loss- and gain-of-function studies. Furthermore, LDMC with DOX significantly suppressed tumor angiogenesis, lymphangiogenesis, vascular permeability, growth, and metastasis in B16 melanoma-bearing wild-type but not Redd1-deficient mice. Altogether, our findings indicate that REDD1 is a crucial determinant of LDMC-mediated functional dysregulation of tumor vascular and lymphatic endothelial cells by translational repression of Vegfr-2/3 transcripts, supporting the potential therapeutic properties of REDD1 in highly progressive or metastatic tumors.
Collapse
Affiliation(s)
- Minsik Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Joohwan Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Taesam Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Suji Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Wonjin Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Kwon-Soo Ha
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Sung Hwan Cho
- grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Moo-Ho Won
- grid.412010.60000 0001 0707 9039Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Jeong-Hyung Lee
- grid.412010.60000 0001 0707 9039Department of Biochemistry, Kangwon National University, Chuncheon, Gangwon-Do 24341 Republic of Korea
| | - Young-Guen Kwon
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Young-Myeong Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea ,grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| |
Collapse
|
3
|
Kuo YH, Lai CH, Huang CY, Chen CJ, Huang YC, Huang WS, Chin CC. Monthly tegafur-uracil maintenance for increasing relapse-free survival in ypStage III rectal cancer patients after preoperative radiotherapy, radical resection, and 12 postoperative chemotherapy cycles: a retrospective study. BMC Cancer 2019; 19:815. [PMID: 31419963 PMCID: PMC6698001 DOI: 10.1186/s12885-019-6019-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current advancements in neoadjuvant therapy and total mesorectal excision have engendered increased local control. However, the survival benefit of preoperative radiotherapy (RT; 5 × 5 Gy) in rectal cancer patients remains inadequate, primarily because of systemic recurrence. In this retrospective single-center study, the effects of monthly tegafur-uracil maintenance (≥6 cycles) after 12 fluorouracil-based adjuvant chemotherapy cycles on 3-year relapse-free survival (RFS) was estimated in ypStage III rectal cancer patients. METHODS Of ypStage III rectal cancer patients who received preoperative RT (5 × 5 Gy) in January 2006-December 2015, those who had ypStage III cancer after preoperative radiation, radical resection, and postoperative chemotherapy were enrolled; excluded patients had ypStage I and II rectal cancer, had double cancer, had synchronous distant metastasis, had local excision, received preoperative chemoradiation, and were lost to follow-up within 1 year after cancer treatment. Included patients received either maintenance therapy or observation after postoperative chemotherapy. The primary endpoint was the effect of maintenance therapy on 3-year RFS. We set the median follow-up duration to be 69.7 (range, 15.4-148.3) months. RESULTS Of 259 ypStage III rectal cancer patients, 102 (59 men and 43 women) were enrolled based on the inclusion criteria. The maintenance and observation groups comprised 55 and 57 patients, respectively (mean age = 62.2 and 65.7 years, respectively; p = 0.185). The 3-year RFS observed in the maintenance group (85.1%) was longer than that observed in the observation group (67.5%; p = 0.039). Multivariate analysis proved the following to be independent prognostic factors for RFS: higher metastatic lymph node ratio (LNR ≥0.3), tegafur-uracil maintenance (≥6 cycles), and lower rectal cancer (< 6 cm from the anal verge). The higher the rectal cancer location (≥6 cm from the anal verge) was, the higher the tegafur-uracil maintenance survival benefit became (p = 0.041). Moreover, lower cancer location (< 6 cm from the anal verge) and LNR ≥0.3 were both associated with a trend of longer RFS after tegafur-uracil maintenance therapy (p = 0.164 and 0.113, respectively). CONCLUSIONS After the execution of fluorouracil-based adjuvant chemotherapy, administering monthly tegafur-uracil (≥6 cycles) may improve the 3-year RFS of ypStage III rectal cancer patients.
Collapse
Affiliation(s)
- Yi-Hung Kuo
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Medical Foundation, Chiayi Branch, No. 6, Sec. West, Chia-Pu Road, Putz City, Chiayi Hsien 613, Chiayi, Taiwan.,Graduate Institute of Clinical Medicine, Chang Gung University, Linkuo, Taiwan
| | - Chia-Hsuan Lai
- Department of Radiation Oncology, Chang Gung Medical Foundation, Chiayi Branch, Chiayi, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Medical Foundation, Chiayi Branch, No. 6, Sec. West, Chia-Pu Road, Putz City, Chiayi Hsien 613, Chiayi, Taiwan
| | - Chih-Jung Chen
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Medical Foundation, Chiayi Branch, No. 6, Sec. West, Chia-Pu Road, Putz City, Chiayi Hsien 613, Chiayi, Taiwan
| | - Yun-Ching Huang
- Graduate Institute of Clinical Medicine, Chang Gung University, Linkuo, Taiwan
| | - Wen-Shih Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Medical Foundation, Chiayi Branch, No. 6, Sec. West, Chia-Pu Road, Putz City, Chiayi Hsien 613, Chiayi, Taiwan.,Graduate Institute of Clinical Medicine, Chang Gung University, Linkuo, Taiwan
| | - Chih-Chien Chin
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Medical Foundation, Chiayi Branch, No. 6, Sec. West, Chia-Pu Road, Putz City, Chiayi Hsien 613, Chiayi, Taiwan. .,Graduate Institute of Clinical Medicine, Chang Gung University, Linkuo, Taiwan.
| |
Collapse
|
4
|
The antiangiogenic action of cisplatin on endothelial cells is mediated through the release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells. Oncotarget 2018; 9:34038-34055. [PMID: 30344920 PMCID: PMC6183343 DOI: 10.18632/oncotarget.25954] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/20/2018] [Indexed: 01/10/2023] Open
Abstract
In addition to suppressing cancer cell proliferation and tumor growth, cisplatin has been shown to inhibit tumor angiogenesis. However, the underlying mechanism remains a matter of debate. The present study addressed the impact of cisplatin on potential tumor-to-endothelial cell communication conferring an antiangiogenic effect. For this purpose, migration and tube formation of human umbilical vein endothelial cells (HUVECs) exposed to conditioned media (CM) from vehicle- or cisplatin-treated A549 and H358 lung cancer cells were quantified. Cancer cells were exposed to non-toxic concentrations of cisplatin to mimic low-dose treatment conditions. CM from cancer cells exposed to cisplatin at concentrations of 0.01 to 1 µM elicited a concentration-dependent decrease in HUVEC migration and tube formation as compared with CM from vehicle-treated cells. The viability of HUVECs was virtually unaltered under these conditions. siRNA approaches revealed cisplatin-induced expression and subsequent release of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) by lung cancer cells to be causally linked to a decrease in HUVEC migration and tube formation. Moreover, TIMP-1 upregulation and consequent inhibition of HUVEC migration by cisplatin was shown to be dependent on activation of p38 and p42/44 mitogen-activated protein kinases. Inhibition of angiogenic features was not observed when HUVECs were directly exposed to cisplatin. Similarly, antiangiogenic effects were not detectable in HUVECs exposed to CM from the cisplatin-challenged bronchial non-cancer cell line BEAS-2B. Collectively, the present data suggest a pivotal role of cisplatin-induced TIMP-1 release from lung cancer cells in tumor-to-endothelial cell communication resulting in a reduced cancer-associated angiogenic impact on endothelial cells.
Collapse
|
5
|
Natale G, Bocci G. Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett 2018; 432:28-37. [PMID: 29885517 DOI: 10.1016/j.canlet.2018.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/11/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023]
Abstract
Tumor dormancy is the ability of cancer cells to survive in a non-proliferating state. This condition can depend on three main mechanisms: cell cycle arrest (quiescence or cell dormancy), immunosurveillance (immunologic dormancy), or lack of functional blood vessels (angiogenic dormancy). In particular, under angiogenic dormancy, cancer cell proliferation is counterbalanced by apoptosis owing to poor vascularization, impeding tumor mass expansion beyond a microscopic size, with an asymptomatic and non-metastatic state. Tumor vasculogenic or non-angiogenic switch is essential to promote escape from tumor dormancy, leading to tumor mass proliferation and metastasis. In avascular lesions angiogenesis process results blocked from the equilibrium between pro- and anti-angiogenic factors, such as vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1), respectively. The angiogenic switch mainly depends on the disruption of this balance, in favor of pro-angiogenic factors, and on the recruitment of circulating endothelial progenitors (CEPs) that promote the formation of new blood vessels. Metronomic chemotherapy, the regular intake of doses able to sustain low but active concentrations of chemotherapeutic drugs during protracted time periods, is an encouraging therapeutic approach that has shown to upregulate anti-angiogenic factors such as TSP-1 and decline pro-angiogenic factors such as VEGF, suppressing the proangiogenic cells such as CEPs. In this perspective, metronomic chemotherapy may be one of the available therapeutic approaches capable to modulate favorably the angiogenic tumor dormancy, but further research is essential to better define this particular characteristic.
Collapse
Affiliation(s)
- Gianfranco Natale
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, and Museo di Anatomia Umana ''Filippo Civinini'', Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
6
|
Zhao C, Isenberg JS, Popel AS. Human expression patterns: qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions. J Cell Mol Med 2018; 22:2086-2097. [PMID: 29441713 PMCID: PMC5867078 DOI: 10.1111/jcmm.13565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/07/2018] [Indexed: 12/12/2022] Open
Abstract
Thrombospondin-1 (TSP-1), a matricellular protein and one of the first endogenous anti-angiogenic molecules identified, has long been considered a potent modulator of human diseases. While the therapeutic effect of TSP-1 to suppress cancer was investigated in both research and clinical settings, the mechanisms of how TSP-1 is regulated in cancer remain elusive, and the scientific answers to the question of whether TSP-1 expressions can be utilized as diagnostic or prognostic marker for patients with cancer are largely inconsistent. Moreover, TSP-1 plays crucial functions in angiogenesis, inflammation and tissue remodelling, which are essential biological processes in the progression of many cardiovascular diseases, and therefore, its dysregulated expressions in such conditions may have therapeutic significance. Herein, we critically analysed the literature pertaining to TSP-1 expression in circulating blood and pathological tissues in various types of cancer as well as cardiovascular and inflammation-related diseases in humans. We compare the secretion rates of TSP-1 by different cancer and non-cancer cells and discuss the potential connection between the expression changes of TSP-1 and vascular endothelial growth factor (VEGF) observed in patients with cancer. Moreover, the pattern and emerging significance of TSP-1 profiles in cardiovascular disease, such as peripheral arterial disease, diabetes and other related non-cancer disorders, are highlighted. The analysis of published TSP-1 data presented in this review may have implications for the future exploration of novel TSP-1-based treatment strategies for cancer and cardiovascular-related diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical CareDepartment of MedicineHeart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Aleksander S. Popel
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
7
|
Guo S, Martin MG, Tian C, Cui J, Wang L, Wu S, Gu W. Evaluation of Detection Methods and Values of Circulating Vascular Endothelial Growth Factor in Lung Cancer. J Cancer 2018; 9:1287-1300. [PMID: 29675110 PMCID: PMC5907677 DOI: 10.7150/jca.22020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/19/2018] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the deadliest cancer in the world. Angiogenesis plays a crucial role of the incidence, progression, and metastasis in lung cancer. Angiogenesis inhibitors are used to treat non-small cell lung cancer (NSCLC) patients, and the molecular biomarkers are also being assessed to predict treatment response/therapeutic response and patients' prognosis. Vascular endothelial growth factor (VEGF) is a signal protein produced by cells that stimulates angiogenesis. Due to its predictive values of prognosis on NSCLC, a large number of methods have been developed and evaluated to detect VEGF levels in a variety of studies. In this article, we review the detection methods designed to measure the VEGF levels in different body fluids and prognosticate the value of VEGF in treatment, diagnosis and survival in lung cancer.
Collapse
Affiliation(s)
- Sumin Guo
- Department of Oncology, Hebei Chest Hospital, Lung Cancer Control and Prevention Center of Hebei Province, Shijiazhuang, Hebei, 050041, China.,Department of Orthopaedic Surgery- Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Michael G Martin
- West Cancer Center, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Cheng Tian
- Department of Orthopaedic Surgery- Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jinglin Cui
- Department of Orthopaedic Surgery- Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Center of Integrative Research, The First Hospital of Qiqihaer City, Qiqihaer, Heilongjiang, 161005, PR China
| | - Lishi Wang
- Department of Basic Medicine (Basic Medical Research), Inner Mongolia Medical University, Inner Mongolia, 010110, PR China
| | - Shucai Wu
- Department of Oncology, Hebei Chest Hospital, Lung Cancer Control and Prevention Center of Hebei Province, Shijiazhuang, Hebei, 050041, China
| | - Weikuan Gu
- Department of Orthopaedic Surgery- Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis TN 38104, USA
| |
Collapse
|
8
|
Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie 2017; 34:54-62. [DOI: 10.5482/hamo-13-10-0054] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/28/2013] [Indexed: 12/21/2022] Open
Abstract
SummaryPlatelets are the smallest circulating blood cells and their major function is the maintenance of haemostasis. They do not have a nucleus, but instead a multitude of granules that contain molecules important for several physiological processes. These granules can be released after platelet activation and thereby platelets take part in haemostasis, wound repair or immunological processes. Furthermore, platelets are also involved in the pathophysiology of several diseases, including cancer. Platelets can support various steps of cancer development and progression by promoting tumour growth, angiogenesis and metastasis. Moreover, platelets contribute to the hypercoagulable state frequently observed in cancer patients, leading to an increased risk of venous thromboembolism (VTE). In previous studies a high platelet count was repeatedly found to be associated with an elevated risk of VTE and a worse prognosis in patients with cancer.The aim of this review is to give an overview of the most important alterations of platelet physiology in cancer patients and how these alterations may influence cancer disease and contribute to cancer-associated VTE.
Collapse
|
9
|
Role of platelets in cancer and cancer-associated thrombosis: Experimental and clinical evidences. Thromb Res 2016; 139:65-76. [PMID: 26916298 DOI: 10.1016/j.thromres.2016.01.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/01/2016] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
The primary hemostatic function of platelets has been recognized for more than a century, but increasing experimental and clinical evidences suggest that platelets are also important mediators of cancer. Cancer indeed influences platelet physiology, and activated platelets participate in each step of cancer development by promoting tumor growth, angiogenesis, metastasis, and cancer-associated thrombosis. Based on both the results of numerous experimental models addressing the involvement of platelets in cancer progression and the results of epidemiologic studies on the use of anti-platelet drugs to prevent cancer, platelets have been proposed as a potential target to reduce the short-term risk of cancer, cancer dissemination and cancer mortality. However, the cancer-associated thrombosis and the risk of bleeding due to anti-platelet drugs are not enough evaluated in experimental models. Therefore, the interesting contribution of platelets to cancer and cancer-associated thrombosis requires the standardization of preclinical and clinical models.
Collapse
|
10
|
Rasmussen RM, Kurzman ID, Biller BJ, Guth A, Vail DM. Phase I lead-in and subsequent randomized trial assessing safety and modulation of regulatory T cell numbers following a maximally tolerated dose doxorubicin and metronomic dose cyclophosphamide combination chemotherapy protocol in tumour-bearing dogs. Vet Comp Oncol 2015; 15:421-430. [DOI: 10.1111/vco.12179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- R. M. Rasmussen
- Department of Medical Sciences, School of Veterinary Medicine; University of Wisconsin-Madison; Madison WI USA
| | - I. D. Kurzman
- Department of Medical Sciences, School of Veterinary Medicine; University of Wisconsin-Madison; Madison WI USA
| | - B. J. Biller
- Flint Animal Cancer Center; Colorado State University; Fort Collins CO USA
| | - A. Guth
- Flint Animal Cancer Center; Colorado State University; Fort Collins CO USA
| | - D. M. Vail
- Department of Medical Sciences, School of Veterinary Medicine; University of Wisconsin-Madison; Madison WI USA
- The Carbone Cancer Center; University of Wisconsin-Madison; Madison WI USA
| |
Collapse
|
11
|
Luengo-Gil G, González-Billalabeitia E, Chaves-Benito A, García Martínez E, García Garre E, Vicente V, Ayala de la Peña F. Effects of conventional neoadjuvant chemotherapy for breast cancer on tumor angiogenesis. Breast Cancer Res Treat 2015; 151:577-87. [PMID: 25967462 DOI: 10.1007/s10549-015-3421-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/07/2015] [Indexed: 01/01/2023]
Abstract
The effects of breast cancer conventional chemotherapy on tumor angiogenesis need to be further characterized. Neoadjuvant chemotherapy is an ideal model to evaluate the results of chemotherapy, allowing intra-patient direct comparison of antitumor and antiangiogenic effects. We sought to analyze the effect of neoadjuvant chemotherapy on tumor angiogenesis and its clinical significance in breast cancer. Breast cancer patients (n = 108) treated with neoadjuvant sequential anthracyclines and taxanes were studied. Pre- and post-chemotherapy microvessel density (MVD) and mean vessel size (MVS) were analyzed after CD34 immunohistochemistry and correlated with tumor expression of pro- and antiangiogenic factors (VEGFA, THBS1, HIF1A, CTGF, and PDGFA) by qRT-PCR. Angiogenic measures at diagnosis varied among breast cancer subtypes. Pre-treatment higher MVS was associated with triple-negative subtype and more advanced disease. Higher MVS was correlated with higher VEGFA (p = 0.003), while higher MVD was correlated with lower antiangiogenic factors expression (THBS1, p < 0.0001; CTGF, p = 0.001). Increased angiogenesis at diagnosis (high MVS and glomeruloid microvascular proliferation) and higher VEGFA expression were associated with tumor recurrence (p = 0.048 and 0.009, respectively). Chemotherapy-induced angiogenic response (defined as decreased MVD) was present in 35.2 % of patients. This response correlated with an increase in antiangiogenic factors (THBS1) without changes in VEGFA expression, and it was associated with tumor downstaging, but not with clinical response, pathologic complete response, or prognosis. Global effects of chemotherapy mainly consisted in an increased expression of antiangiogenic factors (THBS1, CTGF), with significant changes neither of tumor VEGFA nor of MVS. Conventionally scheduled neoadjuvant chemotherapy exerts antiangiogenic effects, through an increase in antiangiogenic factors, THBS1 and CTGF, but the expression of VEGFA is maintained after treatment. Better markers of angiogenic response and a better understanding of the cooperation of chemotherapy and antiangiogenic therapy in the neoadjuvant clinical scenario are needed.
Collapse
Affiliation(s)
- Ginés Luengo-Gil
- Department of Hematology and Medical Oncology, University Hospital Morales Meseguer, Avda. Marqués de los Vélez, s/n, 30008, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Gnoni A, Silvestris N, Licchetta A, Santini D, Scartozzi M, Ria R, Pisconti S, Petrelli F, Vacca A, Lorusso V. Metronomic chemotherapy from rationale to clinical studies: a dream or reality? Crit Rev Oncol Hematol 2015; 95:46-61. [PMID: 25656744 DOI: 10.1016/j.critrevonc.2015.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 12/12/2022] Open
Abstract
Metronomic chemotherapy (MC) refers to the close administration of a chemotherapeutic drug for a long time with no extended drug-free breaks. It was developed to overcome drug resistance, partly by shifting the therapeutic target from tumor cells to the tumor vasculature, with less toxicity. Because of this peculiar way of administration, MC can be viewed as a form of long-term 'maintenance' treatment, and can be integrated with standard and conventional chemotherapy in a "chemo-switching" strategy. Additional mechanisms are involved in its antitumor activity, such as activation of immunity, induction of tumor dormancy, chemotherapy-driven dependency of cancer cells, and the '4D effect'. In this paper we report the most important studies that have analyzed these processes. In fact, a number of preclinical and clinical studies in solid tumors as well as in multiple myeloma, have been reported regarding several chemotherapy drugs which have been proposed with a metronomic schedule: vinorelbine, cyclophosphamide, capecitabine, methotrexate, bevacizumab, etoposide, gemcitabine, sorafenib, everolimus and temozolomide. The results of these studies have been sometimes conflicting, highlighting the need to develop reliable tools for patient selection and stratification. However, a more precise evaluation of MC strategies with the ongoing randomized phase II/III clinical is fundamental, because of the strict correlation of this approach with translational research and target therapy. Moreover, because of the low toxicity of MC, these studies will also help to better evaluate the clinical benefit of this treatment, with a special focus on elderly and low performance status patients.
Collapse
Affiliation(s)
- Antonio Gnoni
- Medical Oncology Unit, Hospital Moscati, Taranto, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy
| | | | - Daniele Santini
- Medical Oncology Unit, University Campus Biomedico, Roma, Italy
| | - Mario Scartozzi
- Department of Medical Oncoloy, AOU Ospedali Riuniti, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | - Fausto Petrelli
- Medical Oncology Unit, Hospital of Treviglio, Treviglio, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Vito Lorusso
- Medical Oncology Unit, National Cancer Research Centre "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
13
|
Perroud HA, Rico MJ, Alasino CM, Queralt F, Mainetti LE, Pezzotto SM, Rozados VR, Scharovsky OG. Safety and therapeutic effect of metronomic chemotherapy with cyclophosphamide and celecoxib in advanced breast cancer patients. Future Oncol 2013; 9:451-62. [PMID: 23469980 DOI: 10.2217/fon.12.196] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Metronomic chemotherapy (MCT), the chronic administration, at regular intervals, of low doses of chemotherapeutic drugs without extended rest periods, allows chronic treatment with therapeutic efficacy and low toxicity. Our preclinical results suggested that combined MCT with cyclophosphamide and celecoxib could inhibit breast cancer growth. The aim of this study was to determine the toxicity, safety and efficacy of oral MCT with cyclophosphamide 50 mg per orem daily and celecoxib 400 mg (200 mg per orem two-times a day) in advanced breast cancer patients. During the first stage of the study, the therapeutic response consisted of prolonged stable disease for ≥24 weeks in six out of 15 (40%) patients with a median duration of 37.5 weeks and a partial response in one out of 15 (response rate: 6.7%) patients lasting 6 weeks. The overall clinical benefit rate was 46.7%. The median time to progression was 14 weeks. Progression-free survival at 24 weeks was 40% and the 1-year overall survival rate was 46.7%. The adverse events were mild (gastric, grade 1; and hematologic, grade 1 or 2). No grade 3 or 4 toxicities were associated with the treatment. Evaluation of patients' quality of life showed no changes during the response period. MCT with cyclophosphamide plus celecoxib is safe and shows a therapeutic effect in advanced breast cancer patients.
Collapse
Affiliation(s)
- Herman A Perroud
- Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Romiti A, Cox MC, Sarcina I, Di Rocco R, D'Antonio C, Barucca V, Marchetti P. Metronomic chemotherapy for cancer treatment: a decade of clinical studies. Cancer Chemother Pharmacol 2013; 72:13-33. [PMID: 23475105 DOI: 10.1007/s00280-013-2125-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE Over the past few years, more and more new selective molecules directed against specific cellular targets have become available for cancer therapy, leading to impressive improvements. In this evolving scenario, a new way of delivering older cytotoxic drugs has also been developing. Many studies demonstrated that several cytotoxic drugs have antiangiogenic properties if administered frequently and at lower doses compared with standard schedules containing maximal tolerated doses (MTD). Such a new strategy, named metronomic chemotherapy, focuses on a different target: the slowly proliferating tumour endothelial cells. About 10 years ago, metronomic chemotherapy was firstly enunciated and hereafter many clinical experiences were published related to almost any cancer disease. This review analyses available studies dealing with metronomic chemotherapy and its combination with several targeted agents in solid tumours. METHODS A computerized literature search of MEDLINE was performed using the following search terms: metronomic OR "continuous low dose" AND chemotherapy AND cancer OR solid tumours. RESULTS Satisfactory results have been achieved in diverse tumour types, such as breast and prostate cancer or paediatric sarcomas. Moreover, many studies have reported that metronomic chemotherapy determined minimal toxicity compared to MTD chemotherapy. Overall, published series on metronomic schedules are very heterogeneous often reporting on retrospective data, while only very few studies were randomized trials. These limitations still prevent to draw definitive conclusions in diverse tumour types. CONCLUSIONS Large well-designed studies are eagerly awaited for confirming the promises of metronomic schedules and their combinations with targeted molecules.
Collapse
Affiliation(s)
- Adriana Romiti
- Department of Oncology, Faculty of Medicine and Psychology, Sapienza University, Sant' Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Low-dose metronomic chemotherapy: from past experience to new paradigms in the treatment of cancer. Drug Discov Today 2013; 18:193-201. [DOI: 10.1016/j.drudis.2012.07.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/28/2012] [Accepted: 07/26/2012] [Indexed: 01/22/2023]
|
16
|
Lee HP, Li TM, Tsao JY, Fong YC, Tang CH. Curcumin induces cell apoptosis in human chondrosarcoma through extrinsic death receptor pathway. Int Immunopharmacol 2012; 13:163-9. [DOI: 10.1016/j.intimp.2012.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/31/2012] [Accepted: 04/03/2012] [Indexed: 02/03/2023]
|
17
|
Yokoi T, Tamaki T, Shimizu T, Nomura S. A pilot study of a metronomic chemotherapy regimen with weekly low-dose docetaxel for previously treated non-small cell lung cancer. LUNG CANCER-TARGETS AND THERAPY 2012; 3:15-20. [PMID: 28210121 DOI: 10.2147/lctt.s30937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Low-dose metronomic (LDM) chemotherapy is a novel approach that involves frequent administration of a low dose of chemotherapeutic agent without a long interval. PURPOSE The aim of this clinical pilot study was to evaluate the toxicity and efficacy of LDM chemotherapy with weekly low-dose docetaxel for previously treated non-small cell lung cancer (NSCLC). PATIENTS AND METHODS The enrolled patients received 15 mg/m2 of docetaxel intravenously on a weekly basis without any interval. RESULTS Twenty-seven patients were enrolled in the study; 20 were men, and seven were women. The median age was 62 years (range: 32-75). Eleven patients were stage IIIB, and 16 were stage IV. The Eastern Cooperative Oncology Group performance status was 0 or 1. There was no severe hematological adverse effect; importantly, there was no neutropenia or thrombocytopenia. The objective response rate was 7.4% and the disease control rate was 51.9%. The median survival time was 16.4 months (95% CI: 5.7-36.4). CONCLUSION Our preliminary results indicate that our metronomic regimen was well tolerated and active in patients with previously treated NSCLC. Thus, further investigation of this LDM regimen is warranted.
Collapse
Affiliation(s)
- Takashi Yokoi
- First Department of Internal Medicine, Kansai Medical University, Moriguchi City, Osaka, Japan
| | - Takeshi Tamaki
- First Department of Internal Medicine, Kansai Medical University, Moriguchi City, Osaka, Japan
| | - Toshiki Shimizu
- First Department of Internal Medicine, Kansai Medical University, Moriguchi City, Osaka, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Moriguchi City, Osaka, Japan
| |
Collapse
|
18
|
Dalrymple SL, Becker RE, Zhou H, DeWeese TL, Isaacs JT. Tasquinimod prevents the angiogenic rebound induced by fractionated radiation resulting in an enhanced therapeutic response of prostate cancer xenografts. Prostate 2012; 72:638-48. [PMID: 21837778 PMCID: PMC4086682 DOI: 10.1002/pros.21467] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND Tasquinimod is a novel inhibitor of tumor angiogenesis which enhances therapeutic efficacy when combined with androgen ablation and/or taxane-based chemotherapies in pre-clinical prostate cancer models. It has entered registration Phase III evaluation for the treatment of castration resistant prostate cancer. Since tasquinimod suppresses the angiogenic switch induced by tumor hypoxia as prostate cancers outgrow their blood supply, this raises the issue of whether tasquinimod also suppresses the angiogenic rebound induced by fractionated radiation thereby enhancing therapeutic response to fractionated radiation. METHODS Human endothelial and prostate cancer cells in culture and human prostate cancer xenografts growing in castrated male nude mice were evaluated for their response to radiation alone and in combination with tasquinimod. RESULTS At clinically relevant drug levels, tasquinimod significantly (P < 0.05) enhances anti-cancer efficacy of fractionated radiation with optimal timing for initiating daily tasquinimod treatment being after completion of the fractionated radiation. CONCLUSIONS Based upon cell culture studies and tumor tissue oxygenation (i.e., pO(2)), tumor vascular volume, and tumor blood vessel density measurements, the mechanism for such enhancement and optimal timing involves tasquinimod's ability to prevent the angiogenic rebound induced by fractionated radiation.
Collapse
Affiliation(s)
- Susan L Dalrymple
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
19
|
Isaacs JT. The long and winding road for the development of tasquinimod as an oral second-generation quinoline-3-carboxamide antiangiogenic drug for the treatment of prostate cancer. Expert Opin Investig Drugs 2011; 19:1235-43. [PMID: 20836618 DOI: 10.1517/13543784.2010.514262] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Prostate cancer is the mostly commonly diagnosed non-skin cancer in males. The culmination of the last 70 years of clinical drug development has documented that androgen ablation plus taxane-based systemic chemotherapy enhances survival, but is not curative, in metastatic prostate cancer. To effect curative therapy, additional drugs must be developed that enhance the response when combined with androgen ablation/taxane therapy. AREAS COVERED IN THIS REVIEW The history of the discovery and development of tasquinimod as a second-generation oral quinoline-3-carboxamide analogue for prostate cancer will be presented. WHAT THE READER WILL GAIN The mechanism for such anticancer efficacy is via tasquinimod's ability to inhibit the 'angiogenic switch' within cancer sites required for their continuous lethal growth. TAKE HOME MESSAGE Tasquinimod is a novel inhibitor of tumor angiogenesis that enhances the therapeutic anticancer response when combined with other standard-of-care modalities (radiation, androgen ablation, and/or taxane-based chemotherapies) in experimental animal models, but does not inhibit normal wound healing. It has successfully completed clinical Phase II testing in humans and will shortly enter registration Phase III evaluation for the treatment of metastatic prostate cancer.
Collapse
Affiliation(s)
- John T Isaacs
- The Johns Hopkins University, Baltimore, MD 21287, Maryland, USA.
| |
Collapse
|
20
|
Tang JH, Zhao JH, Lu JW, Yan F, Qin JW, Xu B. Circulating levels of angiogenic cytokines in advanced breast cancer patients with system chemotherapy and their potential value in monitoring disease course. J Cancer Res Clin Oncol 2010; 137:55-63. [PMID: 20221635 DOI: 10.1007/s00432-010-0859-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 02/22/2010] [Indexed: 12/22/2022]
Abstract
PURPOSE The low-dose metronomic chemotherapy was reported to inhibit directly tumor angiogenesis or VEGF secretion. The study aimed to seek for this effect of system chemotherapy by observing the changes in serum levels of angiogenic cytokines during treatment and assessing their value in monitoring the advanced breast cancer. METHODS In sixty-one patients with advanced breast cancer, serum levels of vascular endothelial growth factor (VEGF) and endostatin (ES) were compared at baseline (B0), after one cycle (B1), after 3 cycles (B3), and after 5-6 cycles (B5-6) of system chemotherapy using a quantitative ELISA. Data were correlated with treatment response and total survival. RESULTS The response to chemotherapy did not correlate with serum VEGF level before therapy or after one cycle, but the changes in VEGF levels after 3 cycles and 5-6 cycles showed good association with clinical responses, i.e., the patients with disease control had a decreased VEGF value, whereas the progressive patients had an increased value. The Cox proportional hazard model revealed that a normalized VEGF level after therapy and an increase in VEGF level after 5-6 cycles were independent predictors for survival. CONCLUSIONS System chemotherapy for advanced breast cancer lead to a significant decrease in serum VEGF level in patients with disease control, and this anti-VEGF efficacy may be mainly due to the reduction in tumor burden. Sequential measurement of serum VEGF could be useful for evaluating treatment efficacy and prognosis.
Collapse
Affiliation(s)
- Jin-Hai Tang
- Department of General Surgery, Jiangsu Cancer Hospital, Baziting 42, 210009 Nanjing, China
| | | | | | | | | | | |
Collapse
|
21
|
Tsai AC, Pan SL, Sun HL, Wang CY, Peng CY, Wang SW, Chang YL, Kuo SC, Lee KH, Teng CM. CHM-1, a new vascular targeting agent, induces apoptosis of human umbilical vein endothelial cells via p53-mediated death receptor 5 up-regulation. J Biol Chem 2010; 285:5497-506. [PMID: 20007968 PMCID: PMC2820778 DOI: 10.1074/jbc.m109.036277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 11/22/2009] [Indexed: 12/17/2022] Open
Abstract
CHM-1 (2'-fluoro-6,7-methylenedioxy-2-phenyl-4-quinolone) has been identified as a potent antitumor agent in human hepatocellular carcinoma; however, its role in tumor angiogenesis is unclear. This study investigated the effects of CHM-1 and the mechanisms by which it exerts its antiangiogenic and vascular disrupting properties. Using a xenograft model antitumor assay, we found that CHM-1 significantly inhibits tumor growth and microvessel formation. Flow cytometry, immunofluorescence microscopy, and cell death enzyme-linked immunosorbent assay kit revealed that CHM-1 inhibits growth of human umbilical vein endothelial cells (HUVEC) by induction of apoptotic cell death in a concentration-dependent manner. CHM-1 also suppresses HUVEC migration and capillary-like tube formation. We were able to correlate CHM-1-induced apoptosis in HUVEC with the cleavage of procaspase-3, -7, and -8, as well as with the cleavage of poly(ADP-ribose) polymerase by Western blotting assay. Such sensitization was achieved through up-regulation of death receptor 5 (DR5) but not DR4 or Fas. CHM-1 was also capable of increasing the expression level of p53, and most importantly, the induction of DR5 by CHM-1 was abolished by p53 small interfering RNA. Taken together, the results of this study indicate that CHM-1 exhibits vascular targeting activity associated with the induction of DR5-mediated endothelial cell apoptosis through p53 up-regulation, which suggests its potential as an antivascular and antitumor therapeutic agent.
Collapse
Affiliation(s)
- An-Chi Tsai
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shiow-Lin Pan
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- the Graduate Institute of Pharmacology, Taipei Medical University, Taipei 10051, Taiwan
| | - Hui-Lung Sun
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chih-Ya Wang
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chieh-Yu Peng
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shih-Wei Wang
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ya-Ling Chang
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Sheng-Chu Kuo
- the Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 40402, Taiwan, and
| | - Kuo-Hsiung Lee
- the Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Che-Ming Teng
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
22
|
Samuel DP, Wen PY, Kieran MW. Antiangiogenic (metronomic) chemotherapy for brain tumors: current and future perspectives. Expert Opin Investig Drugs 2009; 18:973-83. [DOI: 10.1517/13543780903025752] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- David P Samuel
- Harvard Medical School, Pediatric Medical Neuro-Oncology, Dana-Farber Cancer Institute and Children's Hospital of Boston, 44 Binney Street, Room SW331, Boston, MA 02115, USA ;
| | - Patrick Y Wen
- Harvard Medical School, Dana-Farber/Brigham and Women's Cancer Center, Room SW430D, 44 Binney Street, Boston, MA 02115, USA
| | - Mark W Kieran
- Harvard Medical School, Pediatric Medical Neuro-Oncology, Dana-Farber Cancer Institute and Children's Hospital of Boston, 44 Binney Street, Room SW331, Boston, MA 02115, USA ;
| |
Collapse
|