1
|
Okada K, Kimura K, Yamashita Y, Shibuya K, Matsumoto I, Satoi S, Yoshida K, Kodera Y, Akahori T, Hirono S, Eguchi H, Asakuma M, Tani M, Hatano E, Ikoma H, Ohira G, Hayashi H, Wan K, Shimokawa T, Kawai M, Yamaue H. Efficacy and safety of neoadjuvant nab-paclitaxel plus gemcitabine therapy in patients with borderline resectable pancreatic cancer: A multicenter single-arm phase II study (NAC-GA trial). Ann Gastroenterol Surg 2023; 7:997-1008. [PMID: 37927936 PMCID: PMC10623952 DOI: 10.1002/ags3.12712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 11/07/2023] Open
Abstract
Background Nab-paclitaxel plus gemcitabine is a standard treatment for metastatic/locally advanced pancreatic cancer. The effectiveness of neoadjuvant therapy with nab-paclitaxel plus gemcitabine (GnP-NAT) in patients with borderline resectable pancreatic cancer (BRPC) remains unclear. Patients and Methods This single-arm phase II trial included 61 patients with BRPC that were treated with two cycles of GnP-NAT, (nab-paclitaxel 125 mg/m2 and gemcitabine 1000 mg/m2), on days 1, 8, and 15 over a 4-week period, which comprised one cycle. The primary endpoint was overall survival time. In the absence of disease progression, patients underwent planned pancreatectomy. Results Median overall survival, the primary endpoint, was 25.2 months, and the median recurrence-free survival was 12.3 months. The overall rate of grade 3/4 events was 73.8%. One patient, who had a history of radiation therapy for past esophageal cancer, died from exacerbation via pneumonia. The overall resection rate was 73.8% (n = 45), and the R0 resection rate was 63.9% (n = 39). Overall, postoperative complications were found in 19 patients (42%) with 24 events, and nine patients (20%) with nine events ≥ grade IIIa, based on Dindo's classification. Conclusions This protocol treatment is thought to be a feasible, safe, and promising treatment regimen, but we caution against its use in patients with a history of interstitial lung disease and/or prior pulmonary irradiation. The survival data from this study suggest the need for further investigations of GnP-NAT efficacy in patients with BRPC, as well as prospective evaluation of adverse events. Clinical Trial Registration UMIN Clinical Trials Registry, UMIN000024154 and ClinicalTrials.gov, NCT02926183.
Collapse
Affiliation(s)
- Ken‐ichi Okada
- Second Department of SurgeryWakayama Medical UniversityWakayamaJapan
| | - Kenjiro Kimura
- Department of Hepato‐Biliary‐Pancreatic SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Yo‐Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kazuto Shibuya
- Department of Surgery and Science, Faculty of Medicine, Academic AssemblyUniversity of ToyamaToyamaJapan
| | - Ippei Matsumoto
- Department of SurgeryKindai University Faculty of MedicineOsaka‐SayamaJapan
| | - Sohei Satoi
- Department of SurgeryKansai Medical UniversityHirakataJapan
| | - Kazuhiro Yoshida
- Department of Surgical OncologyGifu University Graduate School of MedicineGifuJapan
| | - Yasuhiro Kodera
- Department of Gastroenterological SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | | | - Seiko Hirono
- Second Department of SurgeryWakayama Medical UniversityWakayamaJapan
- Division of Hepato‐Biliary‐Pancreatic Surgery, Department of Gastroenterological SurgeryHyogo Medical UniversityNishinomiyaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversitySuitaJapan
| | - Mitsuhiro Asakuma
- Department of General and Gastroenterological SurgeryOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Masaji Tani
- Department of SurgeryShiga University of Medical ScienceŌtsuJapan
| | - Etsuro Hatano
- Division of Hepato‐Biliary‐Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Go Ohira
- Department of Hepato‐Biliary‐Pancreatic SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Ke Wan
- Clinical Study Support CenterWakayama Medical UniversityWakayamaJapan
| | - Toshio Shimokawa
- Clinical Study Support CenterWakayama Medical UniversityWakayamaJapan
| | - Manabu Kawai
- Second Department of SurgeryWakayama Medical UniversityWakayamaJapan
| | - Hiroki Yamaue
- Department of Cancer ImmunologyWakayama Medical UniversityWakayamaJapan
| | | |
Collapse
|
2
|
Yampayon K, Anantachoti P, Chongmelaxme B, Yodsurang V. Genetic polymorphisms influencing deferasirox pharmacokinetics, efficacy, and adverse drug reactions: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1069854. [PMID: 37261288 PMCID: PMC10227503 DOI: 10.3389/fphar.2023.1069854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Objective: Deferasirox is an iron-chelating agent prescribed to patients with iron overload. Due to the interindividual variability of deferasirox responses reported in various populations, this study aims to determine the genetic polymorphisms that influence drug responses. Methods: A systematic search was performed from inception to March 2022 on electronic databases. All studies investigating genetic associations of deferasirox in humans were included, and the outcomes of interest included pharmacokinetics, efficacy, and adverse drug reactions. Fixed- and random-effects model meta-analyses using the ratio of means (ROM) were performed. Results: Seven studies involving 367 participants were included in a meta-analysis. The results showed that subjects carrying the A allele (AG/AA) of ABCC2 rs2273697 had a 1.23-fold increase in deferasirox Cmax (ROM = 1.23; 95% confidence interval [CI]:1.06-1.43; p = 0.007) and a lower Vd (ROM = 0.48; 95% CI: 0.36-0.63; p < 0.00001), compared to those with GG. A significant attenuated area under the curve of deferasirox was observed in the subjects with UGT1A3 rs3806596 AG/GG by 1.28-fold (ROM = 0.78; 95% CI: 0.60-0.99; p = 0.04). In addition, two SNPs of CYP24A1 were also associated with the decreased Ctrough: rs2248359 CC (ROM = 0.50; 95% CI: 0.29-0.87; p = 0.01) and rs2585428 GG (ROM = 0.47; 95% CI: 0.35-0.63; p < 0.00001). Only rs2248359 CC was associated with decreased Cmin (ROM = 0.26; 95% CI: 0.08-0.93; p = 0.04), while rs2585428 GG was associated with a shorter half-life (ROM = 0.44; 95% CI: 0.23-0.83; p = 0.01). Conclusion: This research summarizes the current evidence supporting the influence of variations in genes involved with drug transporters, drug-metabolizing enzymes, and vitamin D metabolism on deferasirox responses.
Collapse
Affiliation(s)
- Kittika Yampayon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Puree Anantachoti
- Social and Administrative Pharmacy Department, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Bunchai Chongmelaxme
- Social and Administrative Pharmacy Department, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Varalee Yodsurang
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy, Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Chen Y, Xu Y, Shao Z, Yu K. Resistance to antibody-drug conjugates in breast cancer: mechanisms and solutions. Cancer Commun (Lond) 2023; 43:297-337. [PMID: 36357174 PMCID: PMC10009672 DOI: 10.1002/cac2.12387] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a rapidly developing therapeutic approach in cancer treatment that has shown remarkable activity in breast cancer. Currently, there are two ADCs approved for the treatment of human epidermal growth factor receptor 2-positive breast cancer, one for triple-negative breast cancer, and multiple investigational ADCs in clinical trials. However, drug resistance has been noticed in clinical use, especially in trastuzumab emtansine. Here, the mechanisms of ADC resistance are summarized into four categories: antibody-mediated resistance, impaired drug trafficking, disrupted lysosomal function, and payload-related resistance. To overcome or prevent resistance to ADCs, innovative development strategies and combination therapy options are being investigated. Analyzing predictive biomarkers for optimal therapy selection may also help to prevent drug resistance.
Collapse
Affiliation(s)
- Yu‐Fei Chen
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ying‐ying Xu
- Department of Breast SurgeryFirst Affiliated Hospital of China Medical UniversityShenyangLiaoning110001P. R. China
| | - Zhi‐Ming Shao
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Ke‐Da Yu
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Shanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| |
Collapse
|
4
|
Biswas M, Jinda P, Sukasem C. Pharmacogenomics in Asians: Differences and similarities with other human populations. Expert Opin Drug Metab Toxicol 2023; 19:27-41. [PMID: 36755439 DOI: 10.1080/17425255.2023.2178895] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Various pharmacogenomic (PGx) variants differ widely in different ethnicities. and clinical outcomes associated with these variants may also be substantially varied. Literature was searched in different databases, i.e. PubMed, ScienceDirect, Web of Science, and PharmGKB, from inception to 30 June 2022 for this review. AREAS COVERED Certain PGx variants were distinctly varied in Asian populations compared to the other human populations, e.g. CYP2C19*2,*3,*17; CYP2C9*2,*3; CYP2D6*4,*5,*10,*41; UGT1A1*6,*28; HLA-B*15:02, HLA-B*15:21, HLA-B*58:01, and HLA-A*31:01. However, certain other variants do not vary greatly between Asian and other ethnicities, e.g. CYP3A5*3; ABCB1, and SLCO1B1*5. As evident in this review, the risk of major adverse cardiovascular events (MACE) was much stronger in Asian patients taking clopidogrel and who inherited the CYP2C19 loss-of-function alleles, e.g. CYP2C19*2 and*3, when compared to the western/Caucasian patients. Additionally, the risk of carbamazepine-induced severe cutaneous adverse drug reactions (SCARs) for the patients inheriting HLA-B*15:02 and HLA-B*15:21 alleles varied significantly between Asian and other ethnicities. In contrast, both Caucasian and Asian patients inheriting the SLCO1B1*5 variant possessed a similar magnitude of muscle toxicity, i.e. myopathy. EXPERT OPINION Asian countries should take measures toward expanding PGx research, as well as initiatives for the purposes of obtaining clinical benefits from this newly evolving and economically viable treatment model.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, 6205, Rajshahi, Bangladesh
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, 10400, Bangkok, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, 10400, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 10400, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, 10400, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, 10110, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 3GL, Liverpool, UK
| |
Collapse
|
5
|
Atasilp C, Biswas M, Jinda P, Nuntharadthanaphong N, Rachanakul J, Hongkaew Y, Vanwong N, Saokaew S, Sukasem C. Association of UGT1A1*6, UGT1A1*28, or ABCC2 c.3972C>T genetic polymorphisms with irinotecan-induced toxicity in Asian cancer patients: Meta-analysis. Clin Transl Sci 2022; 15:1613-1633. [PMID: 35506159 PMCID: PMC9283744 DOI: 10.1111/cts.13277] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Effects of UGT1A1*6 and UGT1A1*28 genetic polymorphisms on irinotecan-induced severe toxicities in Asian cancer patients are inconclusive. Also, ABCC2 c.3972C>T may affect toxicity of irinotecan. The aim was to assess the aggregated risk of neutropenia or diarrhea in Asian cancer patients taking irinotecan and inherited UGT1A1*6, UGT1A1*28, or ABCC2 c.3972C>T genetic variants. A PubMed literature search for eligible studies was conducted. Odds ratios (ORs) were measured using RevMan software where p values <0.05 were statistically significant. Patients that inherited both UGT1A1*6 and UGT1A1*28 genetic variants (heterozygous: UGT1A1*1/*6 + *1/*28 and homozygous: UGT1A1*6/*6 + *28/*28) were significantly associated with increased risk of neutropenia and diarrhea compared to patients with UGT1A1*1/*1 (neutropenia: OR 2.89; 95% CI 1.97-4.23; p < 0.00001; diarrhea: OR 2.26; 95% CI 1.71-2.99; p < 0.00001). Patients carrying homozygous variants had much stronger effects in developing toxicities (neutropenia: OR 6.23; 95% CI 3.11-12.47; p < 0.00001; diarrhea: OR 3.21; 95% CI 2.13-4.85; p < 0.00001) than those with heterozygous variants. However, patients carrying the ABCC2 c.3972C>T genetic variant were not significantly associated with neutropenia (OR 1.67; 95% CI 0.98-2.84; p = 0.06) and were significantly associated with a reduction in irinotecan-induced diarrhea (OR 0.31; 95% CI 0.11-0.81; p = 0.02). Asian cancer patients should undergo screening for both UGT1A1*6 and UGT1A1*28 genetic variants to reduce substantially irinotecan-induced severe toxicities.
Collapse
Affiliation(s)
- Chalirmporn Atasilp
- Chulabhorn International College of MedicineThammasat UniversityPathum ThaniThailand
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
| | - Yaowaluck Hongkaew
- Advance Research and Development LaboratoryBumrungrad International HospitalBangkokThailand
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health SciencesChulalongkorn UniversityBangkokThailand
| | - Surasak Saokaew
- Division of Pharmacy Practice, Department of Pharmaceutical CareSchool of Pharmaceutical Sciences, University of PhayaoPhayaoThailand
- Center of Health Outcomes Research and Therapeutic Safety (COHORTS)School of Pharmaceutical Sciences, University of PhayaoPhayaoThailand
- Unit of Excellence on Clinical Outcomes Research and Integration (UNICORN)School of Pharmaceutical Sciences, University of PhayaoPhayaoThailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check‐up Services CenterBumrungrad International HospitalBangkokThailand
| |
Collapse
|
6
|
LI Q, SUN T, ZHANG H, LIU W, XIAO Y, SUN H, YIN W, YAO Y, GU Y, LIU Y, YI F, WANG Q, YU J, CAO B, LIANG L. Characteristics and Clinical Implication of UGT1A1 Heterozygous Mutation in Tumor. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:137-146. [PMID: 35340156 PMCID: PMC8976199 DOI: 10.3779/j.issn.1009-3419.2022.101.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The literature recommends that reduced dosage of CPT-11 should be applied in patients with UGT1A1 homozygous mutations, but the impact of UGT1A1 heterozygous mutations on the adverse reactions of CPT-11 is still not fully clear. METHODS A total of 107 patients with UGT1A1 heterozygous mutation or wild-type, who were treated with CPT-11 from January 2018 to September 2021 in Peking University Third Hospital, were retrospectively enrolled. The adverse reaction spectra of patients with UGT1A1*6 and UGT1A1*28 mutations were analyzed. Adverse reactions were evaluated according to National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) 5.0. The efficacy was evaluated according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The genotypes of UGT1A1*6 and UGT1A1*28 were detected by digital fluorescence molecular hybridization. RESULTS There were 43 patients with UGT1A1*6 heterozygous mutation, 26 patients with UGT1A1*28 heterozygous mutation, 8 patients with UGT1A1*6 and UGT1A1*28 double heterozygous mutations, 61 patients with heterozygous mutation at any gene locus of UGT1A1*6 and UGT1A1*28. Logistic regression analysis showed that the presence or absence of vomiting (P=0.013) and mucositis (P=0.005) was significantly correlated with heterozygous mutation of UGT1A1*28, and the severity of vomiting (P<0.001) and neutropenia (P=0.021) were significantly correlated with heterozygous mutation of UGT1A1*6. In colorectal cancer, UGT1A1*6 was significantly correlated to diarrhea (P=0.005), and the other adverse reactions spectrum was similar to that of the whole patient cohort, and efficacy and prognosis were similar between patients with different genotypes and patients treated with reduced CPT-11 dosage or not. CONCLUSIONS In clinical use, heterozygous mutations of UGT1A1*6 and UGT1A1*28 are related to the risk and severity of vomiting, diarrhea, neutropenia and mucositis in patients with Pan-tumor and colorectal cancer post CPT-11 therpy. In colorectal cancer, UGT1A1*6 is significantly related to diarrhea post CPT-11 use, efficacy and prognosis is not affected by various genotypes or CPT-11 dosage reduction.
Collapse
Affiliation(s)
- Qian LI
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Tao SUN
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Hua ZHANG
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Wei LIU
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yu XIAO
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Hongqi SUN
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Wencheng YIN
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Yanhong YAO
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Yangchun GU
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Yan'e LIU
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Fumei YI
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Qiqi WANG
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Jinyu YU
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Baoshan CAO
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Li LIANG
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China,Li LIANG, E-mail:
| |
Collapse
|
7
|
Franczyk B, Rysz J, Gluba-Brzózka A. Pharmacogenetics of Drugs Used in the Treatment of Cancers. Genes (Basel) 2022; 13:311. [PMID: 35205356 PMCID: PMC8871547 DOI: 10.3390/genes13020311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Pharmacogenomics is based on the understanding of the individual differences in drug use, the response to drug therapy (efficacy and toxicity), and the mechanisms underlying variable drug responses. The identification of DNA variants which markedly contribute to inter-individual variations in drug responses would improve the efficacy of treatments and decrease the rate of the adverse side effects of drugs. This review focuses only on the impact of polymorphisms within drug-metabolizing enzymes on drug responses. Anticancer drugs usually have a very narrow therapeutic index; therefore, it is very important to use appropriate doses in order to achieve the maximum benefits without putting the patient at risk of life-threatening toxicities. However, the adjustment of the appropriate dose is not so easy, due to the inheritance of specific polymorphisms in the genes encoding the target proteins and drug-metabolizing enzymes. This review presents just a few examples of such polymorphisms and their impact on the response to therapy.
Collapse
Affiliation(s)
| | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland; (B.F.); (J.R.)
| |
Collapse
|
8
|
Riera P, Páez D. Elucidating the role of pharmacogenetics in irinotecan efficacy and adverse events in metastatic colorectal cancer patients. Expert Opin Drug Metab Toxicol 2021; 17:1157-1163. [PMID: 34486919 DOI: 10.1080/17425255.2021.1974397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Irinotecan is a cytotoxic agent that is widely used in the treatment of several types of solid tumors. However, although it is generally well tolerated, approximately 20% to 35% of patients develop severe toxicity, particularly delayed-type diarrhea and neutropenia. As the incidence of such toxicities is often associated with the UGT1A1 *28/*28, *6/*28 and *6/*6 genotypes, individualized dosing could reduce these adverse events. Furthermore, prospective trials have shown that patients harboring the UGT1A1 *1/*1 and *1/*28 genotypes can tolerate higher doses of irinotecan, which may in turn impact on a better outcome. Upfront UGT1A1 genotyping could therefore be a usefulness strategy in order to individualize irinotecan dosing, but consensus on the recommended dose based on the UGT1A1 genotype is still lacking. AREAS COVERED This review summarizes the results of the main pharmacogenetic studies focused on irinotecan. We provide an overview of current evidence and recommendations for individualized dosing of irinotecan in metastatic colorectal cancer patients. EXPERT OPINION Implementation of UGT1A1*28 and UGT1A1*6 genotyping in clinical practice is a first step toward personalizing irinotecan therapy. This approach is likely to improve patient care and reduce healthcare costs. Future large and prospective studies will help to clarify the clinical value of other genetic markers in irinotecan treatment personalization.
Collapse
Affiliation(s)
- Pau Riera
- Pharmacy Department, Hospital De La Santa Creu I Sant Pau, Barcelona, Spain.,U705, Isciii Center for Biomedical Research on Rare Diseases (Ciberer), Barcelona, Spain
| | - David Páez
- U705, Isciii Center for Biomedical Research on Rare Diseases (Ciberer), Barcelona, Spain.,Medical Oncology Department, Hospital De La Santa Creu I Sant Pau, Barcelona, Spain
| |
Collapse
|
9
|
Nelson RS, Seligson ND, Bottiglieri S, Carballido E, Cueto AD, Imanirad I, Levine R, Parker AS, Swain SM, Tillman EM, Hicks JK. UGT1A1 Guided Cancer Therapy: Review of the Evidence and Considerations for Clinical Implementation. Cancers (Basel) 2021; 13:1566. [PMID: 33805415 PMCID: PMC8036652 DOI: 10.3390/cancers13071566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Multi-gene assays often include UGT1A1 and, in certain instances, may report associated toxicity risks for irinotecan, belinostat, pazopanib, and nilotinib. However, guidance for incorporating UGT1A1 results into therapeutic decision-making is mostly lacking for these anticancer drugs. We summarized meta-analyses, genome-wide association studies, clinical trials, drug labels, and guidelines relating to the impact of UGT1A1 polymorphisms on irinotecan, belinostat, pazopanib, or nilotinib toxicities. For irinotecan, UGT1A1*28 was significantly associated with neutropenia and diarrhea, particularly with doses ≥ 180 mg/m2, supporting the use of UGT1A1 to guide irinotecan prescribing. The drug label for belinostat recommends a reduced starting dose of 750 mg/m2 for UGT1A1*28 homozygotes, though published studies supporting this recommendation are sparse. There was a correlation between UGT1A1 polymorphisms and pazopanib-induced hepatotoxicity, though further studies are needed to elucidate the role of UGT1A1-guided pazopanib dose adjustments. Limited studies have investigated the association between UGT1A1 polymorphisms and nilotinib-induced hepatotoxicity, with data currently insufficient for UGT1A1-guided nilotinib dose adjustments.
Collapse
Affiliation(s)
- Ryan S. Nelson
- Department of Consultative Services, ARUP Laboratories, Salt Lake City, UT 84108, USA;
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Nathan D. Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL 32610, USA;
- Department of Hematology and Oncology, Nemours Children’s Specialty Care, Jacksonville, FL 32207, USA
| | - Sal Bottiglieri
- Department of Pharmacy, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Estrella Carballido
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Alex Del Cueto
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Iman Imanirad
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Richard Levine
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
- Department of Satellite and Community Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Sandra M. Swain
- Georgetown University Medical Center, MedStar Health, Washington, DC 20007, USA;
| | - Emma M. Tillman
- Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - J. Kevin Hicks
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL 33612, USA;
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
| |
Collapse
|
10
|
Zhu X, Zhu J, Sun F, Zhen Z, Zhou D, Lu S, Huang J, Que Y, Zhang L, Cai R, Wang J, Zhang Y. Influence of UGT1A1 *6/*28 Polymorphisms on Irinotecan-Related Toxicity and Survival in Pediatric Patients with Relapsed/Refractory Solid Tumors Treated with the VIT Regimen. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:369-377. [PMID: 33790625 PMCID: PMC8001723 DOI: 10.2147/pgpm.s292556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 11/23/2022]
Abstract
Objective The association between UGT1A1*6/*28 polymorphisms and treatment outcomes of irinotecan in children remains unknown. This retrospective study investigated the influence of UGT1A1*6/*28 polymorphisms on irinotecan toxicity and survival of pediatric patients with relapsed/refractory solid tumors. Methods The present study enrolled a total of 44 patients aged younger than 18 years at Sun Yat-sen University Cancer Center between 2014 and 2017. Results There were 26 boys and 18 girls; the median age at first VIT course was six years (range: 1-18 years). The tumor types included neuroblastoma (n = 25), rhabdomyosarcoma (n = 11), Wilm's tumor (n = 4), medulloblastoma (n = 2), and desmoplastic small round cell tumor (n = 2). Overall, 203 courses of VIT regimens were prescribed. Neither UGT1A1*6 nor *28 polymorphisms were associated with the incidence rates of severe (grade III-IV) irinotecan-related toxicities, but tended to reduce the patient overall survival (UGT1A1*6, P = 0.146; UGT1A1*28, P = 0.195). Moreover, patients with mutant UGT1A1*6 genotypes were more likely to develop grade I-IV irinotecan-related diarrhea (P = 0.043) and anemia (P = 0.002). Overall, the UGT1A1*28 polymorphism may play a protective role against irinotecan-related diarrhea and abdominal pain. Conclusion In relapsed/refractory pediatric solid tumors, the UGT1A1*6 polymorphism was a risk factor of irinotecan-related diarrhea and anemia. The UGT1A1*28 polymorphism may serve a protective role in irinotecan-related abdominal pain and diarrhea. Both mutations had a tendency to be risk factors for survival. Nevertheless, prospective studies are required to verify such conclusions.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Feifei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zijun Zhen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Dalei Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Suying Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Junting Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yi Que
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lian Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ruiqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
|
12
|
Reizine N, Vokes EE, Liu P, Truong TM, Nanda R, Fleming GF, Catenacci DV, Pearson AT, Parsad S, Danahey K, van Wijk XMR, Yeo KTJ, Ratain MJ, O’Donnell PH. Implementation of pharmacogenomic testing in oncology care (PhOCus): study protocol of a pragmatic, randomized clinical trial. Ther Adv Med Oncol 2020; 12:1758835920974118. [PMID: 33414846 PMCID: PMC7750903 DOI: 10.1177/1758835920974118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many cancer patients who receive chemotherapy experience adverse drug effects. Pharmacogenomics (PGx) has promise to personalize chemotherapy drug dosing to maximize efficacy and safety. Fluoropyrimidines and irinotecan have well-known germline PGx associations. At our institution, we have delivered PGx clinical decision support (CDS) based on preemptively obtained genotyping results for a large number of non-oncology medications since 2012, but have not previously evaluated the utility of this strategy for patients initiating anti-cancer regimens. We hypothesize that providing oncologists with preemptive germline PGx information along with CDS will enable individualized dosing decisions and result in improved patient outcomes. METHODS Patients with oncologic malignancies for whom fluoropyrimidine and/or irinotecan-inclusive therapy is being planned will be enrolled and randomly assigned to PGx and control arms. Patients will be genotyped in a clinical laboratory across panels that include actionable variants in UGT1A1 and DPYD. For PGx arm patients, treating providers will be given access to the patient-specific PGx results with CDS prior to treatment initiation. In the control arm, genotyping will be deferred, and dosing will occur as per usual care. Co-primary endpoints are dose intensity deviation rate (the proportion of patients receiving dose modifications during the first treatment cycle), and grade ⩾3 treatment-related toxicities throughout the treatment course. Additional study endpoints will include cumulative drug dose intensity, progression-free survival, dosing of additional PGx supportive medications, and patient-reported quality of life and understanding of PGx. DISCUSSION Providing a platform of integrated germline PGx information may promote personalized chemotherapy dosing decisions and establish a new model of care to optimize oncology treatment planning.
Collapse
Affiliation(s)
- Natalie Reizine
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA
| | - Everett E. Vokes
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA
| | - Ping Liu
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Tien M. Truong
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA
| | - Rita Nanda
- Department of Pharmacy, University of Chicago Medical Center, Chicago, IL, USA
| | - Gini F. Fleming
- Department of Pharmacy, University of Chicago Medical Center, Chicago, IL, USA
| | | | | | - Sandeep Parsad
- Department of Pharmacy, University of Chicago Medical Center, Chicago, IL, USA
| | - Keith Danahey
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA Center for Research Informatics, University of Chicago, Chicago, IL, USA
| | - Xander M. R. van Wijk
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA
| | - Kiang-Teck J. Yeo
- Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA Department of Pathology, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA
| | - Mark J. Ratain
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, IL, USA Center for Personalized Therapeutics, University of Chicago, Chicago, IL, USA
| | - Peter H. O’Donnell
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center and Biological Sciences, Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL 60637, USA
- Center for Personalized Therapeutics, University of Chicago, 5841 S. Maryland Avenue, MC2115, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Hulshof EC, Deenen MJ, Guchelaar HJ, Gelderblom H. Pre-therapeutic UGT1A1 genotyping to reduce the risk of irinotecan-induced severe toxicity: Ready for prime time. Eur J Cancer 2020; 141:9-20. [PMID: 33125947 DOI: 10.1016/j.ejca.2020.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pre-therapeutic UGT1A1 genotyping is not yet routinely performed in most hospitals in patients starting irinotecan chemotherapy. The aim of this position paper was to evaluate the available evidence and to assess the potential value of genotyping of UGT1A1∗28 and UGT1A1*6 in patients before starting treatment with irinotecan to reduce the risk of severe toxicity. METHODS The literature was selected and assessed based on five pre-specified criteria: 1) the level of evidence for associations between UGT1A1 polymorphisms and irinotecan-induced severe toxicity, 2) clinical validity and utility of pre-therapeutic genotyping of UGT1A1, 3) safety and tolerability of irinotecan in carriers of UGT1A1 polymorphisms, 4) availability of specific dose recommendations for irinotecan in carriers of UGT1A1 polymorphisms, 5) evidence of cost benefits of pre-therapeutic genotyping of UGT1A1. RESULTS On all five criteria, study results were favourable for pre-therapeutic genotyping of UGT1A1. A high level of evidence (level I) was found for a higher incidence of irinotecan-induced severe toxicity in homozygous carriers of UGT1A1*28 or UGT1A1*6. The clinical validity and utility of this genetic test proved to be acceptable. Dose-finding studies showed a lower maximum tolerated dose in homozygous variant allele carriers, and most of the drug labels and guidelines recommend a dose reduction of 25-30% in these patients. In addition, pre-therapeutic genotyping of UGT1A1 is likely to save costs. CONCLUSION Pre-therapeutic genotyping of UGT1A1 in patients initiating treatment with irinotecan improves patient safety, is likely to be cost-saving, and should, therefore, become standard of care.
Collapse
Affiliation(s)
- Emma C Hulshof
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network of Personalized Therapeutics, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
14
|
Udagawa C, Zembutsu H. Pharmacogenetics for severe adverse drug reactions induced by molecular-targeted therapy. Cancer Sci 2020; 111:3445-3457. [PMID: 32780457 PMCID: PMC7540972 DOI: 10.1111/cas.14609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022] Open
Abstract
Molecular-targeted drugs specifically interfere with molecules that are frequently overexpressed or mutated in cancer cells. As such, these drugs are generally considered to precisely attack cancer cells, thereby inducing fewer adverse drug reactions (ADRs). However, molecular-targeted drugs can still cause characteristic ADRs that, although rarely severe, can be life-threatening. Therefore, it is becoming increasingly important to be able to predict which patients are at risk of developing ADRs after treatment with molecular-targeted therapy. The emerging field of pharmacogenetics aims to better distinguish the genetic variants associated with drug toxicity and efficacy to improve the selection of therapeutic strategies for each genetic profile. Here, we provide an overview of the current reports on the relationship between genetic variants and molecular-targeted drug-induced severe ADRs in oncology.
Collapse
Affiliation(s)
- Chihiro Udagawa
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Hitoshi Zembutsu
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
15
|
Effect of drug metabolizing enzymes and transporters in Thai colorectal cancer patients treated with irinotecan-based chemotherapy. Sci Rep 2020; 10:13486. [PMID: 32778670 PMCID: PMC7417535 DOI: 10.1038/s41598-020-70351-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Genetic polymorphisms in drug metabolizing enzymes and drug transporters may affect irinotecan toxicity. Although genetic polymorphisms have been shown to influence the irinotecan toxicity, data are limited in Thai population. Thus, the aim of this study was to assess the allele and genotype frequencies and the relationship between CYP3A4/5, DPYD, UGT1A1, ABCB1, and ABCC2 genetic variations and irinotecan-induced toxicity in Thai colorectal cancer patients. One hundred and thirty-two patients were genotyped, and the effect of genetic variations on irinotecan-induced toxicity was assessed in 66 patients who received irinotecan-based chemotherapy. Allele frequencies of ABCB1 c.1236C > T, ABCB1 c.3435C > T, ABCC2 c.3972C > T, ABCG2 c.421C > A, CYP3A4*1B, CYP3A4*18, CYP3A5*3, DPYD*5, UGT1A1*28, and UGT1A1*6 were 0.67, 0.43, 0.23, 0.27, 0.01, 0.02, 0.64, 0.19, 0.16, and 0.09, respectively. DPYD*2A and DPYD c.1774C > T variants were not detected in our study population. The ABCC2 c.3972C > T was significantly associated with grade 1–4 neutropenia (P < 0.012) at the first cycle. Patients carrying both UGT1A1*28 and *6 were significantly associated with severe neutropenia at the first (P < 0.001) and second (P = 0.017) cycles. In addition, patients carrying UG1A1*28 and *6 had significantly lower absolute neutrophil count (ANC) nadir at first (P < 0.001) and second (P = 0.001) cycles. This finding suggests that UGT1A1*28, *6, and ABCC2 c.3972C > T might be an important predictor for irinotecan-induced severe neutropenia.
Collapse
|
16
|
Ingram CJE, Ekong R, Ansari-Pour N, Bradman N, Swallow DM. Group-based pharmacogenetic prediction: is it feasible and do current NHS England ethnic classifications provide appropriate data? THE PHARMACOGENOMICS JOURNAL 2020; 21:47-59. [PMID: 32683419 DOI: 10.1038/s41397-020-0175-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
Inter-individual variation of drug metabolising enzymes (DMEs) leads to variable efficacy of many drugs and even adverse drug responses. Consequently, it would be desirable to test variants of many DMEs before drug treatment. Inter-ethnic differences in frequency mean that the choice of SNPs to test may vary across population groups. Here we examine the utility of testing representative groups as a way of assessing what variants might be tested. We show that publicly available population information is potentially useful for determining loci for pre-treatment genetic testing, and for determining the most prevalent risk haplotypes in defined groups. However, we also show that the NHS England classifications have limitations for grouping for these purposes, in particular for people of African descent. We conclude: (1) genotyping of hospital patients and people from the hospital catchment area confers no advantage over using samples from appropriate existing ethnic group collections or publicly available data, (2) given the current NHS England Black African grouping, a decision as to whether to test, would have to apply to all patients of recent Black African ancestry to cover reported risk alleles and (3) the current scarcity of available genome and drug effect data from Africans is a problem for both testing and treatment decisions.
Collapse
Affiliation(s)
- Catherine J E Ingram
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Rosemary Ekong
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Naser Ansari-Pour
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF, UK
| | - Neil Bradman
- Henry Stewart Group, 40-41 Museum Street, London, WC1A 1LT, UK
| | - Dallas M Swallow
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
17
|
Páez D. Genetics and adverse events with irinotecan treatment: what do we know? Pharmacogenomics 2020; 20:393-395. [PMID: 31117929 DOI: 10.2217/pgs-2019-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- David Páez
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBERER U-705, Barcelona, Spain
| |
Collapse
|
18
|
de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet 2019. [PMID: 29520731 PMCID: PMC6132501 DOI: 10.1007/s40262-018-0644-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its clinical introduction in 1998, the topoisomerase I inhibitor irinotecan has been widely used in the treatment of solid tumors, including colorectal, pancreatic, and lung cancer. Irinotecan therapy is characterized by several dose-limiting toxicities and large interindividual pharmacokinetic variability. Irinotecan has a highly complex metabolism, including hydrolyzation by carboxylesterases to its active metabolite SN-38, which is 100- to 1000-fold more active compared with irinotecan itself. Several phase I and II enzymes, including cytochrome P450 (CYP) 3A4 and uridine diphosphate glucuronosyltransferase (UGT) 1A, are involved in the formation of inactive metabolites, making its metabolism prone to environmental and genetic influences. Genetic variants in the DNA of these enzymes and transporters could predict a part of the drug-related toxicity and efficacy of treatment, which has been shown in retrospective and prospective trials and meta-analyses. Patient characteristics, lifestyle and comedication also influence irinotecan pharmacokinetics. Other factors, including dietary restriction, are currently being studied. Meanwhile, a more tailored approach to prevent excessive toxicity and optimize efficacy is warranted. This review provides an updated overview on today’s literature on irinotecan pharmacokinetics, pharmacodynamics, and pharmacogenetics.
Collapse
Affiliation(s)
- Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Andrew K L Goey
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus MC Cancer Institute, 's-Gravendijkwal 230, 3015, Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Comparison of effects of UGT1A1*6 and UGT1A1*28 on irinotecan-induced adverse reactions in the Japanese population: analysis of the Biobank Japan Project. J Hum Genet 2019; 64:1195-1202. [DOI: 10.1038/s10038-019-0677-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
|
20
|
Suarez-Kurtz G, Aklillu E, Saito Y, Somogyi AA. Conference report: pharmacogenomics in special populations at WCP2018. Br J Clin Pharmacol 2019; 85:467-475. [PMID: 30537134 DOI: 10.1111/bcp.13828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
The 18th World Congress of Basic and Clinical Pharmacology (WCP2018), coordinated by IUPHAR and hosted by the Japanese Pharmacological Society and the Japanese Society of Clinical Pharmacology and Therapeutics, was held in July 2018 at the Kyoto International Conference Center, in Kyoto, Japan. Having as its main theme 'Pharmacology for the Future: Science, Drug Development and Therapeutics', WCP2018 was attended by over 4500 delegates, representing 78 countries. The present report is an overview of a symposium at WCP2018, entitled Pharmacogenomics in Special Populations, organized by IUPHAR´s Pharmacogenetics/Genomics (PGx) section. The PGx section congregates distinguished scientists from different continents, covering expertise from basic research, to clinical implementation and ethical aspects of PGx, and one of its major activities is the coordination of symposia and workshops to foster exchange of PGx knowledge (https://iuphar.org/sections-subcoms/pharmacogenetics-genomics/). The symposium attracted a large audience to listen to presentations covering various areas of research and clinical adoption of PGx in Oceania, Africa, Latin America and Asia.
Collapse
Affiliation(s)
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Andrew A Somogyi
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
21
|
Wei X, Cai J, Sun H, Li N, Xu C, Zhang G, Sui Y, Zhuang J, Zheng B. Cost-effectiveness analysis of UGT1A1*6/*28 genotyping for preventing FOLFIRI-induced severe neutropenia in Chinese colorectal cancer patients. Pharmacogenomics 2019; 20:241-249. [PMID: 30628534 DOI: 10.2217/pgs-2018-0138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM To assess the cost-effectiveness of UGT1A1*6/*28 genotyping compared with no genotyping or no dose adjustment before irinotecan administration in China. MATERIALS & METHODS A decision tree model was developed to evaluate costs and health outcomes represented as quality-adjusted life years gained. Model inputs for the frequency of genotypes, the probability of neutropenia under FOLFIRI chemotherapy and direct costs and utilities were obtained from published sources. One-way sensitivity analyses were performed. RESULTS The strategy of genotyping with dose reduction dominated all remaining strategies. Compared with the strategies of no genotyping and genotyping with unchanged dose, it resulted in only marginal quality-adjusted life year increases (0.0011 and 0.0012) but a cost reduction of $651.12 and $805.22 per patient, respectively. One-way sensitivity analyses revealed that the model was relatively robust. CONCLUSION UGT1A1*6/*28 genotyping was cost saving for Chinese colorectal cancer patients.
Collapse
Affiliation(s)
- XiaoXia Wei
- Department of Pharmacy, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China
| | - JiaQin Cai
- Department of Pharmacy, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China
| | - Hong Sun
- Department of Pharmacy, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China
| | - Na Li
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, PR China
| | - Chenxia Xu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, PR China
| | - Guifeng Zhang
- Department of Oncology, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China
| | - Yuxia Sui
- Department of Pharmacy, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China
| | - Jie Zhuang
- Department of Pharmacy, Fujian Provincial Hospital, Provincial Clinical Medicine College of Fujian Medical University, Fuzhou 350001, Fujian Province, PR China
| | - Bin Zheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, PR China.,The School of Pharmacy, Fujian Medical University, Fuzhou 350001, Fujian Province, PR China
| |
Collapse
|
22
|
Fukuda M, Okumura M, Iwakiri T, Arimori K, Honda T, Kobayashi K, Senju H, Takemoto S, Ikeda T, Yamaguchi H, Nakatomi K, Matsuo N, Mukae H, Ashizawa K. Relationship between UGT1A1*27 and UGT1A1*7 polymorphisms and irinotecan-related toxicities in patients with lung cancer. Thorac Cancer 2017; 9:51-58. [PMID: 29052349 PMCID: PMC5754284 DOI: 10.1111/1759-7714.12535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 11/29/2022] Open
Abstract
Background The objective of this study was to evaluate the effects of gene polymorphisms, including UGT1A1*7, *27, and *29, on the safety of irinotecan therapy. Methods The eligibility criteria were: lung cancer patients scheduled to undergo irinotecan therapy, aged ≥ 20 years, with a performance status of 0–2. Thirty‐one patients were enrolled and their blood was collected and used to examine the frequency of UGT1A1*6, *7, *27, *28, and *29 polymorphisms and the concentrations of irinotecan, SN‐38, and SN‐38G after irinotecan therapy. Results The patients’ characteristics were as follows: male/female 25/6, median age 71 years (range 55–84), stage IIB/IIIA/IIIB/IV 2/6/11/12, and adenocarcinoma/squamous cell carcinoma/small cell carcinoma/other 14/10/3/4, respectively. The −/−, *6/−, *7/−, *27/−, *28/−, and *29/− UGT1A1 gene polymorphisms were observed in 10 (32%), 10 (32%), 2 (6%), 2 (6%), 7 (23%), and 0 (0%) cases, respectively. The UGT1A1*27 polymorphism occurred separately from the UGT1A1*28 polymorphism. The lowest leukocyte counts of the patients with the UGT1A1*27 and UGT1A1*6 gene polymorphisms were lower than those observed in the wild‐type patients. SN‐38 tended to remain in the blood for a prolonged period after the infusion of irinotecan in patients with UGT1A1*27 or UGT1A1*28 polymorphisms. No severe myelotoxicity was seen in the patients with UGT1A1*7. Conclusion UGT1A1*27 can occur separately from UGT1A1*28 and is related to leukopenia during irinotecan treatment. UGT1A1*7 is less relevant to irinotecan‐induced toxicities, and UGT1A1*29 seems to have little clinical impact.
Collapse
Affiliation(s)
- Minoru Fukuda
- Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan.,Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Manabu Okumura
- Department of Pharmacy, Faculty of Medicine, University of Miyazaki Hospital, Miyazaki, Japan
| | - Tomomi Iwakiri
- Department of Pharmacy, Faculty of Medicine, University of Miyazaki Hospital, Miyazaki, Japan
| | - Kazuhiko Arimori
- Department of Pharmacy, Faculty of Medicine, University of Miyazaki Hospital, Miyazaki, Japan
| | - Takuya Honda
- Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan.,Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuma Kobayashi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroaki Senju
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinnosuke Takemoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takaya Ikeda
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsumi Nakatomi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nobuko Matsuo
- Department of Respiratory Medicine, Nagasaki Harbor Medical Center City Hospital, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuto Ashizawa
- Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan.,Department of Clinical Oncology, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
23
|
Zhang X, Yin JF, Zhang J, Kong SJ, Zhang HY, Chen XM. UGT1A1*6 polymorphisms are correlated with irinotecan-induced neutropenia: a systematic review and meta-analysis. Cancer Chemother Pharmacol 2017; 80:135-149. [PMID: 28585035 DOI: 10.1007/s00280-017-3344-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/02/2017] [Indexed: 01/26/2023]
Abstract
Irinotecan (IRI) chemotherapy toxicities can be severe, and may result in treatment delay, morbidity and in some rare cases death. Neutropenia is a life-threatening side effect of irinotecan, and UDP glucuronosyltransferases (UGTs) gene polymorphisms could predict the side effects in cancer patients and then reduce IRI-induced toxicity by preventative treatment or a decrease in dose. Both UGT1A1*6 and *28 were reliably demonstrated to be risk factors for IRI-induced neutropenia, with tests for both polymorphisms potentially being particularly useful in Asian cancer patients. However, some researchers reported that UGT1A1*6 could predict IRI-induced toxicities in Asian populations, controversial conclusions still remained. Thus, the association between UGT1A1*6 polymorphisms and IRI-induced severe toxicity in cancer patients is still needed to be explored. Therefore, this study aims to investigate the association between UGT1A1*6 polymorphisms and IRI-related severe neutropenia in cancer patients on a large scale. A total of 12 studies that included 746 wild genotype (G/G) cases and 394 variant genotype (G/A and A/A) cases were included on the basis of inclusion criteria. Then we assessed the methodologies quality; odds ratio (OR), risk difference (RD) and 95% confidence intervals (95% CI) were used to assess the strength of association. Overall, an increased risk of severe neutropenia in cancer patients with UGT1A1*6 polymorphisms was found. Patients with recessive models (GA + AA vs. GG) of UGT1A1*6 showed an increased risk (OR 2.03, 95% CI 1.54-2.68; RD = 0.11, P < 0.001). Specifically, the heterozygous variant of UGT1A1*6 showed an increased risk (OR 1.83, 95% CI 1.36-2.46; RD = 0.09, P < 0.001), and homozygous mutation showed also high risk (OR 2.95, 95% CI 1.83-4.75; RD = 0.18, P < 0.001) for severe neutropenia. Subgroup meta-analysis revealed that for patients harboring both heterozygous and homozygous variants, cancer types, low dose of IRI and the duration of treatment also presented comparably increased risk in suffering severe neutropenia. As for country, in China and Japan, there was a statistically increased severe neutropenia with variant genotype of UGT1A1*6 (China: GA + AA vs. GG, OR 1.83, 95% CI 1.28-2.59; RD = 0.08, P = 0.001; Japan: GA + AA vs. GG, OR 2.39, 95% CI 1.45-3.92; RD = 0.15, P = 0.001). In conclusion, in this meta-analysis, the UGT1A1*6 polymorphisms were associated with an increased risk of IRI-induced neutropenia in cancer patients, and increased incidences of severe neutropenia could be correlated with diverse regions, cancer type, low dose of IRI and the duration of treatment.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pharmacy, Third Affiliated Hospital to Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118, Yunnan, People's Republic of China
| | - Jia-Fu Yin
- Department of Pharmacy, Third Affiliated Hospital to Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118, Yunnan, People's Republic of China
| | - Jiao Zhang
- Department of Pathology, College of Basic Medicine, Dali University, Dali, 671000, People's Republic of China
| | - Shu-Jia Kong
- Department of Pharmacy, Third Affiliated Hospital to Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118, Yunnan, People's Republic of China
| | - Hong-Yin Zhang
- Department of Pharmacy, Third Affiliated Hospital to Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118, Yunnan, People's Republic of China
| | - Xue-Mei Chen
- Department of Pharmacy, Third Affiliated Hospital to Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, 650118, Yunnan, People's Republic of China.
| |
Collapse
|
24
|
UGT1A1 polymorphisms with irinotecan-induced toxicities and treatment outcome in Asians with Lung Cancer: a meta-analysis. Cancer Chemother Pharmacol 2017; 79:1109-1117. [PMID: 28502040 DOI: 10.1007/s00280-017-3306-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/11/2017] [Indexed: 02/08/2023]
Abstract
Previous studies of irinotecan pharmacogenetics have shown that the UGT1A1*28 polymorphism has an effect on irinotecan (IRI)-induced toxicities in Caucasians. Yet compared with the UGT1A1*6 mutation, the UGT1A1*28 occurs at a much lower frequency in the Asians. Whether UGT1A1*6 and UGT1A1*28 are associated with IRI-induced neutropenia, diarrhea and IRI-based chemotherapy tumor response (TR) in Asians with lung cancer remains controversial. In this meta-analysis, we found a higher risk of neutropenia and diarrhea with IRI-based chemotherapy in Asians with lung cancer carrying the UGT1A1*6 polymorphism. However, UGT1A1*28 showed a weak correlation with diarrhea, but no significant correlation with neutropenia. Neither UGT1A1*6 nor UGT1A1*28 is associated with IRI-based chemotherapy TR. These data suggest that the UGT1A1*28 polymorphism may not be a suitable biomarker to predict IRI-induced toxicities and chemotherapy TR in Asians, while UGT1A*6 polymorphism is associated with a higher risk of IRI-induced neutropenia and diarrhea, but not IRI-based chemotherapy TR.
Collapse
|
25
|
Kim S, Yun YM, Chae HJ, Cho HJ, Ji M, Kim IS, Wee KA, Lee W, Song SH, Woo HI, Lee SY, Chun S. Clinical Pharmacogenetic Testing and Application: Laboratory Medicine Clinical Practice Guidelines. Ann Lab Med 2017; 37:180-193. [PMID: 28029011 PMCID: PMC5204002 DOI: 10.3343/alm.2017.37.2.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2016] [Accepted: 12/11/2016] [Indexed: 12/15/2022] Open
Abstract
Pharmacogenetic testing for clinical applications is steadily increasing. Correct and adequate use of pharmacogenetic tests is important to reduce unnecessary medical costs and adverse patient outcomes. This document contains recommended pharmacogenetic testing guidelines for clinical application, interpretation, and result reporting through a literature review and evidence-based expert opinions for the clinical pharmacogenetic testing covered by public medical insurance in Korea. This document aims to improve the utility of pharmacogenetic testing in routine clinical settings.
Collapse
Affiliation(s)
- Sollip Kim
- Department of Laboratory Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Yeo Min Yun
- Department of Laboratory Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Hyo Jin Chae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Jung Cho
- Department of Laboratory Medicine, Konyang University Hospital, College of Medicine, Konyang University, Daejeon, Korea
| | - Misuk Ji
- Department of Laboratory Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - In Suk Kim
- Department of Laboratory Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Kyung A Wee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Woochang Lee
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Hye In Woo
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Soo Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Sail Chun
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.
| |
Collapse
|
26
|
Phase II study of bevacizumab and irinotecan as second-line therapy for patients with metastatic colorectal cancer previously treated with fluoropyrimidines, oxaliplatin, and bevacizumab. Cancer Chemother Pharmacol 2017; 79:579-585. [DOI: 10.1007/s00280-017-3255-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/06/2017] [Indexed: 01/08/2023]
|
27
|
Campbell JM, Stephenson MD, Bateman E, Peters MDJ, Keefe DM, Bowen JM. Irinotecan-induced toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses. THE PHARMACOGENOMICS JOURNAL 2017; 17:21-28. [PMID: 27503581 DOI: 10.1038/tpj.2016.58] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 01/08/2023]
Abstract
Irinotecan chemotherapy toxicities can be severe, and may result in treatment delay, morbidity and in some rare cases death. This systematic review of systematic reviews synthesises all meta-analyses on biomarkers for irinotecan toxicity across all genetic models for Asians, Caucasians, low dose, medium/high dose and regimens with and without fluorouracil. False-positive findings are a problem in pharmacogenetics, increasing the importance of systematic reviews. Four systematic reviews that investigated the effect of the polymorphisms UGT1A1*6 and/or*28 on neutropenia or diarrhoea toxicity were included. Both UGT1A1*6 and *28 were reliably demonstrated to be risk factors for irinotecan-induced neutropenia, with tests for both polymorphisms potentially being particularly useful in Asian cancer patients. UGT1A1*6 and *28 were also related to diarrhoea toxicity; however, at low doses of irinotecan there was evidence that UGT1A1*28 was not. In synthesising the best available evidence, this umbrella systematic review provides a novel reference for clinicians applying personalised medicine and identifies important research gaps.
Collapse
Affiliation(s)
- J M Campbell
- The Joanna Briggs Institute, Faculty of Health Science, University of Adelaide, Adelaide, South Australia, Australia
| | - M D Stephenson
- The Joanna Briggs Institute, Faculty of Health Science, University of Adelaide, Adelaide, South Australia, Australia
| | - E Bateman
- School of Medicine, Faculty of Health Science, University of Adelaide, Adelaide, South Australia, Australia
| | - M D J Peters
- The Joanna Briggs Institute, Faculty of Health Science, University of Adelaide, Adelaide, South Australia, Australia
| | - D M Keefe
- School of Medicine, Faculty of Health Science, University of Adelaide, Adelaide, South Australia, Australia
| | - J M Bowen
- School of Medicine, Faculty of Health Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M. Pharmacogenomics in Pediatric Oncology: Review of Gene-Drug Associations for Clinical Use. Int J Mol Sci 2016; 17:ijms17091502. [PMID: 27618021 PMCID: PMC5037779 DOI: 10.3390/ijms17091502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
During the 3rd congress of the European Society of Pharmacogenomics and Personalised Therapy (ESPT) in Budapest in 2015, a preliminary meeting was held aimed at establishing a pediatric individualized treatment in oncology and hematology committees. The main purpose was to facilitate the transfer and harmonization of pharmacogenetic testing from research into clinics, to bring together basic and translational research and to educate health professionals throughout Europe. The objective of this review was to provide the attendees of the meeting as well as the larger scientific community an insight into the compiled evidence regarding current pharmacogenomics knowledge in pediatric oncology. This preliminary evaluation will help steer the committee’s work and should give the reader an idea at which stage researchers and clinicians are, in terms of personalizing medicine for children with cancer. From the evidence presented here, future recommendations to achieve this goal will also be suggested.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | - Patricia Huezo-Diaz Curtis
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | | | - Maja Krajinovic
- Charles-Bruneau Cancer Center, Centre hospitalier universitaire Sainte-Justine, 4515 Rue de Rouen, Montreal, QC H1V 1H1, Canada.
- Department of Pediatrics, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
- Department of Pharmacology, Faculty of Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
| | - Marc Ansari
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Pediatric Department, Onco-Hematology Unit, Geneva University Hospital, Rue Willy-Donzé 6, 1205 Geneva, Switzerland.
| |
Collapse
|
29
|
Venkatakrishnan K, Burgess C, Gupta N, Suri A, Takubo T, Zhou X, DeMuria D, Lehnert M, Takeyama K, Singhvi S, Milton A. Toward Optimum Benefit-Risk and Reduced Access Lag For Cancer Drugs in Asia: A Global Development Framework Guided by Clinical Pharmacology Principles. Clin Transl Sci 2016; 9:9-22. [PMID: 26836226 PMCID: PMC5351319 DOI: 10.1111/cts.12386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- K Venkatakrishnan
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts, USA
| | - C Burgess
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts, USA
| | - N Gupta
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts, USA
| | - A Suri
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts, USA
| | - T Takubo
- Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - X Zhou
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts, USA
| | - D DeMuria
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts, USA
| | - M Lehnert
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts, USA
| | - K Takeyama
- Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - S Singhvi
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts, USA
| | - A Milton
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Medhasi S, Pasomsub E, Vanwong N, Ngamsamut N, Puangpetch A, Chamnanphon M, Hongkaew Y, Limsila P, Pinthong D, Sukasem C. Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder. Neuropsychiatr Dis Treat 2016; 12:843-51. [PMID: 27110117 PMCID: PMC4835132 DOI: 10.2147/ndt.s101580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) among drug-metabolizing enzymes and transporters (DMETs) influence the pharmacokinetic profile of drugs and exhibit intra- and interethnic variations in drug response in terms of efficacy and safety profile. The main objective of this study was to assess the frequency of allelic variants of drug absorption, distribution, metabolism, and elimination-related genes in Thai children and adolescents with autism spectrum disorder. Blood samples were drawn from 119 patients, and DNA was extracted. Genotyping was performed using the DMET Plus microarray platform. The allele frequencies of the DMET markers were generated using the DMET Console software. Thereafter, the genetic variations of significant DMET genes were assessed. The frequencies of SNPs across the genes coding for DMETs were determined. After filtering the SNPs, 489 of the 1,931 SNPs passed quality control. Many clinically relevant SNPs, including CYP2C19*2, CYP2D6*10, CYP3A5*3, and SLCO1B1*5, were found to have frequencies similar to those in the Chinese population. These data are important for further research to investigate the interpatient variability in pharmacokinetics and pharmacodynamics of drugs in clinical practice.
Collapse
Affiliation(s)
- Sadeep Medhasi
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ekawat Pasomsub
- Division of Virology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Natchaya Vanwong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nattawat Ngamsamut
- Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Samut Prakarn, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Montri Chamnanphon
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yaowaluck Hongkaew
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Penkhae Limsila
- Yuwaprasart Waithayopathum Child and Adolescent Psychiatric Hospital, Department of Mental Health Services, Ministry of Public Health, Samut Prakarn, Thailand
| | - Darawan Pinthong
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
31
|
Atasilp C, Chansriwong P, Sirachainan E, Reungwetwattana T, Chamnanphon M, Puangpetch A, Wongwaisayawan S, Sukasem C. Correlation of UGT1A1(*)28 and (*)6 polymorphisms with irinotecan-induced neutropenia in Thai colorectal cancer patients. Drug Metab Pharmacokinet 2015; 31:90-94. [PMID: 26830078 DOI: 10.1016/j.dmpk.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 01/29/2023]
Abstract
UDP-glucuronosyltransferase1A1 (UGT1A1) polymorphisms have been related with irinotecan toxicity. The purpose of this study was to determine the associations between UGT1A1(*)28 and (*)6 polymorphisms and irinotecan toxicity in Thai patients with metastatic colorectal cancer. 44 metastatic colorectal cancer patients received irinotecan-based chemotherapy. Hematologic toxicities were determined in the first and second cycles of treatment. The genotypes of UGT1A1(*)28 and (*)6 were analyzed by pyrosequencing technique. The frequencies of genetic testing for UGT1A1(*)28 and (*)6 polymorphisms were 22.8% (TA6/TA7; 20.5%, TA7/TA7; 2.3%) and 15.9% (GA), respectively. No patients had the homozygous UGT1A1(*)6 (AA). Neither UGT1A1(*)28 nor UGT1A1(*)6 polymorphisms were significantly associated with severe hematologic toxicities. However, analysis of UGT1A1(*)28 and (*)6 in combination revealed an association with severe neutropenia in the first and second cycles (P = 0.044, P = 0.017, respectively). Both UGT1A1(*)28 and (*)6 polymorphisms may have an increased risk of irinotecan-induced neutropenia in Thai colorectal cancer patients.
Collapse
Affiliation(s)
- Chalirmporn Atasilp
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Pichai Chansriwong
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ekapob Sirachainan
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Montri Chamnanphon
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand
| | - Sansanee Wongwaisayawan
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Clinical Pathology, Somdetch Phra Debharatana Medical Centre, Ramathibodi Hospital, Bangkok, Thailand.
| |
Collapse
|
32
|
ABCC5 and ABCG1 polymorphisms predict irinotecan-induced severe toxicity in metastatic colorectal cancer patients. Pharmacogenet Genomics 2015; 25:573-83. [DOI: 10.1097/fpc.0000000000000168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Germline oncopharmacogenetics, a promising field in cancer therapy. Cell Oncol (Dordr) 2015; 38:65-89. [PMID: 25573079 DOI: 10.1007/s13402-014-0214-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenetics (PGx) is the study of the relationship between inter-individual genetic variation and drug responses. Germline variants of genes involved in drug metabolism, drug transport, and drug targets can affect individual response to medications. Cancer therapies are characterized by an intrinsically high toxicity; therefore, the application of pharmacogenetics to cancer patients is a particularly promising method for avoiding the use of inefficacious drugs and preventing the associated adverse effects. However, despite continuing efforts in this field, very few labels include information about germline genetic variants associated with drug responses. DPYD, TPMT, UGT1A1, G6PD, CYP2D6, and HLA are the sole loci for which the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) report specific information. This review highlights the germline PGx variants that have been approved to date for anticancer treatments, and also provides some insights about other germline variants with potential clinical applications. The continuous and rapid evolution of next-generation sequencing applications, together with the development of computational methods, should help to refine the implementation of personalized medicine. One day, clinicians may be able to prescribe the best treatment and the correct drug dosage based on each patient's genotype. This approach would improve treatment efficacy, reduce toxicity, and predict non-responders, thereby decreasing chemotherapy-associated morbidity and improving health benefits.
Collapse
|
34
|
Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin Pharmacol Ther 2014; 96:324-39. [PMID: 24922307 DOI: 10.1038/clpt.2014.126] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/07/2014] [Indexed: 12/12/2022]
Abstract
Glucuronidation by uridine diphospho-glucuronosyltransferase enzymes (UGTs) is a major phase II biotransformation pathway and, complementary to phase I metabolism and membrane transport, one of the most important cellular defense mechanisms responsible for the inactivation of therapeutic drugs, other xenobiotics, and endogenous molecules. Interindividual variability in UGT pathways is significant and may have profound pharmacological and toxicological implications. Several genetic and genomic processes underlie this variability and are discussed in relation to drug metabolism and diseases such as cancer.
Collapse
|