1
|
Fleming Martinez AK, Storz P. Protein kinase D1 - A targetable mediator of pancreatic cancer development. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119646. [PMID: 38061566 PMCID: PMC10872883 DOI: 10.1016/j.bbamcr.2023.119646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Members of the Protein kinase D (PKD) kinase family each play important cell-specific roles in the regulation of normal pancreas functions. In pancreatic diseases PKD1 is the most widely characterized isoform with roles in pancreatitis and in induction of pancreatic cancer and its progression. PKD1 expression and activation increases in pancreatic acinar cells through macrophage secreted factors, Kirsten rat sarcoma viral oncogene homolog (KRAS) signaling, and reactive oxygen species (ROS), driving the formation of precancerous lesions. In precancerous lesions PKD1 regulates cell survival, growth, senescence, and generation of doublecortin like kinase 1 (DCLK1)-positive cancer stem cells (CSCs). Within tumors, regulation by PKD1 includes chemoresistance, apoptosis, proliferation, CSC features, and the Warburg effect. Thus, PKD1 plays a critical role throughout pancreatic disease initiation and progression.
Collapse
Affiliation(s)
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Cui B, Liu Y, Chen J, Chen H, Feng Y, Zhang P. Small molecule inhibitor CRT0066101 inhibits cytokine storm syndrome in a mouse model of lung injury. Int Immunopharmacol 2023; 120:110240. [PMID: 37182445 PMCID: PMC10181585 DOI: 10.1016/j.intimp.2023.110240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Pneumonia is an acute inflammation of the lungs induced by pathogenic microorganisms, immune damage, physical and chemical factors, and other factors, and the latest outbreak of novel coronavirus pneumonia is also an acute lung injury (ALI) induced by viral infection. However, there are currently no effective treatments for inflammatory cytokine storms in patients with ALI/acute respiratory distress syndrome (ARDS). Protein kinase D (PKD) is a highly active kinase that has been shown to be associated with the production of inflammatory cytokines. Therefore, small-molecule compounds that inhibit PKD may be potential drugs for the treatment of ALI/ARDS. In the present study, we evaluated the ability of the small-molecule inhibitor CRT0066101 to attenuate lipopolysaccharide (LPS)-induced inflammatory cytokine production through in vitro cell experiments and a mouse pneumonia model. We found that CRT0066101 significantly reduced the protein and mRNA levels of LPS-induced cytokines (e.g., IL-6, TNF-α, and IL-1β). CRT0066101 inhibited MyD88 and TLR4 expression and reduced NF-κB, ERK, and JNK phosphorylation. CRT0066101 also reduced NLRP3 activation, inhibited the assembly of the inflammasome complex, and attenuated inflammatory cell infiltration and lung tissue damage. Taken together, our data indicate that CRT0066101 exerts anti-inflammatory effects on LPS-induced inflammation through the TLR4/MyD88 signaling pathway, suggesting that CRT0066101 may have therapeutic value in acute lung injury and other MyD88-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Bomiao Cui
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China
| | - Yiying Liu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China
| | - Hongli Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, 14, Renmin South Road Section 3, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
3
|
Roy A, Prasad S, Chen Y, Chao Y, Liu Y, Zhao J, Wang QJ. Protein Kinase D2 and D3 Promote Prostate Cancer Cell Bone Metastasis by Positively Regulating Runx2 in a MEK/ERK1/2-Dependent Manner. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:624-637. [PMID: 36740185 PMCID: PMC10155267 DOI: 10.1016/j.ajpath.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Advanced-stage prostate tumors metastasize to the bone, often causing death. The protein kinase D (PKD) family has been implicated in prostate cancer development; however, its role in prostate cancer metastasis remains elusive. This study examined the contribution of PKD, particularly PKD2 and PKD3 (PKD2/3), to the metastatic potential of prostate cancer cells and the effect of PKD inhibition on prostate cancer bone metastasis in vivo. Depletion of PKD2/3 by siRNAs or inhibition by the PKD inhibitor CRT0066101 in AR-positive and AR-negative castration-resistant prostate cancer cells potently inhibited colony formation and cell migration. Depletion or inhibition of PKD2/3 significantly blocked tumor cell invasion and suppressed the expression of genes related to bone metastasis in the highly invasive PC3-ML cells. The reduced invasive activity resulting from PKD2/3 depletion was in part mediated by the transcription factor Runx2, as its silencing decreased PKD2/3-mediated metastatic gene expression through the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 signaling axis. Furthermore, inhibition of PKD by CRT0066101 potently decreased the frequency of bone micrometastases in a mouse model of bone metastasis based on intracardiac injection of PC3-ML cells. These results indicate that PKD2/3 plays an important role in the bone metastasis of prostate cancer cells, and its inhibition may be beneficial for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Sahdeo Prasad
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuzhou Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yapeng Chao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yu Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jinjun Zhao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Potential role for protein kinase D inhibitors in prostate cancer. J Mol Med (Berl) 2023; 101:341-349. [PMID: 36843036 DOI: 10.1007/s00109-023-02298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/28/2023]
Abstract
Protein kinase D (PrKD), a novel serine-threonine kinase, belongs to a family of calcium calmodulin kinases that consists of three isoforms: PrKD1, PrKD2, and PrKD3. The PrKD isoforms play a major role in pathologic processes such as cardiac hypertrophy and cancer progression. The charter member of the family, PrKD1, is the most extensively studied isoform. PrKD play a dual role as both a proto-oncogene and a tumor suppressor depending on the cellular context. The duplicity of PrKD can be highlighted in advanced prostate cancer (PCa) where expression of PrKD1 is suppressed whereas the expressions of PrKD2 and PrKD3 are upregulated to aid in cancer progression. As understanding of the PrKD signaling pathways has been better elucidated, interest has been garnered in the development of PrKD inhibitors. The broad-spectrum kinase inhibitor staurosporine acts as a potent PrKD inhibitor and is the most well-known; however, several other novel and more specific PrKD inhibitors have been developed over the last two decades. While there is tremendous potential for PrKD inhibitors to be used in a clinical setting, none has progressed beyond preclinical trials due to a variety of challenges. In this review, we focus on PrKD signaling in PCa and the potential role of PrKD inhibitors therein, and explore the possible clinical outcomes based on known function and expression of PrKD isoforms at different stages of PCa.
Collapse
|
5
|
Wang QJ, Wipf P. Small Molecule Inhibitors of Protein Kinase D: Early Development, Current Approaches, and Future Directions. J Med Chem 2023; 66:122-139. [PMID: 36538005 DOI: 10.1021/acs.jmedchem.2c01599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Now entering its fourth decade, research on the biological function, small molecule inhibition, and disease relevance of the three known isoforms of protein kinase D, PKD1, PKD2, and PKD3, has entered a mature development stage. This mini-perspective focuses on the medicinal chemistry that provided a structurally diverse set of mainly active site inhibitors, which, for a brief time period, moved through preclinical development stages but have yet to be tested in clinical trials. In particular, between 2006 and 2012, a rapid expansion of synthetic efforts led to several moderately to highly PKD-selective chemotypes but did not yet achieve PKD subtype selectivity or resolve general toxicity and pharmacokinetic challenges. In addition to cancer, other unresolved medical needs in cardiovascular, inflammatory, and metabolic diseases would, however, benefit from a renewed focus on potent and selective PKD modulators.
Collapse
Affiliation(s)
- Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
6
|
Ding Y, Mei W, Zheng Z, Cao F, Liang K, Jia Y, Wang Y, Liu D, Li J, Li F. Exosomes secreted from human umbilical cord mesenchymal stem cells promote pancreatic ductal adenocarcinoma growth by transferring miR-100-5p. Tissue Cell 2021; 73:101623. [PMID: 34543801 DOI: 10.1016/j.tice.2021.101623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Although human umbilical cord mesenchymal stem cells (hucMSCs) can contribute to the growth of tumors, including pancreatic ductal adenocarcinoma (PDAC), however, little is known about the exact mechanisms by which the exosomes secreted from hucMSCs (hucMSCs-exo) have an oncogenic effect on the physiopathology of PDAC. The effects of hucMSCs on tumor development are attributed to hucMSCs-exo, which deliver unique proteins and miRNAs to cancer cells. METHODS HucMSCs and exosomes were isolated and confirmed via transmission electron microscopy, nanoparticle tracking analysis and western blot. The nude mice were inoculated subcutaneously on both flanks with human pancreatic cancer Panc-1 cells (1 × 106), and hucMSCs-exo were directly administered via intratumoral injection once a day for three days each week. Cell proliferation assays were performed using a Cell Counting Kit-8 assay and the cell invasion assay was performed using Transwell assay. The miRNA data were predicted and analyzed by miRanda software. The analysis of the target genes of the miRNAs was proformed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. RESULTS Firstly, we observed that hucMSCs-exo promoted Panc-1 and BxPC3 cell growth by increasing proliferation and migration in vitro. Secondly, in a xenograft tumor model, hucMSCs-exo increased the growth of Panc-1 cells. Thirdly, high-throughput sequencing of hucMSCs-exo showed that hsa-miR-148a-3p, hsa-miR-100-5p, hsa-miR-143-3p, hsa-miR-21-5p and hsa-miR-92a-3p were highly expressed. For the five identified miRNAs, 1308 target genes were predicted by miRanda software. From the GO and KEGG analyses of the target genes of the identified miRNAs, it was found that the main GO function was the regulation of cellular glucuronidation, and the main KEGG metabolic pathway involved the metabolism of ascorbic acid and aldehyde acid. These processes are related to the occurrence and development of pancreatic cancer. Finally, we observed that miR-100-5p promoted Panc-1 and BxPC3 cell growth in vitro and in vivo. CONCLUSION Here, by utilizing exosomes secreted from hucMSCs, we systematically investigated the effects of hucMSCs-exo on PDAC growth in vitro and in vivo for the first time. Building on these results, we provided new insights into the role of hucMSCs-exo in the PDAC growth and revealed the attractive communication between hucMSCs and PDAC cells that occurs through MSCs-exosomes-miRNAs.
Collapse
Affiliation(s)
- Yixuan Ding
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China
| | - Zhi Zheng
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China
| | - Kuo Liang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China
| | - Yuting Wang
- Capital Medical University, Beijing, 100069, China
| | - Dachuan Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China.
| | - Jia Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
7
|
Lv D, Chen H, Feng Y, Cui B, Kang Y, Zhang P, Luo M, Chen J. Small-Molecule Inhibitor Targeting Protein Kinase D: A Potential Therapeutic Strategy. Front Oncol 2021; 11:680221. [PMID: 34249722 PMCID: PMC8263921 DOI: 10.3389/fonc.2021.680221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
The protein kinase D (PKD) family is a family of serine-threonine kinases that are members of the calcium/calmodulin-dependent kinase (CaMK) superfamily. PKDs have been increasingly implicated in multiple pivotal cellular processes and pathological conditions. PKD dysregulation is associated with several diseases, including cancer, inflammation, and obesity. Over the past few years, small-molecule inhibitors have emerged as alternative targeted therapy with fewer adverse side effects than currently available chemotherapy, and these specifically targeted inhibitors limit non-specific toxicities. The successful development of PKD inhibitors would significantly suppress the growth and proliferation of various cancers and inhibit the progression of other diseases. Various PKD inhibitors have been studied in the preclinical setting. In this context, we summarize the PKD inhibitors under investigation and their application for different kinds of diseases.
Collapse
Affiliation(s)
- Die Lv
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongli Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bomiao Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzhu Kang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Gilles P, Voets L, Van Lint J, De Borggraeve WM. Developments in the Discovery and Design of Protein Kinase D Inhibitors. ChemMedChem 2021; 16:2158-2171. [PMID: 33829655 DOI: 10.1002/cmdc.202100110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Indexed: 01/16/2023]
Abstract
Protein kinase D (PKD) is a serine/threonine kinase family belonging to the Ca2+/calmodulin-dependent protein kinase group. Since its discovery two decades ago, many efforts have been put in elucidating PKD's structure, cellular role and functioning. The PKD family consists of three highly homologous isoforms: PKD1, PKD2 and PKD3. Accumulating cell-signaling research has evidenced that dysregulated PKD plays a crucial role in the pathogenesis of cardiac hypertrophy and several cancer types. These findings led to a broad interest in the design of small-molecule protein kinase D inhibitors. In this review, we present an extensive overview on the past and recent advances in the discovery and development of PKD inhibitors. The focus extends from broad-spectrum kinase inhibitors used in PKD signaling experiments to intentionally developed, bioactive PKD inhibitors. Finally, attention is paid to PKD inhibitors that have been identified as an off-target through large kinome screening panels.
Collapse
Affiliation(s)
- Philippe Gilles
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, 3001, Leuven, Belgium
| | - Lauren Voets
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, 3001, Leuven, Belgium
| | - Johan Van Lint
- Department of Cellular and Molecular Medicine & Leuven Cancer Institute, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven O&N I, Herestraat 49 - Box 901, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, 3001, Leuven, Belgium
| |
Collapse
|
9
|
Xu W, Qian J, Zeng F, Li S, Guo W, Chen L, Li G, Zhang Z, Wang QJ, Deng F. Protein kinase Ds promote tumor angiogenesis through mast cell recruitment and expression of angiogenic factors in prostate cancer microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:114. [PMID: 30841931 PMCID: PMC6404326 DOI: 10.1186/s13046-019-1118-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 01/24/2023]
Abstract
Background Mast cells are being increasingly recognized as critical components in the tumor microenvironment. Protein Kinase D (PKD) is essential for the progression of prostate cancer, but its role in prostate cancer microenvironment remains poorly understood. Methods The expression of PKD, mast cells and microvessel density were examined by IHC. The clinical significance was determined by statistical analyses. The biological function of PKD and the underlying mechanisms were investigated using in vitro and in vivo models. Results PKD2/3 contributed to MCs recruitment and tumor angiogenesis in the prostate cancer microenvironment. Clinical data showed that increased activation of PKD at Ser744/748 in prostate cancer was correlated with mast cell infiltration and microvascular density. PKD2/3 silencing of prostate cancer cells markedly decreased MCs migration and tube formation of HUVEC cells. Moreover, PKD2/3 depletion not only reduced SCF, CCL5 and CCL11 expression in prostate cancer cells but also inhibited angiogenic factors in MCs. Conversely, exogenous SCF, CCL5 and CCL11 reversed the effect on MCs migration inhibited by PKD2/3 silencing. Mechanistically, PKD2/3 interacted with Erk1/2 and activated Erk1/2 or NF-κB signaling pathway, leading to AP-1 or NF-κB binding to the promoter of scf, ccl5 and ccl11. Finally, PKD-specific inhibitor significantly reduced tumor volume and tumor growth in mice bearing RM-1 prostate cancer cells, which was attributed to attenuation of mast cell recruitment and tumor angiogenesis. Conclusions These results demonstrate a novel PKDs function that contributes to tumor angiogenesis and progression through mast cells recruitment in prostate cancer microenvironment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1118-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanfu Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Present address: Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jiabi Qian
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Present address: Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Fangyin Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
| | - Songyu Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenjing Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liping Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhishuai Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Ibrahim N, Alami M, Messaoudi S. Recent Advances in Transition-Metal-Catalyzed Functionalization of 1-Thiosugars. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nada Ibrahim
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud; CNRS; University Paris-Saclay; 92290 Châtenay-Malabry France
| |
Collapse
|
11
|
Roy A, Ye J, Deng F, Wang QJ. Protein kinase D signaling in cancer: A friend or foe? Biochim Biophys Acta Rev Cancer 2017; 1868:283-294. [PMID: 28577984 DOI: 10.1016/j.bbcan.2017.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/18/2022]
Abstract
Protein kinase D is a family of evolutionarily conserved serine/threonine kinases that belongs to the Ca++/Calmodulin-dependent kinase superfamily. Signal transduction pathways mediated by PKD can be triggered by a variety of stimuli including G protein-coupled receptor agonists, growth factors, hormones, and cellular stresses. The regulatory mechanisms and physiological roles of PKD have been well documented including cell proliferation, survival, migration, angiogenesis, regulation of gene expression, and protein/membrane trafficking. However, its precise roles in disease progression, especially in cancer, remain elusive. A plethora of studies documented the cell- and tissue-specific expressions and functions of PKD in various cancer-associated biological processes, while the causes of the differential effects of PKD have not been thoroughly investigated. In this review, we have discussed the structural-functional properties, activation mechanisms, signaling pathways and physiological functions of PKD in the context of human cancer. Additionally, we have provided a comprehensive review of the reported tumor promoting or tumor suppressive functions of PKD in several major cancer types and discussed the discrepancies that have been raised on PKD as a major regulator of malignant transformation.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jing Ye
- Department of Anesthesiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
12
|
Rowland LM, Demyanovich HK, Wijtenburg SA, Eaton WW, Rodriguez K, Gaston F, Cihakova D, Talor MV, Liu F, McMahon RR, Hong LE, Kelly DL. Antigliadin Antibodies (AGA IgG) Are Related to Neurochemistry in Schizophrenia. Front Psychiatry 2017; 8:104. [PMID: 28674504 PMCID: PMC5474459 DOI: 10.3389/fpsyt.2017.00104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Inflammation may play a role in schizophrenia; however, subgroups with immune regulation dysfunction may serve as distinct illness phenotypes with potential different treatment and prevention strategies. Emerging data show that about 30% of people with schizophrenia have elevated antigliadin antibodies of the IgG type, representing a possible subgroup of schizophrenia patients with immune involvement. Also, recent data have shown a high correlation of IgG-mediated antibodies between the periphery and cerebral spinal fluid in schizophrenia but not healthy controls, particularly AGA IgG suggesting that these antibodies may be crossing the blood-brain barrier with resulting neuroinflammation. Proton magnetic resonance spectroscopy (MRS) is a non-invasive technique that allows the quantification of certain neurochemicals in vivo that may proxy inflammation in the brain such as myoinositol and choline-containing compounds (glycerophosphorylcholine and phosphorylcholine). The objective of this exploratory study was to examine the relationship between serum AGA IgG levels and MRS neurochemical levels. We hypothesized that higher AGA IgG levels would be associated with higher levels of myoinositol and choline-containing compounds (glycerophosphorylcholine plus phosphorylcholine; GPC + PC) in the anterior cingulate cortex. Thirty-three participants with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder had blood drawn and underwent neuroimaging using MRS within 9 months. We found that 10/33 (30%) had positive AGA IgG (≥20 U) similar to previous findings. While there were no significant differences in myoinositol and GPC + PC levels between patients with and without AGA IgG positivity, there were significant relationships between both myoinositol (r = 0.475, p = 0.007) and GPC + PC (r = 0.36, p = 0.045) with AGA IgG levels. This study shows a possible connection of AGA IgG antibodies to putative brain inflammation as measured by MRS in schizophrenia.
Collapse
Affiliation(s)
- Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Haley K Demyanovich
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - William W Eaton
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Katrina Rodriguez
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Frank Gaston
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Daniela Cihakova
- Immunologic Disorders Laboratory, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Monica V Talor
- Immunologic Disorders Laboratory, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Fang Liu
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert R McMahon
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Roy A, Wang QJ. Protein Kinase D: A Potential Therapeutic Target in Prostate Cancer. MOLECULAR AND CELLULAR PHARMACOLOGY 2017; 9:1-4. [PMID: 34765081 PMCID: PMC8580385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein kinase D (PKD) belongs to a family of serine/threonine kinases in the calcium/calmodulin-dependent kinase superfamily. It modulates a number of signal transduction pathways involved in regulation of cell proliferation, survival, migration, angiogenesis, regulation of gene expression, and protein/membrane trafficking, mediated by variety of stimuli such as growth factors, hormones, and cellular stresses. Although its role in cancer progression remains elusive, current literature supports a potential tumor promoting function of the selective PKD isoforms in prostate cancer, making them promising therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Q Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Varga A, Gyulavári P, Greff Z, Futosi K, Németh T, Simon-Szabó L, Kerekes K, Szántai-Kis C, Brauswetter D, Kokas M, Borbély G, Erdei A, Mócsai A, Kéri G, Vántus T. Targeting vascular endothelial growth factor receptor 2 and protein kinase D1 related pathways by a multiple kinase inhibitor in angiogenesis and inflammation related processes in vitro. PLoS One 2015; 10:e0124234. [PMID: 25874616 PMCID: PMC4396990 DOI: 10.1371/journal.pone.0124234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/27/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific inhibitors would be of great value. To test this possibility, we screened our molecular library using recombinant kinase assays and identified the previously described compound VCC251801 with strong inhibitory effect on both VEGFR2 and PKD1. We further analyzed the effect of VCC251801 in the endothelium-derived EA.hy926 cell line and in different inflammatory cell types. In EA.hy926 cells, VCC251801 potently inhibited the intracellular activation and signaling of VEGFR2 and PKD1 which inhibition eventually resulted in diminished cell proliferation. In this model, our compound was also an efficient inhibitor of in vitro angiogenesis by interfering with endothelial cell migration and tube formation processes. Our results from functional assays in inflammatory cellular models such as neutrophils and mast cells suggested an anti-inflammatory effect of VCC251801. The neutrophil study showed that VCC251801 specifically blocked the immobilized immune-complex and the adhesion dependent TNF-α -fibrinogen stimulated neutrophil activation. Furthermore, similar results were found in mast cell degranulation assay where VCC251801 caused significant reduction of mast cell response. In summary, we described a novel function of a multiple kinase inhibitor which strongly inhibits the VEGFR2-PKD1 signaling and might be a novel inhibitor of pathological inflammatory pathways.
Collapse
Affiliation(s)
- Attila Varga
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
| | - Pál Gyulavári
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
| | | | - Krisztina Futosi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Laura Simon-Szabó
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Krisztina Kerekes
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - Diána Brauswetter
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Márton Kokas
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Gábor Borbély
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - György Kéri
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
- Vichem Chemie Research Ltd., Budapest, Hungary
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Tibor Vántus
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
15
|
Tandon M, Salamoun JM, Carder EJ, Farber E, Xu S, Deng F, Tang H, Wipf P, Wang QJ. SD-208, a novel protein kinase D inhibitor, blocks prostate cancer cell proliferation and tumor growth in vivo by inducing G2/M cell cycle arrest. PLoS One 2015; 10:e0119346. [PMID: 25747583 PMCID: PMC4352033 DOI: 10.1371/journal.pone.0119346] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/19/2015] [Indexed: 12/26/2022] Open
Abstract
Protein kinase D (PKD) has been implicated in many aspects of tumorigenesis and progression, and is an emerging molecular target for the development of anticancer therapy. Despite recent advancement in the development of potent and selective PKD small molecule inhibitors, the availability of in vivo active PKD inhibitors remains sparse. In this study, we describe the discovery of a novel PKD small molecule inhibitor, SD-208, from a targeted kinase inhibitor library screen, and the synthesis of a series of analogs to probe the structure-activity relationship (SAR) vs. PKD1. SD-208 displayed a narrow SAR profile, was an ATP-competitive pan-PKD inhibitor with low nanomolar potency and was cell active. Targeted inhibition of PKD by SD-208 resulted in potent inhibition of cell proliferation, an effect that could be reversed by overexpressed PKD1 or PKD3. SD-208 also blocked prostate cancer cell survival and invasion, and arrested cells in the G2/M phase of the cell cycle. Mechanistically, SD-208-induced G2/M arrest was accompanied by an increase in levels of p21 in DU145 and PC3 cells as well as elevated phosphorylation of Cdc2 and Cdc25C in DU145 cells. Most importantly, SD-208 given orally for 24 days significantly abrogated the growth of PC3 subcutaneous tumor xenografts in nude mice, which was accompanied by reduced proliferation and increased apoptosis and decreased expression of PKD biomarkers including survivin and Bcl-xL. Our study has identified SD-208 as a novel efficacious PKD small molecule inhibitor, demonstrating the therapeutic potential of targeted inhibition of PKD for prostate cancer treatment.
Collapse
Affiliation(s)
- Manuj Tandon
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Joseph M. Salamoun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Evan J. Carder
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Elisa Farber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Shuping Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hua Tang
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, United States of America
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Q. Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- * E-mail:
| |
Collapse
|
16
|
AL-Shuaeeb RAA, Galvani G, Bernadat G, Brion JD, Alami M, Messaoudi S. Diversity-oriented synthesis of fused thioglycosyl benzo[e][1,4]oxathiepin-5-ones and benzo[f][1,4]thiazepin-5(2H)-ones by a sequence of palladium-catalyzed glycosyl thiol arylation and deprotection–lactonization reactions. Org Biomol Chem 2015; 13:10904-16. [DOI: 10.1039/c5ob01603g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of thioglycosylated benzo[e][1,4]-oxathiepin-5-one and benzothiazepinone derivatives has been reported.
Collapse
Affiliation(s)
| | - Gilles Galvani
- Univ. Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre Le Cancer
| | - Guillaume Bernadat
- Univ. Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre Le Cancer
| | - Jean-Daniel Brion
- Univ. Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre Le Cancer
| | - Mouad Alami
- Univ. Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre Le Cancer
| | - Samir Messaoudi
- Univ. Paris-Sud
- CNRS
- BioCIS-UMR 8076
- Laboratoire de Chimie Thérapeutique
- Equipe Labellisée Ligue Contre Le Cancer
| |
Collapse
|
17
|
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by advanced stage desmoplastic tumors with a high prevalence of genetic abnormalities. Occurrence of PDA is linked to activating Kras mutations and aberrant epidermal growth factor receptor signaling, leading to additional activation of wild-type Kras. As Kras is difficult to target, there is a constant need to identify novel targets acting downstream of this molecule in driving the formation or progression of PDA. Recently, it was shown that protein kinase D enzymes not only are increasingly expressed in PDA but also causatively linked to the development and progression of this cancer. They act downstream of both mutant Kras and growth factors and therefore may represent ideal novel targets.
Collapse
Affiliation(s)
| | - Peter Storz
- Correspondence to: Peter Storz, Mayo Clinic, Department of Cancer Biology, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel: 904 953-6909, Fax: 904 953-0277,
| |
Collapse
|
18
|
An efficient l-proline catalyzed synthesis of pyrazolo[3,4-e][1,4]thiazepine derivatives and their in vitro cytotoxicity studies. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1153-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Wei N, Chu E, Wipf P, Schmitz JC. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther 2014; 13:1130-41. [PMID: 24634417 DOI: 10.1158/1535-7163.mct-13-0880] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein kinase D (PKD) signaling plays a critical role in the regulation of DNA synthesis, proliferation, cell survival, adhesion, invasion/migration, motility, and angiogenesis. To date, relatively little is known about the potential role of PKD in the development and/or progression of human colorectal cancer. We evaluated the expression of different PKD isoforms in colorectal cancer and investigated the antitumor activity of PKD inhibitors against human colorectal cancer. PKD2 was the dominant isoform expressed in human colon cancer cells. PKD3 expression was also observed but PKD1 expression, at both the RNA and protein levels, was not detected. Suppression of PKD using the small molecule inhibitors CRT0066101 and kb-NB142-70 resulted in low micromolar in vitro antiproliferative activity against multiple human colorectal cancer cell lines. Drug treatment was associated with dose-dependent suppression of PKD2 activation. Incubation with CRT0066101 resulted in G(2)-M phase arrest and induction of apoptosis in human colorectal cancer cells. Further studies showed that CRT0066101 treatment gave rise to a dose-dependent increase in expression of cleaved PARP and activated caspase-3, in addition to inhibition of AKT and ERK signaling, and suppression of NF-κB activity. Transfection of PKD2-targeted siRNAs resulted in similar effects on downstream pathways as observed with small molecule inhibitors. Daily administration of CRT0066101 resulted in significant inhibition of tumor growth in HCT116 xenograft nude mice. Taken together, our studies show that PKD plays a significant role in mediating growth signaling in colorectal cancer and may represent a novel chemotherapeutic target for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ning Wei
- Authors' Affiliations: Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine; Cancer Therapeutics Program, University of Pittsburgh Cancer Institute; and Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
20
|
Tandon M, Johnson J, Li Z, Xu S, Wipf P, Wang QJ. New pyrazolopyrimidine inhibitors of protein kinase d as potent anticancer agents for prostate cancer cells. PLoS One 2013; 8:e75601. [PMID: 24086585 PMCID: PMC3781056 DOI: 10.1371/journal.pone.0075601] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/18/2013] [Indexed: 12/04/2022] Open
Abstract
The emergence of protein kinase D (PKD) as a potential therapeutic target for several diseases including cancer has triggered the search for potent, selective, and cell-permeable small molecule inhibitors. In this study, we describe the identification, in vitro characterization, structure-activity analysis, and biological evaluation of a novel PKD inhibitory scaffold exemplified by 1-naphthyl PP1 (1-NA-PP1). 1-NA-PP1 and IKK-16 were identified as pan-PKD inhibitors in a small-scale targeted kinase inhibitor library assay. Both screening hits inhibited PKD isoforms at about 100 nM and were ATP-competitive inhibitors. Analysis of several related kinases indicated that 1-NA-PP1 was highly selective for PKD as compared to IKK-16. SAR analysis showed that 1-NA-PP1 was considerably more potent and showed distinct substituent effects at the pyrazolopyrimidine core. 1-NA-PP1 was cell-active, and potently blocked prostate cancer cell proliferation by inducing G2/M arrest. It also potently blocked the migration and invasion of prostate cancer cells, demonstrating promising anticancer activities on multiple fronts. Overexpression of PKD1 or PKD3 almost completely reversed the growth arrest and the inhibition of tumor cell invasion caused by 1-NA-PP1, indicating that its anti-proliferative and anti-invasive activities were mediated through the inhibition of PKD. Interestingly, a 12-fold increase in sensitivity to 1-NA-PP1 could be achieved by engineering a gatekeeper mutation in the active site of PKD1, suggesting that 1-NA-PP1 could be paired with the analog-sensitive PKD1M659G for dissecting PKD-specific functions and signaling pathways in various biological systems.
Collapse
Affiliation(s)
- Manuj Tandon
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James Johnson
- Department of Chemistry and Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zhihong Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shuping Xu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Peter Wipf
- Department of Chemistry and Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (PW); (QJW)
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (PW); (QJW)
| |
Collapse
|
21
|
Bravo-Altamirano K, George KM, Frantz MC, LaValle CR, Tandon M, Leimgruber S, Sharlow ER, Lazo JS, Wang QJ, Wipf P. Synthesis and Structure-Activity Relationships of Benzothienothiazepinone Inhibitors of Protein Kinase D. ACS Med Chem Lett 2011; 2:154-159. [PMID: 21617763 DOI: 10.1021/ml100230n] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Protein kinase D (PKD) is a member of a novel family of serine/threonine kinases that regulate fundamental cellular processes. PKD is implicated in the pathogenesis of several diseases, including cancer. Progress in understanding the biological functions and therapeutic potential of PKD has been hampered by the lack of specific inhibitors. The benzoxoloazepinolone CID755673 was recently identified as the first potent and selective PKD inhibitor. The study of structure-activity relationships (SAR) of this lead structure led to further improvements in PKD1 potency. We describe herein the synthesis and biological evaluation of novel benzothienothiazepinone analogs. We achieved a ten-fold increase in the in vitro PKD1 inhibitory potency for the second generation lead kb-NB142-70 and accomplished a transition to an almost equally potent novel pyrimidine scaffold, while maintaining excellent target selectivity. These promising results will guide the design of pharmacological tools to dissect PKD function and pave the way for the development of potential anti-cancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie Leimgruber
- Department of Pharmacology and Chemical Biology
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Elizabeth R. Sharlow
- Department of Pharmacology and Chemical Biology
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - John S. Lazo
- Department of Pharmacology and Chemical Biology
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Q. Jane Wang
- Department of Pharmacology and Chemical Biology
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|