1
|
Yakkala PA, Penumallu NR, Shafi S, Kamal A. Prospects of Topoisomerase Inhibitors as Promising Anti-Cancer Agents. Pharmaceuticals (Basel) 2023; 16:1456. [PMID: 37895927 PMCID: PMC10609717 DOI: 10.3390/ph16101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Topoisomerases are very important enzymes that regulate DNA topology and are vital for biological actions like DNA replication, transcription, and repair. The emergence and spread of cancer has been intimately associated with topoisomerase dysregulation. Topoisomerase inhibitors have consequently become potential anti-cancer medications because of their ability to obstruct the normal function of these enzymes, which leads to DNA damage and subsequently causes cell death. This review emphasizes the importance of topoisomerase inhibitors as marketed, clinical and preclinical anti-cancer medications. In the present review, various types of topoisomerase inhibitors and their mechanisms of action have been discussed. Topoisomerase I inhibitors, which include irinotecan and topotecan, are agents that interact with the DNA-topoisomerase I complex and avert resealing of the DNA. The accretion of DNA breaks leads to the inhibition of DNA replication and cell death. On the other hand, topoisomerase II inhibitors like etoposide and teniposide, function by cleaving the DNA-topoisomerase II complex thereby effectively impeding the release of double-strand DNA breaks. Moreover, the recent advances in exploring the therapeutic efficacy, toxicity, and MDR (multidrug resistance) issues of new topoisomerase inhibitors have been reviewed in the present review.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Naveen Reddy Penumallu
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India;
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, Hyderabad 500078, India
- Telangana State Council of Science & Technology, Environment, Forests, Science & Technology Department, Hyderabad 500004, India
| |
Collapse
|
2
|
Li YQ, Murakami M, Huang YH, Hung TH, Wang SP, Wu YS, Ambudkar SV, Wu CP. Hydroxygenkwanin Improves the Efficacy of Cytotoxic Drugs in ABCG2-Overexpressing Multidrug-Resistant Cancer Cells. Int J Mol Sci 2022; 23:ijms232112763. [PMID: 36361555 PMCID: PMC9658017 DOI: 10.3390/ijms232112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Hydroxygenkwanin, a flavonoid isolated from the leaves of the Daphne genkwa plant, is known to have pharmacological properties; however, its modulatory effect on multidrug resistance, which is (MDR) mediated by ATP-binding cassette (ABC) drug transporters, has not been investigated. In this study, we examine the interaction between hydroxygenkwanin, ABCB1, and ABCG2, which are two of the most well-characterized ABC transporters known to contribute to clinical MDR in cancer patients. Hydroxygenkwanin is not an efflux substrate of either ABCB1 or ABCG2. We discovered that, in a concentration-dependent manner, hydroxygenkwanin significantly reverses ABCG2-mediated resistance to multiple cytotoxic anticancer drugs in ABCG2-overexpressing multidrug-resistant cancer cells. Although it inhibited the drug transport function of ABCG2, it had no significant effect on the protein expression of this transporter in cancer cells. Experimental data showing that hydroxygenkwanin stimulates the ATPase activity of ABCG2, and in silico docking analysis of hydroxygenkwanin binding to the inward-open conformation of human ABCG2, further indicate that hydroxygenkwanin sensitizes ABCG2-overexpressing cancer cells by binding to the substrate-binding pocket of ABCG2 and attenuating the transport function of ABCG2. This study demonstrates the potential use of hydroxygenkwanin as an effective inhibitor of ABCG2 in drug combination therapy trials for patients with tumors expressing higher levels of ABCG2.
Collapse
Affiliation(s)
- Yan-Qing Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Shun-Ping Wang
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung 40704, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| | - Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Correspondence: (S.V.A.); (C.-P.W.); Tel.: +1-240-760-7192 (S.V.A.); +886-3-2118800 (C.-P.W.)
| |
Collapse
|
3
|
Transcriptomics and Proteomics Characterizing the Anticancer Mechanisms of Natural Rebeccamycin Analog Loonamycin in Breast Cancer Cells. Molecules 2022; 27:molecules27206958. [PMID: 36296549 PMCID: PMC9611194 DOI: 10.3390/molecules27206958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
The present study is to explore the anticancer effect of loonamycin (LM) in vitro and in vivo, and investigate the underlying mechanism with combined multi-omics. LM exhibited anticancer activity in human triple negative breast cancer cells by promoting cell apoptosis. LM administration inhibited the growth of MDA-MB-468 tumors in a murine xenograft model of breast cancer. Mechanistic studies suggested that LM could inhibit the topoisomerase I in a dose-dependent manner in vitro experiments. Combined with the transcriptomics and proteomic analysis, LM has a significant effect on O-glycan, p53-related signal pathway and EGFR/PI3K/AKT/mTOR signal pathway in enrichment of the KEGG pathway. The GSEA data also suggests that the TNBC cells treated with LM may be regulated by p53, O-glycan and EGFR/PI3K/AKT/mTOR signaling pathway. Taken together, our findings predicted that LM may target p53 and EGFR/PI3K/AKT/mTOR signaling pathway, inhibiting topoisomerase to exhibit its anticancer effect.
Collapse
|
4
|
Wu CP, Li YQ, Hung TH, Chang YT, Huang YH, Wu YS. Sophoraflavanone G Resensitizes ABCG2-Overexpressing Multidrug-Resistant Non-Small-Cell Lung Cancer Cells to Chemotherapeutic Drugs. JOURNAL OF NATURAL PRODUCTS 2021; 84:2544-2553. [PMID: 34496204 DOI: 10.1021/acs.jnatprod.1c00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elevated expression of the ATP-binding cassette (ABC) drug transporter ABCG2 in cancer cells contributes to the development of the multidrug resistance phenotype in patients with advanced non-small-cell lung cancer (NSCLC). Due to the lack of U.S. Food and Drug Administration (FDA)-approved synthetic inhibitors of ABCG2, significant efforts have been invested in discovering bioactive compounds of plant origin that are capable of reversing ABCG2-mediated multidrug resistance in cancer cells. Sophoraflavanone G (SFG), a phytoncide isolated from the plant species Sophora flavescens, is known to possess a wide spectrum of pharmacological activities, including antibacterial, anti-inflammatory, antimalarial, and antiproliferative effects. In the present study, the chemosensitizing effect of SFG in ABCG2-overexpressing NSCLC cells was investigated. Experimental results demonstrate that at subtoxic concentrations SFG significantly reversed ABCG2-mediated multidrug resistance in a concentration-dependent manner. Additional biochemical data and in silico docking analysis of SFG to the inward-open conformation of human ABCG2 indicate that SFG inhibited the drug transport function of ABCG2 by interacting with residues within the transmembrane substrate-binding pocket of ABCG2. Collectively, these findings provide evidence that SFG has the potential to be further tested as an effective inhibitor of ABCG2 to improve the efficacy of therapeutic drugs in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 33305, Taiwan
| | | | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 33305, Taiwan
| | | | | | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
5
|
Wu CP, Hung TH, Lusvarghi S, Chu YH, Hsiao SH, Huang YH, Chang YT, Ambudkar SV. The third-generation EGFR inhibitor almonertinib (HS-10296) resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Biochem Pharmacol 2021; 188:114516. [PMID: 33713643 DOI: 10.1016/j.bcp.2021.114516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) drug transporter ABCB1 (P-glycoprotein, P-gp) or ABCG2 (breast cancer resistance protein, BCRP) in cancer cells often contributes significantly to the development of multidrug resistance (MDR) in cancer patients. Previous reports have demonstrated that some epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) could modulate the activity of ABCB1 and/or ABCG2 in human cancer cells, whereas some EGFR TKIs are transport substrates of these transporters. Almonertinib (HS-10296) is a promising, orally available third-generation EGFR TKI for the treatment of EGFR T790M mutation-positive non-small cell lung cancer (NSCLC) in patients who have progressed on or after other EGFR TKI therapies. Additional clinical trials are currently in progress to study almonertinib as monotherapy and in combination with other agents in patients with NSCLC. In the present work, we found that neither ABCB1 nor ABCG2 confers significant resistance to almonertinib. More importantly, we discovered that almonertinib was able to reverse MDR mediated by ABCB1, but not ABCG2, in multidrug-resistant cancer cells at submicromolar concentrations by inhibiting the drug transport activity of ABCB1 without affecting its expression level. These findings are further supported by in silico docking of almonertinib in the drug-binding pocket of ABCB1. In summary, our study revealed an additional activity of almonertinib to re-sensitize ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic drugs, which may be beneficial for cancer patients and warrant further investigation.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Yi-Hsuan Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Tzu Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
6
|
A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules 2020; 25:molecules25020256. [PMID: 31936318 PMCID: PMC7024260 DOI: 10.3390/molecules25020256] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Whole-genome sequence data of the genus Streptomyces have shown a far greater chemical diversity of metabolites than what have been discovered under typical laboratory fermentation conditions. In our previous natural product discovery efforts on Streptomyces sp. MA37, a bacterium isolated from the rhizosphere soil sample in Legon, Ghana, we discovered a handful of specialised metabolites from this talented strain. However, analysis of the draft genome of MA37 suggested that most of the encoded biosynthetic gene clusters (BGCs) remained cryptic or silent, and only a small fraction of BGCs for the production of specialised metabolites were expressed when cultured in our laboratory conditions. In order to induce the expression of the seemingly silent BGCs, we have carried out a co-culture experiment by growing the MA37 strain with the Gram-negative bacterium Pseudomonas sp. in a co-culture chamber that allows co-fermentation of two microorganisms with no direct contact but allows exchange of nutrients, metabolites, and other chemical cues. This co-culture approach led to the upregulation of several metabolites that were not previously observed in the monocultures of each strain. Moreover, the co-culture induced the expression of the cryptic indole alkaloid BGC in MA37 and led to the characterization of the known indolocarbazole alkaloid, BE-13793C 1. Neither bacterium produced compound 1 when cultured alone. The structure of 1 was elucidated by Nuclear Magnetic Resonance (NMR), mass spectrometry analyses and comparison of experimental with literature data. A putative biosynthetic pathway of 1 was proposed. Furthermore, BE-13793C 1 showed strong anti-proliferative activity against HT-29 (ATCC HTB-38) cells but no toxic effect to normal lung (ATCC CCL-171) cells. To the best of our knowledge, this is the first report for the activity of 1 against HT-29. No significant antimicrobial and anti-trypanosomal activities for 1 were observed. This research provides a solid foundation for the fact that a co-culture approach paves the way for increasing the chemical diversity of strain MA37. Further characterization of other upregulated metabolites in this strain is currently ongoing in our laboratory.
Collapse
|
7
|
Wu CP, Murakami M, Hsiao SH, Chou AW, Li YQ, Huang YH, Hung TH, Ambudkar SV. Overexpression of ATP-Binding Cassette Subfamily G Member 2 Confers Resistance to Phosphatidylinositol 3-Kinase Inhibitor PF-4989216 in Cancer Cells. Mol Pharm 2017; 14:2368-2377. [PMID: 28597653 DOI: 10.1021/acs.molpharmaceut.7b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deregulated activation of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently found in human cancers, which plays a key role in promoting cancer proliferation and resistance to anticancer therapies. Therefore, developing inhibitors targeting key components of the PI3K/Akt/mTOR signaling pathway has great clinical significance. PF-4989216 is a novel, orally available small-molecule drug that was developed to selectively inhibit the PI3K/Akt/mTOR signaling pathway and subsequent cancer cell proliferation. PF-4989216 exhibited potent and selective inhibition against PI3K kinase activity in preclinical small-cell lung cancer (SCLC) models, and was especially effective against the proliferation of SCLCs harboring PIK3CA mutation. Unfortunately, in addition to innate resistance mechanisms, drug extrusion by the efflux pumps may also contribute to the development of acquired resistance to PI3K inhibitors in cancer cells. The overexpression of ATP-binding cassette (ABC) drug transporters ABCB1 and ABCG2 is one of the most common mechanisms for reducing intracellular drug concentration and developing multidrug resistance, which remains a substantial challenge to the effective treatment of cancer. In this study, we report the discovery of ABCG2 overexpression as a mechanism of resistance to PI3K inhibitor PF-4989216 in human cancer cells. We demonstrated that the inhibition of Akt and downstream S6RP phosphorylation by PF-4989216 were significantly reduced in ABCG2-overexpressing human cancer cells. Moreover, overexpression of ABCG2 in various cancer cell lines confers significant resistance to PF-4989216, which can be reversed by an inhibitor or competitive substrate of ABCG2, indicating that ABCG2-mediated transport alone can sufficiently reduce the intracellular concentration of PF-4989216.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 105, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20892, United States
| | | | | | - Yan-Qing Li
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 105, Taiwan
| | | | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital , Taipei 105, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20892, United States
| |
Collapse
|
8
|
Wu CP, Hsieh YJ, Hsiao SH, Su CY, Li YQ, Huang YH, Huang CW, Hsieh CH, Yu JS, Wu YS. Human ATP-Binding Cassette Transporter ABCG2 Confers Resistance to CUDC-907, a Dual Inhibitor of Histone Deacetylase and Phosphatidylinositol 3-Kinase. Mol Pharm 2016; 13:784-94. [PMID: 26796063 DOI: 10.1021/acs.molpharmaceut.5b00687] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CUDC-907 is a novel, dual-acting small molecule compound designed to simultaneously inhibit the activity of histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K). Treatment with CUDC-907 led to sustained inhibition of HDAC and PI3K activity, inhibition of RAF-MEK-MAPK signaling pathway, and inhibition of cancer cell growth. CUDC-907 is currently under evaluation in phase I clinical trials in patients with lymphoma or multiple myeloma, and in patients with advanced solid tumors. However, the risk of developing acquired resistance to CUDC-907 can present a significant therapeutic challenge to clinicians in the future and should be investigated. The overexpression of ATP-binding cassette (ABC) drug transporter ABCB1, ABCC1, or ABCG2 is one of the most common mechanisms of developing multidrug resistance (MDR) in cancers and a major obstacle in chemotherapy. In this study, we reveal that ABCG2 reduces the intracellular accumulation of CUDC-907 and confers significant resistance to CUDC-907, which leads to reduced activity of CUDC-907 to inhibit HDAC and PI3K in human cancer cells. Moreover, although CUDC-907 affects the transport function of ABCG2, it was not potent enough to reverse drug resistance mediated by ABCG2 or affect the expression level of ABCG2 in human cancer cells. Taken together, our findings indicate that ABCG2-mediated CUDC-907 resistance can have serious clinical implications and should be further investigated. More importantly, we demonstrate that the activity of CUDC-907 in ABCG2-overexpressing cancer cells can be restored by inhibiting the function of ABCG2, which provides support for the rationale of combining CUDC-907 with modulators of ABCG2 to improve the pharmacokinetics and efficacy of CUDC-907 in future treatment trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital , Tao-Yuan, Taiwan
| | | | | | - Yu-Shan Wu
- Department of Chemistry, Tunghai University , Taichung, Taiwan
| |
Collapse
|
9
|
Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev 2015; 44:7591-697. [PMID: 25735878 PMCID: PMC4560691 DOI: 10.1039/c4cs00426d] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts.
Collapse
Affiliation(s)
- Sherif I Elshahawi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Madan K Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA. and Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
10
|
Robey RW, Ierano C, Zhan Z, Bates SE. The challenge of exploiting ABCG2 in the clinic. Curr Pharm Biotechnol 2011; 12:595-608. [PMID: 21118093 DOI: 10.2174/138920111795163913] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/15/2010] [Indexed: 01/16/2023]
Abstract
ABCG2, or breast cancer resistance protein (BCRP), is an ATP-binding cassette half transporter that has been shown to transport a wide range of substrates including chemotherapeutics, antivirals, antibiotics and flavonoids. Given its wide range of substrates, much work has been dedicated to developing ABCG2 as a clinical target. But where can we intervene clinically and how can we avoid the mistakes made in past clinical trials targeting P-glycoprotein? This review will summarize the normal tissue distribution, cancer tissue expression, substrates and inhibitors of ABCG2, and highlight the challenges presented in exploiting ABCG2 in the clinic. We discuss the possibility of inhibiting ABCG2, so as to increase oral bioavailability or increase drug penetration into sanctuary sites, especially the central nervous system; and at the other end of the spectrum, the possibility of improving ABCG2 function, in the case of gout caused by a single nucleotide polymphism. Together, these aspects of ABCG2/BCRP make the protein a target of continuing interest for oncologists, biologists, and pharmacologists.
Collapse
Affiliation(s)
- Robert W Robey
- Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
11
|
Hall MD, Brimacombe KR, Varonka MS, Pluchino KM, Monda JK, Li J, Walsh MJ, Boxer MB, Warren TH, Fales HM, Gottesman MM. Synthesis and structure-activity evaluation of isatin-β-thiosemicarbazones with improved selective activity toward multidrug-resistant cells expressing P-glycoprotein. J Med Chem 2011; 54:5878-89. [PMID: 21721528 PMCID: PMC3201829 DOI: 10.1021/jm2006047] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer multidrug resistance (MDR) mediated by ATP-binding cassette (ABC) transporters presents a significant unresolved clinical challenge. One strategy to resolve MDR is to develop compounds that selectively kill cells overexpressing the efflux transporter P-glycoprotein (MDR1, P-gp, ABCB1). We have previously reported structure-activity studies based around the lead compound NSC73306 (1, 1-isatin-4-(4'-methoxyphenyl)-3-thiosemicarbazone, 4.3-fold selective). Here we sought to extend this work on MDR1-selective analogues by establishing whether 1 showed "robust" activity against a range of cell lines expressing P-gp. We further aimed to synthesize and test analogues with varied substitution at the N4-position, and substitution around the N4-phenyl ring of isatin-β-thiosemicarbazones (IBTs), to identify compounds with increased MDR1-selectivity. Compound 1 demonstrated MDR1-selectivity against all P-gp-expressing cell lines examined. This selectivity was reversed by inhibitors of P-gp ATPase activity. Structural variation at the 4'-phenyl position of 1 yielded compounds of greater MDR1-selectivity. Two of these analogues, 1-isatin-4-(4'-nitrophenyl)-3-thiosemicarbazone (22, 8.3-fold selective) and 1-isatin-4-(4'-tert-butyl phenyl)-3-thiosemicarbazone (32, 14.8-fold selective), were selected for further testing and were found to retain the activity profile of 1. These compounds are the most active IBTs identified to date.
Collapse
Affiliation(s)
- Matthew D. Hall
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kyle R. Brimacombe
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matthew S. Varonka
- Department of Chemistry, Georgetown University, Box 571227, Washington, D.C. 20057
| | - Kristen M. Pluchino
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Julie K. Monda
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jiayang Li
- Laboratory of Applied Mass Spectrometry, National Heart, Lung & Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Martin J. Walsh
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Institutes of Health, 9800 Medical Center Drive, MSC 3370, Bethesda, MD 20892
| | - Matthew B. Boxer
- NIH Chemical Genomics Center, NIH Center for Translational Therapeutics, National Institutes of Health, 9800 Medical Center Drive, MSC 3370, Bethesda, MD 20892
| | - Timothy H. Warren
- Department of Chemistry, Georgetown University, Box 571227, Washington, D.C. 20057
| | - Henry M. Fales
- Laboratory of Applied Mass Spectrometry, National Heart, Lung & Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael M. Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
12
|
Mo W, Zhang JT. Human ABCG2: structure, function, and its role in multidrug resistance. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 3:1-27. [PMID: 22509477 PMCID: PMC3325772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 03/25/2011] [Indexed: 05/31/2023]
Abstract
Human ABCG2 is a member of the ATP-binding cassette (ABC) transporter superfamily and is known to contribute to multidrug resistance (MDR) in cancer chemotherapy. Among ABC transporters that are known to cause MDR, ABCG2 is particularly interesting for its potential role in protecting cancer stem cells and its complex oligomeric structure. Recent studies have also revealed that the biogenesis of ABCG2 could be modulated by small molecule compounds. These modulators, upon binding to ABCG2, accelerate the endocytosis and trafficking to lysosome for degradation and effectively reduce the half-life of ABCG2. Hence, targeting ABCG2 stability could be a new venue for therapeutic discovery to sensitize drug resistant human cancers. In this report, we review recent progress on understanding the structure, function, biogenesis, as well as physiological and pathophysiological functions of ABCG2.
Collapse
Affiliation(s)
- Wei Mo
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine Indianapolis, IN 46202, USA
| | | |
Collapse
|
13
|
Jacobs A, Emmert D, Wieschrath S, Hrycyna CA, Wiese M. Recombinant Synthesis of Human ABCG2 Expressed in the Yeast Saccharomyces cerevisiae: an Experimental Methodological Study. Protein J 2011; 30:201-11. [DOI: 10.1007/s10930-011-9321-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Chang CC, Chen WC, Ho TF, Wu HS, Wei YH. Development of natural anti-tumor drugs by microorganisms. J Biosci Bioeng 2011; 111:501-11. [PMID: 21277252 DOI: 10.1016/j.jbiosc.2010.12.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/27/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
Abstract
Discoveries of tumor-resistant pharmacological drugs have mainly resulted from screening of natural products and their analogs. Some are also discovered incidentally when studying organisms. The great biodiversity of microorganisms raises the possibility of producing secondary metabolites (e.g., mevastatin, lovastatin, epothilone, salinosporamide A) to cope with adverse environments. Recently, natural plant pigments with anti-tumor activities such as β-carotene, lycopene, curcumin and anthocyanins have been proposed. However, many plants have a long life cycle. Therefore, pigments from microorganisms represent another option for the development of novel anti-tumor drugs. Prodigiosin (PG) is a natural red pigment produced by microorganisms, i.e., Serratia marcescens and other gram-negative bacteria. The anti-tumor potential of PG has been widely demonstrated. The families of PG (PGs), which share a common pyrrolylpyrromethene (PPM) skeleton, are produced by various bacteria. PGs are bioactive pigments and are known to exert immunosuppressive properties, in vitro apoptotic effects, and in vivo anti-tumor activities. Currently the most common strain used for producing PGs is S. marcescens. However, few reports have discussed PGs production. This review therefore describes the development of an anti-tumor drug, PG, that can be naturally produced by microorganisms, and evaluates the microbial production system, fermentation strategies, purification and identification processes. The application potential of PGs is also discussed.
Collapse
Affiliation(s)
- Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Meyer zu Schwabedissen HE, Kroemer HK. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2). Handb Exp Pharmacol 2011:325-371. [PMID: 21103975 DOI: 10.1007/978-3-642-14541-4_9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The breast cancer resistance protein (BCRP/ABCG2) is a member of the G-subfamiliy of the ATP-binding cassette (ABC)-transporter superfamily. This half-transporter is assumed to function as an important mechanism limiting cellular accumulation of various compounds. In context of its tissue distribution with localization in the sinusoidal membrane of hepatocytes, and in the apical membrane of enterocytes ABCG2 is assumed to function as an important mechanism facilitating hepatobiliary excretion and limiting oral bioavailability, respectively. Indeed functional assessment performing mouse studies with genetic deletion or chemical inhibition of the transporter, or performing pharmacogenetic studies in humans support this assumption. Furthermore the efflux function of ABCG2 has been linked to sanctuary blood tissue barriers as described for placenta and the central nervous system. However, in lactating mammary glands ABCG2 increases the transfer of substrates into milk thereby increasing the exposure to potential noxes of a breastfed newborn. With regard to its broad substrate spectrum including various anticancer drugs and environmental carcinogens the function of ABCG2 has been associated with multidrug resistance and tumor development/progression. In terms of cancer biology current research is focusing on the expression and function of ABCG2 in immature stem cells. Recent findings support the notion that the physiological function of ABCG2 is involved in the elimination of uric acid resulting in higher risk for developing gout in male patients harboring genetic variants. Taken together ABCG2 is implicated in various pathophysiological and pharmacological processes.
Collapse
Affiliation(s)
- Henriette E Meyer zu Schwabedissen
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
16
|
To KKW, Robey RW, Knutsen T, Zhan Z, Ried T, Bates SE. Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol Cancer Ther 2010; 8:2959-68. [PMID: 19825807 DOI: 10.1158/1535-7163.mct-09-0292] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Overexpression of ABCG2 has been reported in cell lines selected for drug resistance and it is widely believed to be important in the clinical pharmacology of anticancer drugs. We and others have previously identified and validated two microRNAs (miRNA; hsa-miR-519c and hsa-miR-520h) targeting ABCG2. In this study, the shortening of the ABCG2 3' untranslated region (3'UTR) was found to be a common phenomenon in several ABCG2-overexpressing resistant cell lines, which as a result removes the hsa-miR-519c binding site and its repressive effects on mRNA stability and translation blockade, thereby contributing to drug resistance. On the other hand, reduced expression of hsa-miR-520h, previously thought to have allowed ABCG2 overexpression, was found to be caused by the sequestering of the miRNA by the highly expressed ABCG2. In drug-sensitive cells, inhibitors against hsa-miR-519c and hsa-miR-520h could augment the cytotoxic effect of mitoxantrone, suggesting a substantial role for both miRNAs in controlling ABCG2 level and thereby anticancer drug response. However, in drug-resistant cells, altering the levels of the two miRNAs did not have any effect on sensitivity to mitoxantrone. Taken together, these studies suggest that in ABCG2-overexpressing drug-resistant cells, hsa-miR-519c is unable to affect ABCG2 expression because the mRNA lacks its binding site, whereas hsa-miR-520h is sequestered and unable to limit ABCG2 expression. Given the recent observation that a truncated 3'UTR is also observed in ABCG2-overexpressing human embryonic stem cells, our results in drug-resistant cell lines suggest that 3'UTR truncation is a relatively common mechanism of ABCG2 regulation.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Cell Line, Tumor
- Chromosomes, Human/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Rearrangement/drug effects
- Gene Silencing/drug effects
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mitoxantrone/pharmacology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- RNA Stability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | | | | | | | | | | |
Collapse
|
17
|
Hou YX, Li CZ, Palaniyandi K, Magtibay PM, Homolya L, Sarkadi B, Chang XB. Effects of putative catalytic base mutation E211Q on ABCG2-mediated methotrexate transport. Biochemistry 2009; 48:9122-31. [PMID: 19691360 DOI: 10.1021/bi900675v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABCG2 is a half-ATP binding cassette (ABC) drug transporter that consists of a nucleotide binding domain (NBD) followed by a transmembrane domain. This half-ABC transporter is thought to form a homodimer in the plasma membrane where it transports anticancer drugs across the biological membranes in an ATP-dependent manner. Substitution of the putative catalytic residue E211 with a nonacidic amino acid glutamine (E211Q) completely abolished its ATPase activity and ATP-dependent methotrexate transport, suggesting that ATP hydrolysis is required for the ATP-dependent solute transport. However, whether one ATP hydrolysis or two ATP hydrolyses in the homodimer of ABCG2 with the NBD.ATP.ATP.NBD sandwich structure is/are required for the ATP-dependent solute transport is not known yet. To address this question, we have made an YFP/ABCG2 fusion protein and expressed this 99 kDa fusion protein alone or along with the 70 kDa E211Q-mutated ABCG2 in BHK cells. Although membrane vesicles prepared from BHK cells expressing YFP/ABCG2 exert higher ATPase activity than that of wt ABCG2, the dATP-dependent methotrexate transport activities of these two proteins are the same. Interestingly, membrane vesicles prepared from BHK cells expressing both YFP/ABCG2 and E211Q-mutated ABCG2 (with a ratio of 1:1) form homodimers and heterodimer and exert 55% of wt ABCG2 ATPase activity that can be further enhanced by anticancer drugs, suggesting that the wt NBD in the heterodimer of YFP/ABCG2 and E211Q may be able to hydrolyze ATP. Furthermore, the membrane vesicles containing both YFP/ABCG2 and E211Q exert approximately 79% of wt ABCG2-mediated methotrexate transport activity, implying that the heterodimer harboring YFP/ABCG2 and E211Q may be able to transport the anticancer drug methotrexate across the biological membranes.
Collapse
Affiliation(s)
- Yue-xian Hou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 13400 East Shea Boulevard, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | | | |
Collapse
|