1
|
Baran O, Akgun MY, Kayhan A, Evran S, Ozbek A, Akyoldas G, Samanci MY, Demirel N, Sonmez D, Serin H, Kocak A, Kemerdere R, Tanriverdi T. The association between calreticulin and glucagon-like peptide-1 expressions with prognostic factors in high-grade gliomas. J Cancer Res Ther 2024; 20:25-32. [PMID: 38554294 DOI: 10.4103/jcrt.jcrt_1519_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/26/2022] [Indexed: 04/01/2024]
Abstract
OBJECTIVE The aim of this study is to present the expressions of Calreticulin (CALR) and Glucagon-like peptide-1 (GLP-1) in high-grade gliomas and to further show the relation between the levels of these molecules and Ki-67 index, presence of Isocitrate dehydrogenase (IDH)-1 mutation, and tumor grade. PATIENTS AND METHODS A total of 43 patients who underwent surgical resection due to high-grade gliomas (HGG) (grades III and IV) were included. The control group comprised 27 people who showed no gross pathology in the brain during the autopsy procedures. Adequately sized tumor samples were removed from each patient during surgery, and cerebral tissues were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. RESULTS Patients with high-grade gliomas showed significantly higher levels of CALR and significantly lower levels of GLP-1 when compared to control subjects (P = 0.001). CALR levels were significantly higher, GLP-1 levels were significantly lower in grade IV gliomas than those in grade III gliomas (P = 0.001). Gliomas with negative IDH-1 mutations had significantly higher CALR expressions and gliomas with positive IDH-1 mutations showed significantly higher GLP-1 expressions (P = 0.01). A positive correlation between Ki-67 and CALR and a negative correlation between Ki-67 and GLP-1 expressions were observed in grade IV gliomas (P = 0.001). CONCLUSIONS Our results showed that higher CALR and lower GLP-1 expressions are found in HGGs compared to normal cerebral tissues.
Collapse
Affiliation(s)
- Oguz Baran
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | | | - Ahmet Kayhan
- Department of Neurosurgery, Haseki Research and Training Hospital, Istanbul, Turkey
| | - Sevket Evran
- Department of Neurosurgery, Haseki Research and Training Hospital, Istanbul, Turkey
| | - Arif Ozbek
- Department of Neurosurgery, Medipol Mega University Hospital, Istanbul, Turkey
| | - Goktug Akyoldas
- Department of Neurosurgery, Koç University Hospital, Istanbul, Turkey
| | | | - Nail Demirel
- Department of Neurosurgery, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Derya Sonmez
- Clinical Biochemistry Laboratory, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Huriye Serin
- Clinical Biochemistry Laboratory, Istanbul Research and Training Hospital, Istanbul, Turkey
| | - Ayhan Kocak
- Department of Neurosurgery, Taksim Research and Training Hospital, Istanbul, Turkey
| | - Rahsan Kemerdere
- Department of Neurosurgery, Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Taner Tanriverdi
- Department of Neurosurgery, Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
2
|
Wang G, Liu Y, Liu S, Lin Y, Hu C. Oncolyic Virotherapy for Prostate Cancer: Lighting a Fire in Winter. Int J Mol Sci 2022; 23:12647. [PMID: 36293504 PMCID: PMC9603894 DOI: 10.3390/ijms232012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022] Open
Abstract
As the most common cancer of the genitourinary system, prostate cancer (PCa) is a global men's health problem whose treatments are an urgent research issue. Treatment options for PCa include active surveillance (AS), surgery, endocrine therapy, chemotherapy, radiation therapy, immunotherapy, etc. However, as the cancer progresses, the effectiveness of treatment options gradually decreases, especially in metastatic castration-resistant prostate cancer (mCRPC), for which there are fewer therapeutic options and which have a shorter survival period and worse prognosis. For this reason, oncolytic viral therapy (PV), with its exceptional properties of selective tumor killing, relatively good safety in humans, and potential for transgenic delivery, has attracted increasing attention as a new form of anti-tumor strategy for PCa. There is growing evidence that OV not only kills tumor cells directly by lysis but can also activate anticancer immunity by acting on the tumor microenvironment (TME), thereby preventing tumor growth. In fact, evidence of the efficacy of this strategy has been observed since the late 19th century. However, subsequently, interest waned. The renewed interest in this therapy was due to advances in biotechnological methods and innovations at the end of the 20th century, which was also the beginning of PCa therapy with OV. Moreover, in combination with chemotherapy, radiotherapy, gene therapy or immunotherapy, OV viruses can have a wide range of applications and can provide an effective therapeutic result in the treatment of PCa.
Collapse
Affiliation(s)
- Gongwei Wang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shuoru Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuan Lin
- Department of Pharmacology, Sun Yat-sen University, Guangzhou 528478, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
3
|
Hernández ÁP, Juanes-Velasco P, Landeira-Viñuela A, Bareke H, Montalvillo E, Góngora R, Fuentes M. Restoring the Immunity in the Tumor Microenvironment: Insights into Immunogenic Cell Death in Onco-Therapies. Cancers (Basel) 2021; 13:2821. [PMID: 34198850 PMCID: PMC8201010 DOI: 10.3390/cancers13112821] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Immunogenic cell death (ICD) elicited by cancer therapy reshapes the tumor immune microenvironment. A long-term adaptative immune response can be initiated by modulating cell death by therapeutic approaches. Here, the major hallmarks of ICD, endoplasmic reticulum (ER) stress, and damage-associated molecular patterns (DAMPs) are correlated with ICD inducers used in clinical practice to enhance antitumoral activity by suppressing tumor immune evasion. Approaches to monitoring the ICD triggered by antitumoral therapeutics in the tumor microenvironment (TME) and novel perspective in this immune system strategy are also reviewed to give an overview of the relevance of ICD in cancer treatment.
Collapse
Affiliation(s)
- Ángela-Patricia Hernández
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Halin Bareke
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Institute of Health Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Enrique Montalvillo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (Á.-P.H.); (P.J.-V.); (A.L.-V.); (H.B.); (E.M.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
4
|
Maes K, Mondino A, Lasarte JJ, Agirre X, Vanderkerken K, Prosper F, Breckpot K. Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential. Front Immunol 2021; 12:652160. [PMID: 33859645 PMCID: PMC8042276 DOI: 10.3389/fimmu.2021.652160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer cells are under the surveillance of the host immune system. Nevertheless, a number of immunosuppressive mechanisms allow tumors to escape protective responses and impose immune tolerance. Epigenetic alterations are central to cancer cell biology and cancer immune evasion. Accordingly, epigenetic modulating agents (EMAs) are being exploited as anti-neoplastic and immunomodulatory agents to restore immunological fitness. By simultaneously acting on cancer cells, e.g. by changing expression of tumor antigens, immune checkpoints, chemokines or innate defense pathways, and on immune cells, e.g. by remodeling the tumor stroma or enhancing effector cell functionality, EMAs can indeed overcome peripheral tolerance to transformed cells. Therefore, combinations of EMAs with chemo- or immunotherapy have become interesting strategies to fight cancer. Here we review several examples of epigenetic changes critical for immune cell functions and tumor-immune evasion and of the use of EMAs in promoting anti-tumor immunity. Finally, we provide our perspective on how EMAs could represent a game changer for combinatorial therapies and the clinical management of cancer.
Collapse
Affiliation(s)
- Ken Maes
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, Vrije Universiteit Brussel (VUB), Universiteit Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Xabier Agirre
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Pamplona, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Karin Vanderkerken
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Felipe Prosper
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Pamplona, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain.,Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
West AC, Christiansen AJ, Smyth MJ, Johnstone RW. The combination of histone deacetylase inhibitors with immune-stimulating antibodies has potent anti-cancer effects. Oncoimmunology 2021; 1:377-379. [PMID: 22737621 PMCID: PMC3382866 DOI: 10.4161/onci.18804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The use of immunotherapy to treat cancer is rapidly gaining momentum. Using pre-clinical mouse models, we have recently demonstrated potent and long lasting tumor regression can be elicited by immune-stimulating monoclonal antibodies (mAbs) when combined with histone deacetylase inhibitors (HDACi) and believe this therapy will have broad application in humans.
Collapse
Affiliation(s)
- Alison C West
- Cancer Therapeutics; The Peter MacCallum Cancer Centre; East Melbourne, Australia ; Cancer Immunology Program; The Peter MacCallum Cancer Centre; East Melbourne, Australia
| | | | | | | |
Collapse
|
6
|
Vacchelli E, Galluzzi L, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Kroemer G. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2021; 1:179-188. [PMID: 22720239 PMCID: PMC3376992 DOI: 10.4161/onci.1.2.19026] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The long-established notion that apoptosis would be immunologically silent, and hence it would go unnoticed by the immune system, if not tolerogenic, and hence it would actively suppress immune responses, has recently been revisited. In some instances, indeed, cancer cells undergo apoptosis while emitting a spatiotemporally-defined combination of signals that renders them capable of eliciting a long-term protective antitumor immune response. Importantly, only a few anticancer agents can stimulate such an immunogenic cell death. These include cyclophosphamide, doxorubicin and oxaliplatin, which are currently approved by FDA for the treatment of multiple hematologic and solid malignancies, as well as mitoxantrone, which is being used in cancer therapy and against multiple sclerosis. In this Trial Watch, we will review and discuss the progress of recent (initiated after January 2008) clinical trials evaluating the off-label use of cyclophosphamide, doxorubicin, oxaliplatin and mitoxantrone.
Collapse
Affiliation(s)
- Erika Vacchelli
- U848; Villejuif, France; INSERM; Université Paris-Sud/Paris XI; Paris, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 2020; 17:725-741. [PMID: 32760014 DOI: 10.1038/s41571-020-0413-z] [Citation(s) in RCA: 729] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
Conventional chemotherapeutics have been developed into clinically useful agents based on their ability to preferentially kill malignant cells, generally owing to their elevated proliferation rate. Nonetheless, the clinical activity of various chemotherapies is now known to involve the stimulation of anticancer immunity either by initiating the release of immunostimulatory molecules from dying cancer cells or by mediating off-target effects on immune cell populations. Understanding the precise immunological mechanisms that underlie the efficacy of chemotherapy has the potential not only to enable the identification of superior biomarkers of response but also to accelerate the development of synergistic combination regimens that enhance the clinical effectiveness of immune checkpoint inhibitors (ICIs) relative to their effectiveness as monotherapies. Indeed, accumulating evidence supports the clinical value of combining appropriately dosed chemotherapies with ICIs. In this Review, we discuss preclinical and clinical data on the immunostimulatory effects of conventional chemotherapeutics in the context of ICI-based immunotherapy.
Collapse
|
8
|
Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, Draganov D, Edelson RL, Formenti SC, Fucikova J, Gabriele L, Gaipl US, Gameiro SR, Garg AD, Golden E, Han J, Harrington KJ, Hemminki A, Hodge JW, Hossain DMS, Illidge T, Karin M, Kaufman HL, Kepp O, Kroemer G, Lasarte JJ, Loi S, Lotze MT, Manic G, Merghoub T, Melcher AA, Mossman KL, Prosper F, Rekdal Ø, Rescigno M, Riganti C, Sistigu A, Smyth MJ, Spisek R, Stagg J, Strauss BE, Tang D, Tatsuno K, van Gool SW, Vandenabeele P, Yamazaki T, Zamarin D, Zitvogel L, Cesano A, Marincola FM. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer 2020; 8:e000337. [PMID: 32209603 PMCID: PMC7064135 DOI: 10.1136/jitc-2019-000337] [Citation(s) in RCA: 596] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York City, New York, USA
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Université de Paris, Paris, France
| | - Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Sarah Warren
- NanoString Technologies, Seattle, Washington, USA
| | - Sandy Adjemian
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Cancer Biology, KU Leuevn, Leuven, Belgium
| | - Aitziber Buqué Martinez
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - George Coukos
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM "Molecular Radiotherapy and therapeutic innovation", U1030 Molecular Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
- SIRIC SOCRATES, DHU Torino, Faculté de Medecine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | | | - Richard L Edelson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
| | - Jitka Fucikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio, Prague, Czech Republic
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Udo S Gaipl
- Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, National Cancer Institute/Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
| | - Jian Han
- iRepertoire, Inc, Huntsville, Alabama, USA
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital/Institute of Cancer Research National Institute for Health Biomedical Research Centre, London, UK
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, National Cancer Institute/Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Tim Illidge
- University of Manchester, NIHR Manchester Biomedical Research Centre, Christie Hospital, Manchester, UK
| | - Michael Karin
- Department of Pharmacology and Pathology, University of California at San Diego (UCSD) School of Medicine, La Jolla, California, USA
| | - Howard L Kaufman
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Replimune, Inc, Woburn, Massachusetts, USA
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Guido Kroemer
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1138, Paris, France
- Sorbonne Université, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Juan Jose Lasarte
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Sherene Loi
- Division of Research and Clinical Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, MSKCC, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
- Parker Institute for Cancer Immunotherapy, MSKCC, New York City, New York, USA
| | | | | | - Felipe Prosper
- Hematology and Cell Therapy, Clinica Universidad de Navarra, Pamplona, Spain
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Maria Rescigno
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
- Interdepartmental Research Center of Molecular Biotechnology, University of Torino, Torino, Italy
| | - Antonella Sistigu
- UOSD Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Radek Spisek
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio, Prague, Czech Republic
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec City, Canada
- Institut du Cancer de Montréal, Montréal, Quebec City, Canada
- Faculté de Pharmacie de l'Université de Montréal, Montréal, Quebec City, Canada
| | - Bryan E Strauss
- Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kazuki Tatsuno
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Methusalem program, Ghent University, Ghent, Belgium
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
| | - Dmitriy Zamarin
- Department of Medicine, Weill Cornell Medical College, New York City, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe labellisée par la Ligue contre le cancer, Gustave Roussy, Villejuif, France
- Faculty of Medicine, University of Paris Sud/Paris Saclay, Le Kremlin-Bicêtre, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | | | | |
Collapse
|
9
|
Bezu L, Wu Chuang A, Liu P, Kroemer G, Kepp O. Immunological Effects of Epigenetic Modifiers. Cancers (Basel) 2019; 11:cancers11121911. [PMID: 31805711 PMCID: PMC6966579 DOI: 10.3390/cancers11121911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Epigenetic alterations are associated with major pathologies including cancer. Epigenetic dysregulation, such as aberrant histone acetylation, altered DNA methylation, or modified chromatin organization, contribute to oncogenesis by inactivating tumor suppressor genes and activating oncogenic pathways. Targeting epigenetic cancer hallmarks can be harnessed as an immunotherapeutic strategy, exemplified by the use of pharmacological inhibitors of DNA methyltransferases (DNMT) and histone deacetylases (HDAC) that can result in the release from the tumor of danger-associated molecular patterns (DAMPs) on one hand and can (re-)activate the expression of tumor-associated antigens on the other hand. This finding suggests that epigenetic modifiers and more specifically the DNA methylation status may change the interaction of chromatin with chaperon proteins including HMGB1, thereby contributing to the antitumor immune response. In this review, we detail how epigenetic modifiers can be used for stimulating therapeutically relevant anticancer immunity when used as stand-alone treatments or in combination with established immunotherapies.
Collapse
Affiliation(s)
- Lucillia Bezu
- Service anesthésie-réanimation, Hôpital européen Georges Pompidou, AP-HP, 75015 Paris, France;
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Alejandra Wu Chuang
- Faculty of Medicine, University of Paris Sud, 94270 Kremlin-Bicêtre, France;
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, 215123 Suzhou, China
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence: (G.K.); (O.K.)
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, 75000, Paris, France;
- Université de Paris, Sorbonne, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France
- Correspondence: (G.K.); (O.K.)
| |
Collapse
|
10
|
Yang Y, Nam GH, Kim GB, Kim YK, Kim IS. Intrinsic cancer vaccination. Adv Drug Deliv Rev 2019; 151-152:2-22. [PMID: 31132376 DOI: 10.1016/j.addr.2019.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Immunotherapy is revolutionizing the treatment of cancer, and the current immunotherapeutics have remarkably improved the outcomes for some cancer patients. However, we still need answers for patients with immunologically cold tumors that do not benefit from the current immunotherapy treatments. Here, we suggest a novel strategy that is based on using a very old and sophisticated system for cancer immunotherapy, namely "intrinsic cancer vaccination", which seeks to awaken our own immune system to activate tumor-specific T cells. To do this, we must take advantage of the genetic instability of cancer cells and the expression of cancer cell neoantigens to trigger immunity against cancer cells. It will be necessary to not only enhance the phagocytosis of cancer cells by antigen presenting cells but also induce immunogenic cancer cell death and the subsequent immunogenic clearance, cross-priming and generation of tumor-specific T cells. This strategy will allow us to avoid using known tumor-specific antigens, ex vivo manipulation or adoptive cell therapy; rather, we will efficiently present cancer cell neoantigens to our immune system and propagate the cancer-immunity cycle. This strategy simply follows the natural cycle of cancer-immunity from its very first step, and therefore could be combined with any other treatment modality to yield enhanced efficacy.
Collapse
Affiliation(s)
- Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Gi-Hoon Nam
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gi Beom Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoon Kyoung Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Zhao LM, Zhang JH. Histone Deacetylase Inhibitors in Tumor Immunotherapy. Curr Med Chem 2019; 26:2990-3008. [PMID: 28762309 DOI: 10.2174/0929867324666170801102124] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 04/26/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND With an increasing understanding of the antitumor immune response, considerable progress has been made in the field of tumor immunotherapy in the last decade. Inhibition of histone deacetylases represents a new strategy in tumor therapy and histone deacetylase inhibitors have been recently developed and validated as potential antitumor drugs. In addition to the direct antitumor effects, histone deacetylase inhibitors have been found to have the ability to improve tumor recognition by immune cells that may contribute to their antitumor activity. These immunomodolutory effects are desirable, and their in-depth comprehension will facilitate the design of novel regimens with improved clinical efficacy. OBJECTIVE Our goal here is to review recent developments in the application of histone deacetylase inhibitors as immune modulators in cancer treatment. METHODS Systemic compilation of the relevant literature in this field. RESULTS & CONCLUSION In this review, we summarize recent advances in the understanding of how histone deacetylase inhibitors alter immune process and discuss their effects on various cytokines. We also discuss the challenges to optimize the use of these inhibitors as immune modulators in cancer treatment. Information gained from this review will be valuable to this field and may be helpful for designing tumor immunotherapy trials involving histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Li-Ming Zhao
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Jie-Huan Zhang
- School of Chemistry and Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
12
|
Liu P, Zhao L, Loos F, Iribarren K, Kepp O, Kroemer G. Epigenetic anticancer agents cause HMGB1 release in vivo. Oncoimmunology 2018; 7:e1431090. [PMID: 29872561 DOI: 10.1080/2162402x.2018.1431090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022] Open
Abstract
A systematic search for anticancer agents that may induce the release of high mobility group box 1 (HMGB1) protein from cells into the extracellular space has led to the identification of several drugs capable of elevating plasma HMGB1 levels in vivo, in mice. Such agents include bona-fide immunogenic cell death inducers such as oxaliplatin, as well as a series of epigenetic modifiers, namely azacitidine, decitabine, and suberoylanilide hydroxamic acid (SAHA).
Collapse
Affiliation(s)
- Peng Liu
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France, Paris, France.,Université Pierre et Marie Curie, Paris, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Liwei Zhao
- Faculty of Medicine, University of Paris Sud, Kremlin-Bicêtre, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France, Paris, France.,Université Pierre et Marie Curie, Paris, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Friedemann Loos
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France, Paris, France.,Université Pierre et Marie Curie, Paris, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Kristina Iribarren
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France, Paris, France.,Université Pierre et Marie Curie, Paris, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France, Paris, France.,Université Pierre et Marie Curie, Paris, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, U1138, Equipe labellisée Ligue Nationale Contre le Cancer, Villejuif, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France, Paris, France.,Université Pierre et Marie Curie, Paris, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Abstract
The chromatin contains the genetic and the epigenetic information of a eukaryotic organism. Posttranslational modifications of histones, such as acetylation and methylation, regulate their structure and control gene expression. Histone acetyltransferases (HATs) acetylate lysine residues in histones while histone deacetylases (HDACs) remove this modification. HDAC inhibitors (HDACi) can alter gene expression patterns and induce cytotoxicity in cancer cells. Here we provide an overview of methods to determine the cytotoxic effects of HDACi treatment. Our chapter describes colorimetric methods, like trypan blue exclusion test, crystal violet staining, lactate dehydrogenase assay, MTT and Alamar Blue assays, as well as fluorogenic methods like TUNEL staining and the caspase-3/7 activity assay. Moreover, we summarize flow cytometric analysis of propidium iodide uptake, annexin V staining, cell cycle status, ROS levels, and mitochondrial membrane potential as well as detection of apoptosis by Western blot.
Collapse
Affiliation(s)
- Lisa Marx-Blümel
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
| | - Christian Marx
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Marie Kühne
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany
| | - Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Children's Clinic, Jena University Hospital, Jena, Germany.
- Klinik für Kinder- und Jugendmedizin, Friedrich-Schiller-Universität Jena, Kochstr. 2, 07745, Jena, Germany.
| |
Collapse
|
14
|
Vandenabeele P, Vandecasteele K, Bachert C, Krysko O, Krysko DV. Immunogenic Apoptotic Cell Death and Anticancer Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:133-49. [PMID: 27558820 DOI: 10.1007/978-3-319-39406-0_6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For many years it has been thought that apoptotic cells rapidly cleared by phagocytic cells do not trigger an immune response but rather have anti-inflammatory properties. However, accumulating experimental data indicate that certain anticancer therapies can induce an immunogenic form of apoptosis associated with the emission of damage-associated molecular patterns (DAMPs), which function as adjuvants to activate host antitumor immune responses. In this review, we will first discuss recent advances and the significance of danger signaling pathways involved in the emission of DAMPs, including calreticulin, ATP, and HMGB1. We will also emphasize that switching on a particular signaling pathway depends on the immunogenic cell death stimulus. Further, we address the role of ER stress in danger signaling and the classification of immunogenic cell death inducers in relation to how ER stress is triggered. In the final part, we discuss the role of radiotherapy-induced immunogenic apoptosis and the relationship of its immunogenicity to the fraction dose and concomitant chemotherapy.
Collapse
Affiliation(s)
- Peter Vandenabeele
- Molecular Signalling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Methusalem program, Ghent University, Ghent, Belgium
| | - Katrien Vandecasteele
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Claus Bachert
- The Upper Airway Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Olga Krysko
- The Upper Airway Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Dmitri V Krysko
- Molecular Signalling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
15
|
Chacon JA, Schutsky K, Powell DJ. The Impact of Chemotherapy, Radiation and Epigenetic Modifiers in Cancer Cell Expression of Immune Inhibitory and Stimulatory Molecules and Anti-Tumor Efficacy. Vaccines (Basel) 2016; 4:E43. [PMID: 27854240 PMCID: PMC5192363 DOI: 10.3390/vaccines4040043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022] Open
Abstract
Genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers are used for the treatment of cancer due to their apoptotic effects on the aberrant cells. However, these therapies may also induce widespread changes within the immune system and cancer cells, which may enable tumors to avoid immune surveillance and escape from host anti-tumor immunity. Genomic destabilizers can induce immunogenic death of tumor cells, but also induce upregulation of immune inhibitory ligands on drug-resistant cells, resulting in tumor progression. While administration of immunomodulatory antibodies that block the interactions between inhibitory receptors on immune cells and their ligands on tumor cells can mediate cancer regression in a subset of treated patients, it is crucial to understand how genomic destabilizers alter the immune system and malignant cells, including which inhibitory molecules, receptors and/or ligands are upregulated in response to genotoxic stress. Knowledge gained in this area will aid in the rational design of trials that combine genomic destabilizers, epigenetic modifiers and immunotherapeutic agents that may be synergized to improve clinical responses and prevent tumor escape from the immune system. Our review article describes the impact genomic destabilizers, such as radiation and chemotherapy, and epigenetic modifiers have on anti-tumor immunity and the tumor microenvironment. Although genomic destabilizers cause DNA damage on cancer cells, these therapies can also have diverse effects on the immune system, promote immunogenic cell death or survival and alter the cancer cell expression of immune inhibitor molecules.
Collapse
Affiliation(s)
- Jessica Ann Chacon
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Keith Schutsky
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Daniel J Powell
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Maiuri AR, O'Hagan HM. Interplay Between Inflammation and Epigenetic Changes in Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:69-117. [PMID: 27865469 DOI: 10.1016/bs.pmbts.2016.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune responses can suppress tumorigenesis, but also contribute to cancer initiation and progression suggesting a complex interaction between the immune system and cancer. Epigenetic alterations, which are heritable changes in gene expression without changes to the DNA sequence, also play a role in carcinogenesis through silencing expression of tumor suppressor genes and activating oncogenic signaling. Interestingly, epithelial cells at sites of chronic inflammation undergo DNA methylation alterations that are similar to those present in cancer cells, suggesting that inflammation may initiate cancer-specific epigenetic changes in epithelial cells. Furthermore, epigenetic changes occur during immune cell differentiation and participate in regulating the immune response, including the regulation of inflammatory cytokines. Cancer cells utilize epigenetic silencing of immune-related genes to evade the immune response. This chapter will detail the interactions between inflammation and epigenetics in tumor initiation, promotion, and immune evasion and how these connections are being leveraged in cancer prevention and treatment.
Collapse
Affiliation(s)
- A R Maiuri
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, United States
| | - H M O'Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, United States; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, United States.
| |
Collapse
|
17
|
Maio M, Covre A, Fratta E, Di Giacomo AM, Taverna P, Natali PG, Coral S, Sigalotti L. Molecular Pathways: At the Crossroads of Cancer Epigenetics and Immunotherapy. Clin Cancer Res 2016; 21:4040-7. [PMID: 26374074 DOI: 10.1158/1078-0432.ccr-14-2914] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epigenetic regulation allows heritably modulating gene expression profiles without modifying the primary sequence of gDNA. Under physiologic conditions, epigenetic patterns determine tissue-specific gene expression landscapes, gene imprinting, inactivation of chromosome X, and preservation of genomic stability. The most characterized mediators of epigenetic inheritance are gDNA methylation and histone posttranslational modifications that cooperate to alter chromatin state and genome transcription. According to these notions, it is not surprising that cancer cells invariantly deploy epigenetic alterations to achieve gene expression patterns required for neoplastic transformation and tumor progression. In this context, the recently uncovered use of epigenetic alterations by cancer cells to become stealth from the host's immune recognition has significant immunobiologic relevance in tumor progression, and it appears to have potential clinical usefulness. Indeed, immune evasion is among the major obstacles to further improve the efficacy of cancer immunotherapies and to increase long-lasting disease control. Luckily, different "epigenetic drugs" able to revert these "epimutations" are available, some of which have already been approved for clinical use. Here, we summarize the immunomodulatory activities of epigenetic drugs that lead to improved immune recognition of cancer cells and focus on the potential of this class of agents in improving the anticancer activity of novel immunotherapies through combinatorial epigenetic immunotherapy approaches.
Collapse
Affiliation(s)
- Michele Maio
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.
| | - Alessia Covre
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Elisabetta Fratta
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Anna Maria Di Giacomo
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | | | | | - Sandra Coral
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Luca Sigalotti
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| |
Collapse
|
18
|
Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: strength in numbers. J Leukoc Biol 2016; 100:275-90. [PMID: 27256570 PMCID: PMC6608090 DOI: 10.1189/jlb.5ri0116-013rr] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Immune-checkpoint blockade therapy with antibodies targeting CTLA-4 and PD-1 has revolutionized melanoma treatment by eliciting responses that can be remarkably durable and is now advancing to other malignancies. However, not all patients respond to immune-checkpoint inhibitors. Extensive preclinical evidence suggests that combining immune-checkpoint inhibitors with other anti-cancer treatments can greatly improve the therapeutic benefit. The first clinical success of the combinatorial approach to cancer immunotherapy was demonstrated using a dual-checkpoint blockade with CTLA-4 and PD-1 inhibitors, which resulted in accelerated FDA approval of this therapeutic regimen. In this review, we discuss the combinations of current and emerging immunotherapeutic agents in clinical and preclinical development and summarize the insights into potential mechanisms of synergistic anti-tumor activity gained from animal studies. These promising combinatorial partners for the immune-checkpoint blockade include therapeutics targeting additional inhibitory receptors of T cells, such as TIM-3, LAG-3, TIGIT, and BTLA, and agonists of T cell costimulatory receptors 4-1BB, OX40, and GITR, as well as agents that promote cancer cell recognition by the immune system, such as tumor vaccines, IDO inhibitors, and agonists of the CD40 receptor of APCs. We also review the therapeutic potential of regimens combining the immune-checkpoint blockade with therapeutic interventions that have been shown to enhance immunogenicity of cancer cells, including oncolytic viruses, RT, epigenetic therapy, and senescence-inducing therapy.
Collapse
Affiliation(s)
- Anna E Vilgelm
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| |
Collapse
|
19
|
Tandon N, Ramakrishnan V, Kumar SK. Clinical use and applications of histone deacetylase inhibitors in multiple myeloma. Clin Pharmacol 2016; 8:35-44. [PMID: 27226735 PMCID: PMC4866749 DOI: 10.2147/cpaa.s94021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The incorporation of various novel therapies has resulted in a significant survival benefit in newly diagnosed and relapsed patients with multiple myeloma (MM) over the past decade. Despite these advances, resistance to therapy leads to eventual relapse and fatal outcomes in the vast majority of patients. Hence, there is an unmet need for new safe and efficacious therapies for continued improvement in outcomes. Given the role of epigenetic aberrations in the pathogenesis and progression of MM and the success of histone deacetylase inhibitors (HDACi) in other malignancies, many HDACi have been tried in MM. Various preclinical studies helped us to understand the antimyeloma activity of different HDACi in MM as a single agent or in combination with conventional, novel, and immune therapies. The early clinical trials of HDACi depicted only modest single-agent activity, but recent studies have revealed encouraging clinical response rates in combination with other antimyeloma agents, especially proteasome inhibitors. This led to the approval of the combination of panobinostat and bortezomib for the treatment of relapsed/refractory MM patients with two prior lines of treatment by the US Food and Drug Administration. However, it remains yet to be defined how we can incorporate HDACi in the current therapeutic paradigms for MM that will help to achieve longer disease control and significant survival benefits. In addition, isoform-selective and/or class-selective HDAC inhibition to reduce unfavorable side effects needs further evaluation.
Collapse
Affiliation(s)
- Nidhi Tandon
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Kroesen M, Gielen P, Brok IC, Armandari I, Hoogerbrugge PM, Adema GJ. HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget 2015; 5:6558-72. [PMID: 25115382 PMCID: PMC4196144 DOI: 10.18632/oncotarget.2289] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epigenetic modifications, like histone acetylation, are essential for regulating gene expression within cells. Cancer cells acquire pathological epigenetic modifications resulting in gene expression patterns that facilitate and sustain tumorigenesis. Epigenetic manipulation therefore is emerging as a novel targeted therapy for cancer. Histone Acetylases (HATs) and Histone Deacetylases (HDACs) regulate histone acetylation and hence gene expression. Histone deacetylase (HDAC) inhibitors are well known to affect cancer cell viability and biology and are already in use for the treatment of cancer patients. Immunotherapy can lead to clinical benefit in selected cancer patients, especially in patients with limited disease after tumor debulking. HDAC inhibitors can potentially synergize with immunotherapy by elimination of tumor cells. The direct effects of HDAC inhibitors on immune cell function, however, remain largely unexplored. Initial data have suggested HDAC inhibitors to be predominantly immunosuppressive, but more recent reports have challenged this view. In this review we will discuss the effects of HDAC inhibitors on tumor cells and different immune cell subsets, synergistic interactions and possible mechanisms. Finally, we will address future challenges and potential application of HDAC inhibitors in immunocombination therapy of cancer.
Collapse
Affiliation(s)
- Michiel Kroesen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paul Gielen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally to this work
| | - Ingrid C Brok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally to this work
| | - Inna Armandari
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Department of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands; Princes Máxima Center for Pediatric Oncology, The Bilt, The Netherlands
| | - Gosse J Adema
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 2:e23510. [PMID: 23687621 PMCID: PMC3655739 DOI: 10.4161/onci.23510] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is now clear that the immune system plays a critical role not only during oncogenesis and tumor progression, but also as established neoplastic lesions respond to therapy. Selected cytotoxic chemicals can indeed elicit immunogenic cell death, a functionally peculiar type of apoptosis that stimulates tumor-specific cognate immune responses. Such immunogenic chemotherapeutics include cyclophosphamide, doxorubicin and oxaliplatin (which are approved by FDA for the treatment of various hematological and solid malignancies), mitoxantrone (which is currently employed both as an anticancer agent and against multiple sclerosis) and patupilone (a microtubular poison in clinical development). One year ago, in the second issue of OncoImmunology, we discussed the scientific rationale behind immunogenic chemotherapy and reviewed the status of recent clinical trials investigating the off-label use of cyclophosphamide, doxorubicin, oxaliplatin and mitoxantrone in cancer patients. Here, we summarize the latest developments in this area of clinical research, covering both high-impact studies that have been published during the last 13 months and clinical trials that have been initiated in the same period to assess the antineoplastic profile of immunogenic chemotherapeutics.
Collapse
Affiliation(s)
- Erika Vacchelli
- Institut Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, Bracci L, Breckpot K, Brough D, Buqué A, Castro MG, Cirone M, Colombo MI, Cremer I, Demaria S, Dini L, Eliopoulos AG, Faggioni A, Formenti SC, Fučíková J, Gabriele L, Gaipl US, Galon J, Garg A, Ghiringhelli F, Giese NA, Guo ZS, Hemminki A, Herrmann M, Hodge JW, Holdenrieder S, Honeychurch J, Hu HM, Huang X, Illidge TM, Kono K, Korbelik M, Krysko DV, Loi S, Lowenstein PR, Lugli E, Ma Y, Madeo F, Manfredi AA, Martins I, Mavilio D, Menger L, Merendino N, Michaud M, Mignot G, Mossman KL, Multhoff G, Oehler R, Palombo F, Panaretakis T, Pol J, Proietti E, Ricci JE, Riganti C, Rovere-Querini P, Rubartelli A, Sistigu A, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Sukkurwala AQ, Tartour E, Thorburn A, Thorne SH, Vandenabeele P, Velotti F, Workenhe ST, Yang H, Zong WX, Zitvogel L, Kroemer G, Galluzzi L. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691. [PMID: 25941621 PMCID: PMC4292729 DOI: 10.4161/21624011.2014.955691] [Citation(s) in RCA: 624] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023] Open
Abstract
Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.
Collapse
Key Words
- APC, antigen-presenting cell
- ATF6, activating transcription factor 6
- ATP release
- BAK1, BCL2-antagonist/killer 1
- BAX, BCL2-associated X protein
- BCL2, B-cell CLL/lymphoma 2 protein
- CALR, calreticulin
- CTL, cytotoxic T lymphocyte
- DAMP, damage-associated molecular pattern
- DAPI, 4′,6-diamidino-2-phenylindole
- DiOC6(3), 3,3′-dihexyloxacarbocyanine iodide
- EIF2A, eukaryotic translation initiation factor 2A
- ER, endoplasmic reticulum
- FLT3LG, fms-related tyrosine kinase 3 ligand
- G3BP1, GTPase activating protein (SH3 domain) binding protein 1
- GFP, green fluorescent protein
- H2B, histone 2B
- HMGB1
- HMGB1, high mobility group box 1
- HSP, heat shock protein
- HSV-1, herpes simplex virus type I
- ICD, immunogenic cell death
- IFN, interferon
- IL, interleukin
- MOMP, mitochondrial outer membrane permeabilization
- PDIA3, protein disulfide isomerase family A
- PI, propidium iodide
- RFP, red fluorescent protein
- TLR, Toll-like receptor
- XBP1, X-box binding protein 1
- autophagy
- calreticulin
- endoplasmic reticulum stress
- immunotherapy
- member 3
- Δψm, mitochondrial transmembrane potential
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Senovilla
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- INSERM; U1015; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
| | - Erika Vacchelli
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Sandy Adjemian
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Molecular Cell Biology Laboratory; Department of Immunology; Institute of Biomedical Sciences; University of São Paulo; São Paulo, Brazil
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - Lionel Apetoh
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Fernando Aranda
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Vincenzo Barnaba
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | - Norma Bloy
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Bracci
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy (LMCT); Department of Biomedical Sciences Medical School of the Free University of Brussels (VUB); Jette, Belgium
| | - David Brough
- Faculty of Life Sciences; University of Manchester; Manchester, UK
| | - Aitziber Buqué
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Maria G. Castro
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Mara Cirone
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Maria I. Colombo
- Laboratorio de Biología Celular y Molecular; Instituto de Histología y Embriología (IHEM); Facultad de Ciencias Médicas; Universidad Nacional de Cuyo; CONICET; Mendoza, Argentina
| | - Isabelle Cremer
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
| | - Sandra Demaria
- Department of Pathology; New York University School of Medicine; New York, NY USA
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology (DiSTeBA); University of Salento; Lecce, Italy
| | - Aristides G. Eliopoulos
- Molecular and Cellular Biology Laboratory; Division of Basic Sciences; University of Crete Medical School; Heraklion, Greece
- Institute of Molecular Biology and Biotechnology; Foundation of Research and Technology - Hellas; Heraklion, Greece
| | - Alberto Faggioni
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Silvia C. Formenti
- Department of Radiation Oncology; NewYork University School of Medicine and Langone Medical Center; New York, NY USA
| | - Jitka Fučíková
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - Lucia Gabriele
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Udo S. Gaipl
- Department of Radiation Oncology; University Hospital Erlangen; University of Erlangen-Nürnberg; Erlangen, Germany
| | - Jérôme Galon
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
| | - Abhishek Garg
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - François Ghiringhelli
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Nathalia A. Giese
- European Pancreas Center; Department of Surgery; University Hospital Heidelberg; Heidelberg, Germany
| | - Zong Sheng Guo
- Department of Surgery; University of Pittsburgh; Pittsburgh, PA USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group; Transplantation laboratory; Haartman Institute; University of Helsinki; Helsinki, Finland
| | - Martin Herrmann
- Department of Internal Medicine 3; University of Erlangen-Nuremberg; Erlangen, Germany
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda, MD USA
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology; University Hospital Bonn; Bonn, Germany
| | - Jamie Honeychurch
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Hong-Min Hu
- Cancer Research and Biotherapy Center; Second Affiliated Hospital of Southeast University; Nanjing, China
- Laboratory of Cancer Immunobiology; Earle A. Chiles Research Institute; Providence Portland Medical Center; Portland, OR USA
| | - Xing Huang
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Tim M. Illidge
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Koji Kono
- Department of Surgery; National University of Singapore; Singapore, Singapore
- Cancer Science Institute of Singapore; National University of Singapore; Singapore, Singapore
| | | | - Dmitri V. Krysko
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
| | - Sherene Loi
- Division of Cancer Medicine and Division of Research; Peter MacCallum Cancer Center; East Melbourne; Victoria, Australia
| | - Pedro R. Lowenstein
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Yuting Ma
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Angelo A. Manfredi
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Isabelle Martins
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1030; Villejuif, France
- Faculté de Médecine; Université Paris-Sud/Paris XI; Kremlin-Bicêtre, France
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Laurie Menger
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Cancer Immunology Unit, Research Department of Haematology; University College London (UCL) Cancer Institute; London, UK
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Michael Michaud
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Gregoire Mignot
- Cellular and Molecular Immunology and Endocrinology, Oniris; Nantes, France
| | - Karen L. Mossman
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Gabriele Multhoff
- Department of Radiation Oncology; Klinikum rechts der Isar; Technical University of Munich; Munich, Germany
| | - Rudolf Oehler
- Comprehensive Cancer Center; Medical University of Vienna; Vienna, Austria
| | - Fabio Palombo
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | | | - Jonathan Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Enrico Proietti
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Jean-Ehrland Ricci
- INSERM; U1065; Nice, France
- Equipe “Contrôle Métabolique des Morts Cellulaires,” Center Méditerranéen de Médecine Moléculaire (C3M); Nice, France
- Faculté de Médecine; Université de Nice Sophia Antipolis; Nice, France
- Centre Hospitalier Universitaire de Nice; Nice, France
| | - Chiara Riganti
- Department of Oncology and Subalpine Center for Research and Experimental Medicine (CeRMS); University of Turin; Turin, Italy
| | - Patrizia Rovere-Querini
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Anna Rubartelli
- Cell Biology Unit; Azienda Ospedaliera Universitaria San Martino; Istituto Nazionale per la Ricerca sul Cancro; Genova, Italy
| | | | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory; QIMR Berghofer Medical Research Institute; Herston, Australia
- School of Medicine, University of Queensland; Herston, Australia
| | - Juergen Sonnemann
- Department of Pediatric Haematology and Oncology; Jena University Hospital, Children's Clinic; Jena, Germany
| | - Radek Spisek
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - John Stagg
- Centre de Recherche du Center Hospitalier de l’Université de Montréal; Faculté de Pharmacie, Université de Montréal; Montréal, Canada
| | - Abdul Qader Sukkurwala
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Department of Pathology, Dow International Medical College; Dow University of Health Sciences; Karachi, Pakistan
| | - Eric Tartour
- INSERM; U970; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Andrew Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | | | - Peter Vandenabeele
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
- Methusalem Program; Ghent University; Ghent, Belgium
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Samuel T. Workenhe
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Haining Yang
- University of Hawaii Cancer Center; Honolulu, HI USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology; Stony Brook University; Stony Brook, NY USA
| | - Laurence Zitvogel
- INSERM; U1015; Villejuif, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Centre d’Investigation Clinique Biothérapie 507 (CICBT507); Gustave Roussy Cancer Campus; Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
23
|
West AC, Mattarollo SR, Shortt J, Cluse LA, Christiansen AJ, Smyth MJ, Johnstone RW. An intact immune system is required for the anticancer activities of histone deacetylase inhibitors. Cancer Res 2013; 73:7265-76. [PMID: 24158093 DOI: 10.1158/0008-5472.can-13-0890] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-intrinsic effects such as induction of apoptosis and/or inhibition of cell proliferation have been proposed as the major antitumor responses to histone deacetylase inhibitors (HDACi). These compounds can also mediate immune-modulatory effects that may contribute to their anticancer effects. However, HDACi can also induce anti-inflammatory, and potentially immunosuppressive, outcomes. We therefore sought to clarify the role of the immune system in mediating the efficacy of HDACi in a physiologic setting, using preclinical, syngeneic murine models of hematologic malignancies and solid tumors. We showed an intact immune system was required for the robust anticancer effects of the HDACi vorinostat and panobinostat against a colon adenocarcinoma and two aggressive models of leukemia/lymphoma. Importantly, although HDACi-treated immunocompromised mice bearing established lymphoma succumbed to disease significantly earlier than tumor bearing, HDACi-treated wild-type (WT) mice, treatment with the conventional chemotherapeutic etoposide equivalently enhanced the survival of both strains. IFN-γ and tumor cell signaling through IFN-γR were particularly important for the anticancer effects of HDACi, and vorinostat and IFN-γ acted in concert to enhance the immunogenicity of tumor cells. Furthermore, we show that a combination of vorinostat with α-galactosylceramide (α-GalCer), an IFN-γ-inducing agent, was significantly more potent against established lymphoma than vorinostat treatment alone. Intriguingly, B cells, but not natural killer cells or CD8(+) T cells, were implicated as effectors of the vorinostat antitumor immune response. Together, our data suggest HDACi are immunostimulatory during cancer treatment and that combinatorial therapeutic regimes with immunotherapies should be considered in the clinic.
Collapse
Affiliation(s)
- Alison C West
- Authors' Affiliations: Cancer Therapeutics Program, and Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria; The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba; Queensland Institute of Medical Research; and School of Medicine, University of Queensland, Herston, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ 2013; 21:39-49. [PMID: 23832118 DOI: 10.1038/cdd.2013.84] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/06/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell death generally characterized by a morphologically homogenous entity has been considered to be essentially non-immunogenic. However, apoptotic cancer cell death, also known as type 1 programmed cell death (PCD), was recently found to be immunogenic after treatment with several chemotherapeutic agents and oncolytic viruses through the emission of various danger-associated molecular patterns (DAMPs). Extensive studies have revealed that two different types of immunogenic cell death (ICD) inducers, recently classified by their distinct actions in endoplasmic reticulum (ER) stress, can reinitiate immune responses suppressed by the tumor microenvironment. Indeed, recent clinical studies have shown that several immunotherapeutic modalities including therapeutic cancer vaccines and oncolytic viruses, but not conventional chemotherapies, culminate in beneficial outcomes, probably because of their different mechanisms of ICD induction. Furthermore, interests in PCD of cancer cells have shifted from its classical form to novel forms involving autophagic cell death (ACD), programmed necrotic cell death (necroptosis), and pyroptosis, some of which entail immunogenicity after anticancer treatments. In this review, we provide a brief outline of the well-characterized DAMPs such as calreticulin (CRT) exposure, high-mobility group protein B1 (HMGB1), and adenosine triphosphate (ATP) release, which are induced by the morphologically distinct types of cell death. In the latter part, our review focuses on how emerging oncolytic viruses induce different forms of cell death and the combinations of oncolytic virotherapies with further immunomodulation by cyclophosphamide and other immunotherapeutic modalities foster dendritic cell (DC)-mediated induction of antitumor immunity. Accordingly, it is increasingly important to fully understand how and which ICD inducers cause multimodal ICD, which should aid the design of reasonably multifaceted anticancer modalities to maximize ICD-triggered antitumor immunity and eliminate residual or metastasized tumors while sparing autoimmune diseases.
Collapse
Affiliation(s)
- H Inoue
- 1] Division of Molecular and Clinical Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [2] Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan [3] Department of Advanced Molecular and Cell Therapy, Kyushu University Hospital,Kyushu University, Fukuoka, Japan
| | | |
Collapse
|