1
|
Liongue C, Ward AC. Myeloproliferative Neoplasms: Diseases Mediated by Chronic Activation of Signal Transducer and Activator of Transcription (STAT) Proteins. Cancers (Basel) 2024; 16:313. [PMID: 38254802 PMCID: PMC10813624 DOI: 10.3390/cancers16020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematopoietic diseases characterized by the clonal expansion of single or multiple lineages of differentiated myeloid cells that accumulate in the blood and bone marrow. MPNs are grouped into distinct categories based on key clinical presentations and distinctive mutational hallmarks. These include chronic myeloid leukemia (CML), which is strongly associated with the signature BCR::ABL1 gene translocation, polycythemia vera (PV), essential thrombocythemia (ET), and primary (idiopathic) myelofibrosis (PMF), typically accompanied by molecular alterations in the JAK2, MPL, or CALR genes. There are also rarer forms such as chronic neutrophilic leukemia (CNL), which involves mutations in the CSF3R gene. However, rather than focusing on the differences between these alternate disease categories, this review aims to present a unifying molecular etiology in which these overlapping diseases are best understood as disruptions of normal hematopoietic signaling: specifically, the chronic activation of signaling pathways, particularly involving signal transducer and activator of transcription (STAT) transcription factors, most notably STAT5B, leading to the sustained stimulation of myelopoiesis, which underpins the various disease sequalae.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
2
|
Jaradat NJ, Hatmal M, Alqudah D, Taha MO. Computational workflow for discovering small molecular binders for shallow binding sites by integrating molecular dynamics simulation, pharmacophore modeling, and machine learning: STAT3 as case study. J Comput Aided Mol Des 2023; 37:659-678. [PMID: 37597062 DOI: 10.1007/s10822-023-00528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
STAT3 belongs to a family of seven transcription factors. It plays an important role in activating the transcription of various genes involved in a variety of cellular processes. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. However, since STAT3 inhibitors bind to the shallow SH2 domain of the protein, it is expected that hydration water molecules play significant role in ligand-binding complicating the discovery of potent binders. To remedy this issue, we herein propose to extract pharmacophores from molecular dynamics (MD) frames of a potent co-crystallized ligand complexed within STAT3 SH2 domain. Subsequently, we employ genetic function algorithm coupled with machine learning (GFA-ML) to explore the optimal combination of MD-derived pharmacophores that can account for the variations in bioactivity among a list of inhibitors. To enhance the dataset, the training and testing lists were augmented nearly a 100-fold by considering multiple conformers of the ligands. A single significant pharmacophore emerged after 188 ns of MD simulation to represent STAT3-ligand binding. Screening the National Cancer Institute (NCI) database with this model identified one low micromolar inhibitor most likely binds to the SH2 domain of STAT3 and inhibits this pathway.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Dana Alqudah
- Cell Therapy Center, the University of Jordan, Amman, 11942, Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
3
|
Standing D, Feess E, Kodiyalam S, Kuehn M, Hamel Z, Johnson J, Thomas SM, Anant S. The Role of STATs in Ovarian Cancer: Exploring Their Potential for Therapy. Cancers (Basel) 2023; 15:cancers15092485. [PMID: 37173951 PMCID: PMC10177275 DOI: 10.3390/cancers15092485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer (OvCa) is a deadly gynecologic malignancy that presents many clinical challenges due to late-stage diagnoses and the development of acquired resistance to standard-of-care treatment protocols. There is an increasing body of evidence suggesting that STATs may play a critical role in OvCa progression, resistance, and disease recurrence, and thus we sought to compile a comprehensive review to summarize the current state of knowledge on the topic. We have examined peer reviewed literature to delineate the role of STATs in both cancer cells and cells within the tumor microenvironment. In addition to summarizing the current knowledge of STAT biology in OvCa, we have also examined the capacity of small molecule inhibitor development to target specific STATs and progress toward clinical applications. From our research, the best studied and targeted factors are STAT3 and STAT5, which has resulted in the development of several inhibitors that are under current evaluation in clinical trials. There remain gaps in understanding the role of STAT1, STAT2, STAT4, and STAT6, due to limited reports in the current literature; as such, further studies to establish their implications in OvCa are necessitated. Moreover, due to the deficiency in our understanding of these STATs, selective inhibitors also remain elusive, and therefore present opportunities for discovery.
Collapse
Affiliation(s)
- David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Emma Feess
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Satvik Kodiyalam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Michael Kuehn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaimie Johnson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| |
Collapse
|
4
|
Yang W, Yang S, Wang L, Zhou Y, Xin Y, Li H, Mu W, Wu Q, Xu L, Zhao M, Wang C, Yu K. Clinical characteristics of 310 SARS-CoV-2 Omicron variant patients and comparison with Delta and Beta variant patients in China. Virol Sin 2022; 37:704-715. [PMID: 35948265 PMCID: PMC9357284 DOI: 10.1016/j.virs.2022.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/29/2022] [Indexed: 01/07/2023] Open
Abstract
Although the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread, data on the clinical characteristics of infected patients are limited. In this study, the demographic, clinical characteristics, and laboratory data of 310 SARS-CoV-2 Omicron variant patients treated at Haihe Hospital of Tianjin were collected and analyzed. Information on these patients was compared to 96 patients with the Delta variant of concern (VOC) and 326 patients with the Beta VOC during the previous coronavirus disease 2019 (COVID-19) outbreak in Harbin. Of the 310 patients infected with the Omicron variant, the median age was 35 years. Most patients were clinically classified as mild (57.74%), and the most common symptoms were cough (48.71%), fever (39.35%), and sore throat (38.26%). The results for different vaccination groups in the Omicron group showed that the median of “SARS-CoV-2 specific IgG” after 2 or 3 doses of vaccination was higher than the unvaccinated group (all Ps < 0.05). Older age was associated with a higher proportion of moderate cases and lower asymptomatic and mild cases based on clinical classifications. Compared to the Delta and Beta groups, the median age of the Omicron group was younger. The total number of asymptomatic patients and mild patients in the Omicron virus group was higher than the Delta and Beta groups (60.97% vs. 54.17% vs. 47.55%). This study presented the clinical characteristics of the first group of patients infected with the Omicron variant in Tianjin, China, and compared their clinical features with patients infected by the Delta and Beta variants, which would increase our understanding of the characteristics of SARS-CoV-2 Omicron variant. Clinical features of the Chinese first group of patients infected Omicron variants were studied. The effects of vaccine and age on Omicron group were analyzed. Compared with the Delta and Beta groups, the symptoms in Omicron group were less severe.
Collapse
Affiliation(s)
- Wei Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Songliu Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Lei Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yuxin Zhou
- Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, Harbin 150081, China
| | - Yu Xin
- Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, Harbin 150081, China
| | - Hongxu Li
- Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, Harbin 150081, China
| | - Wenjing Mu
- Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, Harbin 150081, China
| | - Qi Wu
- Respiratory Department, Haihe Hospital of Tianjin, Tianjin 300222, China
| | - Lei Xu
- Department of Critical Care Medicine, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Changsong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, Harbin 150081, China.
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
5
|
Zeinalzadeh E, Valerievich Yumashev A, Rahman HS, Marofi F, Shomali N, Kafil HS, Solali S, Sajjadi-Dokht M, Vakili-Samiani S, Jarahian M, Hagh MF. The Role of Janus Kinase/STAT3 Pathway in Hematologic Malignancies With an Emphasis on Epigenetics. Front Genet 2021; 12:703883. [PMID: 34992627 PMCID: PMC8725977 DOI: 10.3389/fgene.2021.703883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway has been known to be involved in cell growth, cellular differentiation processes development, immune cell survival, and hematopoietic system development. As an important member of the STAT family, STAT3 participates as a major regulator of cellular development and differentiation-associated genes. Prolonged and persistent STAT3 activation has been reported to be associated with tumor cell survival, proliferation, and invasion. Therefore, the JAK-STAT pathway can be a potential target for drug development to treat human cancers, e.g., hematological malignancies. Although STAT3 upregulation has been reported in hematopoietic cancers, protein-level STAT3 mutations have also been reported in invasive leukemias/lymphomas. The principal role of STAT3 in tumor cell growth clarifies the importance of approaches that downregulate this molecule. Epigenetic modifications are a major regulatory mechanism controlling the activity and function of STAT3. So far, several compounds have been developed to target epigenetic regulatory enzymes in blood malignancies. Here, we discuss the current knowledge about STAT3 abnormalities and carcinogenic functions in hematopoietic cancers, novel STAT3 inhibitors, the role of epigenetic mechanisms in STAT3 regulation, and targeted therapies, by focusing on STAT3-related epigenetic modifications.
Collapse
Affiliation(s)
- Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| | - Saeed Solali
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sajjadi-Dokht
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Vakili-Samiani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Regev O, Kidan N, Nicola M, Khamisie H, Ruthardt M, Mahajna J. Mesenchymal soluble factors confer imatinib drug resistance in chronic myelogenous leukemia cells. Arch Med Sci 2021; 17:266-274. [PMID: 33488882 PMCID: PMC7811319 DOI: 10.5114/aoms.2020.101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/27/2020] [Indexed: 12/04/2022] Open
Affiliation(s)
- Ofer Regev
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| | - Noa Kidan
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Nutritional Sciences, Tel Hai College, Kiryat Shmona, Israel
| | - Meshel Nicola
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| | - Hazem Khamisie
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona, Israel
| | - Martin Ruthardt
- Department of Hematology, Division of Cancer and Genetics, and Experimental Clinical Medical Center (ECMC), Medical School, Cardiff University, Cardiff, United Kingdom
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biotechnology, Tel Hai College, Kiryat Shmona, Israel
| |
Collapse
|
7
|
Yang PL, Liu LX, Li EM, Xu LY. STAT3, the Challenge for Chemotherapeutic and Radiotherapeutic Efficacy. Cancers (Basel) 2020; 12:cancers12092459. [PMID: 32872659 PMCID: PMC7564975 DOI: 10.3390/cancers12092459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Chemoradiotherapy is one of the most effective and extensively used strategies for cancer treatment. Signal transducer and activator of transcription 3 (STAT3) regulates vital biological processes, such as cell proliferation and cell growth. It is constitutively activated in various cancers and limits the application of chemoradiotherapy. Accumulating evidence suggests that STAT3 regulates resistance to chemotherapy and radiotherapy and thereby impairs therapeutic efficacy by mediating its feedback loop and several target genes. The alternative splicing product STAT3β is often identified as a dominant-negative regulator, but it enhances sensitivity to chemotherapy and offers a new and challenging approach to reverse therapeutic resistance. We focus here on exploring the role of STAT3 in resistance to receptor tyrosine kinase (RTK) inhibitors and radiotherapy, outlining the potential of targeting STAT3 to overcome chemo(radio)resistance for improving clinical outcomes, and evaluating the importance of STAT3β as a potential therapeutic approach to overcomes chemo(radio)resistance. In this review, we discuss some new insights into the effect of STAT3 and its subtype STAT3β on chemoradiotherapy sensitivity, and we explore how these insights influence clinical treatment and drug development for cancer.
Collapse
Affiliation(s)
- Ping-Lian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Lu-Xin Liu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (E.-M.L.); (L.-Y.X.); Tel.: +86-754-88900460 (L.-Y.X.); Fax: +86-754-88900847 (L.-Y.X.)
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (E.-M.L.); (L.-Y.X.); Tel.: +86-754-88900460 (L.-Y.X.); Fax: +86-754-88900847 (L.-Y.X.)
| |
Collapse
|
8
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
9
|
Wu M, Song D, Li H, Yang Y, Ma X, Deng S, Ren C, Shu X. Negative regulators of STAT3 signaling pathway in cancers. Cancer Manag Res 2019; 11:4957-4969. [PMID: 31213912 PMCID: PMC6549392 DOI: 10.2147/cmar.s206175] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
STAT3 is the most ubiquitous member of the STAT family and involved in many biological processes, such as cell proliferation, differentiation, and apoptosis. Mounting evidence has revealed that STAT3 is aberrantly activated in many malignant tumors and plays a critical role in cancer progression. STAT3 is usually regarded as an effective molecular target for cancer treatment, and abolishing the STAT3 activity may diminish tumor growth and metastasis. Recent studies have shown that negative regulators of STAT3 signaling such as PIAS, SOCS, and PTP, can effectively retard tumor progression. However, PIAS, SOCS, and PTP have also been reported to correlate with tumor malignancy, and their biological function in tumorigenesis and antitumor therapy are somewhat controversial. In this review, we summarize actual knowledge on the negative regulators of STAT3 in tumors, and focus on the potential role of PIAS, SOCS, and PTP in cancer treatment. Furthermore, we also outline the STAT3 inhibitors that have entered clinical trials. Targeting STAT3 seems to be a promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Moli Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Danyang Song
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hui Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yang Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Changle Ren
- Surgery Department of Dalian Municipal Central Hospital, Dalian Medical University, Dalian 116033, People's Republic of China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| |
Collapse
|
10
|
Shi Y, Zhang Z, Qu X, Zhu X, Zhao L, Wei R, Guo Q, Sun L, Yin X, Zhang Y, Li X. Roles of STAT3 in leukemia (Review). Int J Oncol 2018; 53:7-20. [PMID: 29749432 DOI: 10.3892/ijo.2018.4386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Leukemia is a type of hematopoietic malignancy, and the incidence rate in the United States and European Union increases by an average of 0.6 to 0.7% annually. The incidence rate in China is approximately 5.17/100,000 individuals, and the mortality rate is 3.94/100,000 individuals. Leukemia is the most common tumor affecting children and adults under 35 years of age, and is one of the major diseases leading to the death of adolescents. Signal transducer and activator of transcription 3 (STAT3) is a vital regulatory factor of signal transduction and transcriptional activation, and once activated, the phosphorylated form of STAT3 (p-STAT3) is transferred into the nucleus to regulate the transcription of target genes, and plays important roles in cell proliferation, differentiation, apoptosis and other physiological processes. An increasing number of studies have confirmed that the abnormal activation of STAT3 is involved in the development of tumors. In this review, the roles of STAT3 in the pathogenesis, diagnosis, treatment and prognosis of leukemia are discussed in the aspects of cell proliferation, differentiation and apoptosis, with the aim to further clarify the roles of STAT3 in leukemia, and shed light into possible novel targets and strategies for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yin Shi
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xintao Qu
- Department of Bone and Joint Surgery Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xunqiang Yin
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yunhong Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
11
|
Wang H, Xie B, Kong Y, Tao Y, Yang G, Gao M, Xu H, Zhan F, Shi J, Zhang Y, Wu X. Overexpression of RPS27a contributes to enhanced chemoresistance of CML cells to imatinib by the transactivated STAT3. Oncotarget 2017; 7:18638-50. [PMID: 26942564 PMCID: PMC4951316 DOI: 10.18632/oncotarget.7888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/13/2016] [Indexed: 12/13/2022] Open
Abstract
STAT3 plays a pivotal role in the hematopoietic system, which constitutively activated by BCR–ABL via JAK and Erk/MAP-kinase pathways. Phospho-STAT3 was overexpressed in imatinib-resistant CML patients as relative to imatinib responsive ones. By activation of the STAT3 pathway, BCR–ABL can promote cell cycling, and inhibit differentiation and apoptosis. Ribosomal protein S27a (RPS27a) performs extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. RPS27a can promote proliferation, regulate cell cycle progression and inhibit apoptosis of leukemia cells. However, the relationship between STAT3 and RPS27a has not been reported. In this study, we detected a significantly increased expression of STAT3 and RPS27a in bone marrow samples from CML-AP/BP patients compared with those from CML-CP. In addition, we also demonstrated that it was a positive correlation between the level of STAT3 and that of RPS27a. Imatinib-resistant K562/G01 cells expressed significantly higher levels of STAT3 and RPS27a compared with those of K562 cells. RPS27a could be transactivated by p-STAT3 through the specific p-STAT3-binding site located nt −633 to −625 and −486 to −478 of the RPS27a gene promoter in a dose-dependent manner. The transactivated RPS27a could decrease the percentage of apoptotic CML cells induced by imatinib. And the effect of STAT3 overexpression could be counteracted by the p-STAT3 inhibitor WP1066 or RPS27a knockdown. These results suggest that drugs targeting STAT3/p-STAT3/RPS27a combining with TKI might represent a novel therapy strategy in patients with TKI-resistant CML.
Collapse
Affiliation(s)
- Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Kong
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongwei Xu
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa, USA
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa, USA
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiwen Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Ferraz ERA, Fernandes AS, Salviano I, Felzenszwalb I, Mencalha AL. Investigation of the mutagenic and genotoxic activities of LLL-3, a STAT3 inhibitor. Drug Chem Toxicol 2017; 40:30-35. [PMID: 28140701 DOI: 10.3109/01480545.2016.1167901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
LLL-3, an anthracene derived compound, has been shown to be a promising therapeutic agent for the treatment of some kinds of cancer such as chronic myeloid leukemia and glioblastoma. However, no data regarding the toxic properties of this compound have yet been described in the literature. The present work aimed to investigate the mutagenic and genotoxic activities of LLL-3 using the TA97, TA98, TA100, TA102 and TA104 Salmonella/microsome strains for the Ames test and the micronucleus assay with the mouse macrophage cell line RAW 264.7. The findings showed that LLL-3, at doses of 0.001, 0.01, 0.1, 1.0 and 10.0 μg/plate, did not induce mutagenic activity in the Salmonella strains used under the conditions tested, and nor did it present genotoxicity in RAW 264.7 cells, at 10.0, 100.0 and 1000.0 μg/mL doses. Moreover, it is important to point out that the mitotic index of the cells decreased after exposure to LLL-3 under the same conditions tested, which may suggest some cytostatic effect, since this compound acts by inhibiting STAT3. Since most drugs used in the treatment of cancer present mutagenic activity as an adverse effect, these results suggest that LLL-3 is a promising drug for cancer therapy.
Collapse
Affiliation(s)
- E R A Ferraz
- a Environmental Mutagenesis Laboratory, Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil.,b School of Pharmacy, Fluminense Federal University , Niteroi , RJ , Brazil , and
| | - A S Fernandes
- a Environmental Mutagenesis Laboratory, Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - I Salviano
- c Laboratory of Cancer Biology , Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - I Felzenszwalb
- a Environmental Mutagenesis Laboratory, Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - A L Mencalha
- c Laboratory of Cancer Biology , Department of Biophysics and Biometry, Roberto Alcantra Gomes Biology Institute, University of the State of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
13
|
Bharadwaj U, Kasembeli MM, Tweardy DJ. STAT3 Inhibitors in Cancer: A Comprehensive Update. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42949-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Furtek SL, Backos DS, Matheson CJ, Reigan P. Strategies and Approaches of Targeting STAT3 for Cancer Treatment. ACS Chem Biol 2016; 11:308-18. [PMID: 26730496 DOI: 10.1021/acschembio.5b00945] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates the expression of genes related to cell cycle, cell survival, and immune response associated with cancer progression and malignancy in a number of cancer types. Once activated, STAT3 forms a homodimer and translocates to the nucleus where it binds DNA promoting the translation of target genes associated with antiapoptosis, angiogenesis, and invasion/migration. In normal cells, levels of activated STAT3 remain transient; however, STAT3 remains constitutively active in approximately 70% of human solid tumors. The pivotal role of STAT3 in tumor progression has promoted a campaign in drug discovery to identify small molecules that disrupt the function of STAT3. A range of approaches have been used to identify novel small molecule inhibitors of STAT3, including high-throughput screening of chemical libraries, computational-based virtual screening, and fragment-based design strategies. The most common approaches in targeting STAT3 activity are either via the inhibition of tyrosine kinases capable of phosphorylating and thereby activating STAT3 or by preventing the formation of functional STAT3 dimers through disruption of the SH2 domains. However, the targeting of the STAT3 DNA-binding domain and disruption of binding of STAT3 to its DNA promoter have not been thoroughly examined, mainly due to the lack of adequate assay systems. This review summarizes the development of STAT3 inhibitors organized by the approach used to inhibit STAT3, the current inhibitors of each class, and the assay systems used to evaluate STAT3 inhibition and offers an insight into future approaches for small molecule STAT3 inhibitor development.
Collapse
Affiliation(s)
- Steffanie L. Furtek
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Donald S. Backos
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Christopher J. Matheson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| |
Collapse
|
15
|
Engür S, Dikmen M, Öztürk Y. Comparison of antiproliferative and apoptotic effects of a novel proteasome inhibitor MLN2238 with bortezomib on K562 chronic myeloid leukemia cells. Immunopharmacol Immunotoxicol 2015; 38:87-97. [DOI: 10.3109/08923973.2015.1122616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Abstract
Pancreatic cancer is an insidious type of cancer with its symptoms manifested upon extensive disease. The overall 5-year survival rates between 0.4 and 4%. Surgical resection is an option for only 10% of the patients with pancreatic cancer. Local recurrence and hepatic metastases occur within 2 years after surgery. There are currently several molecular pathways investigated and novel targeted treatments are on the market. However; the nature of pancreatic cancer with its ability to spread locally in the primary site and lymph nodes indicates that further experimentation with local interventional therapies could be a future treatment proposal as palliative care or adjunct to gene therapy and chemotherapy/radiotherapy. In the current review, we will summarize the molecular pathways and present the interventional treatment options for pancreatic cancer.
Collapse
|
17
|
Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene 2015; 35:939-51. [DOI: 10.1038/onc.2015.150] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
|
18
|
Zuo M, Li C, Lin J, Javle M. LLL12, a novel small inhibitor targeting STAT3 for hepatocellular carcinoma therapy. Oncotarget 2015; 6:10940-9. [PMID: 25883212 PMCID: PMC4484430 DOI: 10.18632/oncotarget.3458] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 01/19/2023] Open
Abstract
The constitutive activation of signal transducer and activator of transcription 3 (STAT3) is frequently detected in clinical incidences of hepatocellular carcinoma (HCC) but not in normal human hepatocytes. STAT3 signaling plays pivotal roles in angiogenesis, survival, metastasis, and growth of HCC. Recent evidence suggests that the blockade of aberrant STAT3 pathways can be exploited as a therapeutic strategy for HCC. We have developed the novel small molecular STAT3 inhibitor LLL12 on the basis of curcumin structure using computer-aided rational design. LLL12 has shown antitumor activity in various solid tumors including breast, brain, pancreatic cancer, and glioblastoma in vitro and in vivo. In this study, we hypothesized LLL12 inhibits STAT3 phosphorylation at tyrosine 705 (Y705) in HCC and show antitumor activity in HCC in vitro and in vivo. Our results show that LLL12 selectively inhibited HCC cell proliferation and induced apoptosis in SNU387, SNU398, SNU449, and Hep3B HCC cells in vitro. Furthermore, LLL12 at 5 mg/kg/day significantly inhibited the growth of SNU398 xenografts in nude mice. Collectively, our results indicate that LLL12 could be used to target STAT3 for the effective prevention or treatment of HCC.
Collapse
Affiliation(s)
- Mingxin Zuo
- 1 Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chenglong Li
- 2 Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jiayuh Lin
- 3 Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio 43205, USA
| | - Milind Javle
- 1 Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
19
|
Mencalha AL, Corrêa S, Salles D, Du Rocher B, Santiago MF, Abdelhay E. Inhibition of STAT3-interacting protein 1 (STATIP1) promotes STAT3 transcriptional up-regulation and imatinib mesylate resistance in the chronic myeloid leukemia. BMC Cancer 2014; 14:866. [PMID: 25417721 PMCID: PMC4258947 DOI: 10.1186/1471-2407-14-866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/11/2014] [Indexed: 01/16/2023] Open
Abstract
Background Signal transducer and activator of transcription 3 (STAT3) is an important transcriptional factor frequently associated with the proliferation and survival of a large number of distinct cancer types. However, the signaling pathways and mechanisms that regulate STAT3 activation remain to be elucidated. Methods In this study we took advantage of existing cellular models for chronic myeloid leukemia resistance, western blot, in vitro signaling, real time PCR, flow cytometry approaches for cell cycle and apoptosis evaluation and siRNA assay in order to investigate the possible relationship between STATIP1, STAT3 and CML resistance. Results Here, we report the characterization of STAT3 protein regulation by STAT3-interacting protein (STATIP1) in the leukemia cell line K562, which demonstrates constitutive BCR-ABL TK activity. K562 cells exhibit high levels of phosphorylated STAT3 accumulated in the nucleus and enhanced BCR-ABL-dependent STAT3 transcriptional activity. Moreover, we demonstrate that STATIP1 is not involved in either BCR-ABL or STAT3 signaling but that STATIP1 is involved in the down-regulation of STAT3 transcription levels; STATIP1-depleted K562 cells display increased proliferation and increased levels of the anti-apoptosis STAT3 target genes CCND1 and BCL-XL, respectively. Furthermore, we demonstrated that Lucena, an Imatinib (IM)-resistant cell line, exhibits lower STATIP1 mRNA levels and undergoes apoptosis/cell cycle arrest in response to STAT3 inhibition together with IM treatment. We provide evidence that STATIP1 siRNA could confer therapy resistance in the K562 cells. Moreover, analysis of CML patients showed an inverse expression of STAIP1 and STAT3 mRNA levels, ratifying that IM-resistant patients present low STATIP1/high STAT3 mRNA levels. Conclusions Our data suggest that STATIP1 may be a negative regulator of STAT3 and demonstrate its involvement in IM therapy resistance in CML.
Collapse
Affiliation(s)
- André L Mencalha
- Bone Marrow Transplantation Unit (CEMO), National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
20
|
Furqan M, Akinleye A, Mukhi N, Mittal V, Chen Y, Liu D. STAT inhibitors for cancer therapy. J Hematol Oncol 2013; 6:90. [PMID: 24308725 PMCID: PMC4029528 DOI: 10.1186/1756-8722-6-90] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/02/2013] [Indexed: 12/24/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) proteins are a family of cytoplasmic transcription factors consisting of 7 members, STAT1 to STAT6, including STAT5a and STAT5b. STAT proteins are thought to be ideal targets for anti-cancer therapy since cancer cells are more dependent on the STAT activity than their normal counterparts. Inhibitors targeting STAT3 and STAT5 have been developed. These included peptidomimetics, small molecule inhibitors and oligonucleotides. This review summarized advances in preclinical and clinical development of these compounds.
Collapse
Affiliation(s)
- Muhammad Furqan
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA
| | - Akintunde Akinleye
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA
| | - Nikhil Mukhi
- Department of Medicine, SUNY Downstate Medical Center Brooklyn, Brooklyn, NY 11203, USA
| | - Varun Mittal
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA
| | - Yamei Chen
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA
- Department of Hematology, Xiamen Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Delong Liu
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA
- Division of Hematology and Oncology, Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA
| |
Collapse
|
21
|
Forkhead box M1 (FoxM1) gene is a new STAT3 transcriptional factor target and is essential for proliferation, survival and DNA repair of K562 cell line. PLoS One 2012; 7:e48160. [PMID: 23110199 PMCID: PMC3480485 DOI: 10.1371/journal.pone.0048160] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 09/21/2012] [Indexed: 01/16/2023] Open
Abstract
The forkhead box (Fox) M1 gene belongs to a superfamily of evolutionarily conserved transcriptional regulators that are involved in a wide range of biological processes, and its deregulation has been implicated in cancer survival, proliferation and chemotherapy resistance. However, the role of FoxM1, the signaling involved in its activation and its role in leukemia are poorly known. Here, we demonstrate by gene promoter analysis, Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays that FoxM1 is a new target of the STAT3 transcriptional activator. Additionally, FoxM1 is transcriptionally dependent on STAT3 signaling activation. Furthermore, we verified that FoxM1 is crucial for K562 cell proliferation, cell cycle checkpoints and viability and could be related to chemotherapeutic resistance. By microarray analysis, we determined the signaling pathways related to FoxM1 expression and its role in DNA repair using K562 cells. Our results revealed new signaling involved in FoxM1 expression and its role in leukemic cells that elucidate cellular mechanisms associated with the development of leukemia and disease progression.
Collapse
|
22
|
Debnath B, Xu S, Neamati N. Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J Med Chem 2012; 55:6645-68. [PMID: 22650325 DOI: 10.1021/jm300207s] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bikash Debnath
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | | | | |
Collapse
|
23
|
Nair RR, Tolentino JH, Hazlehurst LA. Role of STAT3 in Transformation and Drug Resistance in CML. Front Oncol 2012; 2:30. [PMID: 22649784 PMCID: PMC3355894 DOI: 10.3389/fonc.2012.00030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/15/2012] [Indexed: 12/20/2022] Open
Abstract
Chronic myeloid leukemia (CML) is initially driven by the bcr-abl fusion oncoprotein. The identification of bcr-abl led to the discovery and rapid translation into the clinic of bcr-abl kinase inhibitors. Although, bcr-abl inhibitors are efficacious, experimental evidence indicates that targeting bcr-abl is not sufficient for elimination of minimal residual disease found within the bone marrow (BM). Experimental evidence indicates that the failure to eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus curative strategies will likely need to focus on strategies where bcr-abl inhibitors are given in combination with agents that specifically target the leukemic stem cell or the leukemic stem cell niche. One potential target to be exploited is the Janus kinase (JAK)/signal transducers and activators of transcription 3 (STAT3) pathway. Recently using STAT3 conditional knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly, in the absence of treatment, STAT3 was not shown to be required for maintenance of the disease, suggesting that STAT3 is required only in the tumor initiating stem cell population (Hoelbl et al., 2010). In the context of the BM microenvironment, STAT3 is activated in a bcr-abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown to contribute to cell survival even in the event of complete inhibition of bcr-abl activity within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an attractive therapeutic target for developing strategies for targeting the JAK-STAT3 pathway in combination with bcr-abl kinase inhibitors and may represent a viable strategy for eliminating or reducing minimal residual disease located in the BM in CML.
Collapse
Affiliation(s)
- Rajesh R Nair
- Molecular Oncology Program, H. Lee Moffitt Cancer Center Tampa, FL, USA
| | | | | |
Collapse
|
24
|
A comparative proteomic study identified LRPPRC and MCM7 as putative actors in imatinib mesylate cross-resistance in Lucena cell line. Proteome Sci 2012; 10:23. [PMID: 22458888 PMCID: PMC3361502 DOI: 10.1186/1477-5956-10-23] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/30/2012] [Indexed: 11/23/2022] Open
Abstract
Background Although chronic myeloid leukemia (CML) treatment has improved since the introduction of imatinib mesylate (IM), cases of resistance have been reported. This resistance has been associated with the emergence of multidrug resistance (MDR) phenotype, as a BCR-ABL independent mechanism. The classic pathway studied in MDR promotion is ATP-binding cassette (ABC) family transporters expression, but other mechanisms that drive drug resistance are largely unknown. To better understand IM therapy relapse due to the rise of MDR, we compared the proteomic profiles of K562 and Lucena (K562/VCR) cells. Results The use of 2-DE coupled with a MS approach resulted in the identification of 36 differentially expressed proteins. Differential mRNA levels of leucine-rich PPR motif-containing (LRPPRC) protein, minichromosome maintenance complex component 7 (MCM7) and ATP-binding cassette sub-family B (MDR/TAP) member 1 (ABCB1) were capable of defining samples from CML patients as responsive or resistant to therapy. Conclusions Through the data presented in this work, we show the relevance of MDR to IM therapy. In addition, our proteomic approach identified candidate actors involved in resistance, which could lead to additional information on BCR-ABL-independent molecular mechanisms.
Collapse
|