1
|
Krishnan V, Dharamdasani V, Bakre S, Dhole V, Wu D, Budnik B, Mitragotri S. Hyaluronic Acid Nanoparticles for Immunogenic Chemotherapy of Leukemia and T-Cell Lymphoma. Pharmaceutics 2022; 14:466. [PMID: 35214193 PMCID: PMC8874923 DOI: 10.3390/pharmaceutics14020466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Ratiometric delivery of combination chemotherapy can achieve therapeutic efficacy based on synergistic interactions between drugs. It is critical to design such combinations with drugs that complement each other and reduce cancer growth through multiple mechanisms. Using hyaluronic acid (HA) as a carrier, two chemotherapeutic agents-doxorubicin (DOX) and camptothecin (CPT)-were incorporated and tested for their synergistic potency against a broad panel of blood-cancer cell lines. The pair also demonstrated the ability to achieve immunogenic cell death by increasing the surface exposure levels of Calreticulin, thereby highlighting its ability to induce apoptosis via an alternate pathway. Global proteomic profiling of cancer cells treated with HA-DOX-CPT identified pathways that could potentially predict patient sensitivity to HA-DOX-CPT. This lays the foundation for further exploration of integrating drug delivery and proteomics in personalized immunogenic chemotherapy.
Collapse
Affiliation(s)
- Vinu Krishnan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Vimisha Dharamdasani
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Shirin Bakre
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
| | - Ved Dhole
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
| | - Debra Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Bogdan Budnik
- Mass Spectrometry Proteomics and Research Laboratory, FAS Division of Science, Harvard University, Cambridge, MA 02138, USA;
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (V.K.); (V.D.); (S.B.); (V.D.); (D.W.)
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Specific Targeting of PEGylated Liposomal Doxorubicin (Doxil ®) to Tumour Cells Using a Novel TIMP3 Peptide. Molecules 2020; 26:molecules26010100. [PMID: 33379361 PMCID: PMC7795762 DOI: 10.3390/molecules26010100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin is a cytotoxic anthracycline derivative that has been used as a chemotherapeutic in many different forms of human cancer with some success. However, doxorubicin treatment has several side-effects, the most serious of which is cardiomyopathy, that can be fatal. Doxorubicin encapsulation in PEGylated liposomes (Doxil®) has been shown to increase tumour localisation and decrease cardiotoxicity. Conversely, the stability of such liposomes also leads to increased circulation times and accumulation in the skin, resulting in palmar planter erythrodysesthesia, while also limiting release of the drug at the tumour site. Specific targeting of such liposomes to tumour cells has been attempted using various receptor-specific peptides and antibodies. However, targeting a single epitope limits the likely number of tumour targets and increases the risk of tumour resistance through mutation. In this report, Doxil® was coupled to peptide sequence p700 derived from tissue inhibitor of metalloproteinase 3. This Doxil® -P700 complex results in an approximately 100-fold increase in drug uptake, relative to Doxil® alone, by both mouse and human breast cancer cells and immortalised vascular cells resulting in an increase in cytotoxicity. Using p700 to target liposomes in this way may enable specific delivery of doxorubicin or other drugs to a broad range of cancers.
Collapse
|
3
|
A phase II study of irinotecan and pegylated liposomal doxorubicin in platinum-resistant recurrent ovarian cancer (Tohoku Gynecologic Cancer Unit 104 study). Cancer Chemother Pharmacol 2017; 80:355-361. [PMID: 28656383 PMCID: PMC5532405 DOI: 10.1007/s00280-017-3363-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 06/16/2017] [Indexed: 10/29/2022]
Abstract
PURPOSE We report a phase II clinical study of the combination of irinotecan (CPT-11) and pegylated liposomal doxorubicin (PLD) in platinum- and taxane-resistant recurrent ovarian cancer, based on the recommended doses determined in a phase I trial. METHODS PLD was administered intravenously at a dose of 30 mg/m2 on day 3. CPT-11 was administered intravenously at a dose of 80 mg/m2 on days 1 and 15, according to the recommendations of the phase I study. A single course of chemotherapy lasted 28 days, and patients underwent at least 2 courses until disease progression. The primary endpoint was antitumor efficacy, and the secondary endpoints were adverse events, progression-free survival (PFS), and overall survival (OS). RESULTS The response rate was 32.3% and the disease control rate was 64.5%. Grade 3 and 4 neutropenia, anemia, and a decrease in platelet count were observed in 17 (54.9%), 3 (9.7%), and 1 patient (3.2%), respectively. In terms of grade 3 or higher non-hematologic toxicities, grade 3 nausea occurred in 1 patient (3.2%), vomiting in 3 patients (9.7%), and grade 3 diarrhea and fatigue in 1 patient (3.2%). The median PFS and OS rates were 2 months and not reached, respectively. Of the 11 patients with a treatment-free interval (TFI) of ≥3 months, the response rate was 63.3%, and the median PFS was 7 months. CONCLUSIONS The treatment outcomes for the 31 patients enrolled in this study were unsatisfactory. However, sub-analysis suggested that patients with a TFI of ≥3 months had a good response rate and PFS. This suggests that CPT-11/PLD combination therapy may be a chemotherapy option for platinum-resistant recurrent ovarian cancer.
Collapse
|
4
|
Yoshida M, Taguchi A, Kawana K, Adachi K, Kawata A, Ogishima J, Nakamura H, Fujimoto A, Sato M, Inoue T, Nishida H, Furuya H, Tomio K, Arimoto T, Koga K, Wada-Hiraike O, Oda K, Nagamatsu T, Kiyono T, Osuga Y, Fujii T. Modification of the Tumor Microenvironment in KRAS or c-MYC-Induced Ovarian Cancer-Associated Peritonitis. PLoS One 2016; 11:e0160330. [PMID: 27483433 PMCID: PMC4970724 DOI: 10.1371/journal.pone.0160330] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/18/2016] [Indexed: 12/15/2022] Open
Abstract
The most common properties of oncogenes are cell proliferation and the prevention of apoptosis in malignant cells, which, as a consequence, induce tumor formation and dissemination. However, the effects of oncogenes on the tumor microenvironment (TME) have not yet been examined in detail. The accumulation of ascites accompanied by chronic inflammation and elevated concentrations of VEGF is a hallmark of the progression of ovarian cancer. We herein demonstrated the mechanisms by which oncogenes contribute to modulating the ovarian cancer microenvironment. c-MYC and KRAS were transduced into the mouse ovarian cancer cell line ID8. ID8, ID8-c-MYC, or ID8-KRAS cells were then injected into the peritoneal cavities of C57/BL6 mice and the production of ascites was assessed. ID8-c-MYC and ID8-KRAS both markedly accelerated ovarian cancer progression in vivo, whereas no significant differences were observed in proliferative activity in vitro. ID8-KRAS in particular induced the production of ascites, which accumulated between approximately two to three weeks after the injection, more rapidly than ID8 and ID8-c-MYC (between nine and ten weeks and between six and seven weeks, respectively). VEGF concentrations in ascites significantly increased in c-MYC-induced ovarian cancer, whereas the concentrations of inflammatory cytokines in ascites were significantly high in KRAS-induced ovarian cancer and were accompanied by an increased number of neutrophils in ascites. A cytokine array revealed that KRAS markedly induced the expression of granulocyte macrophage colony-stimulating factor (GM-CSF) in ID8 cells. These results suggest that oncogenes promote cancer progression by modulating the TME in favor of cancer progression.
Collapse
Affiliation(s)
- Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
- * E-mail:
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Juri Ogishima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Masakazu Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Hitomi Furuya
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Tohru Kiyono
- Division of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104–0045, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan
| |
Collapse
|
5
|
Camacho KM, Kumar S, Menegatti S, Vogus DR, Anselmo AC, Mitragotri S. Synergistic antitumor activity of camptothecin-doxorubicin combinations and their conjugates with hyaluronic acid. J Control Release 2015; 210:198-207. [PMID: 25921087 DOI: 10.1016/j.jconrel.2015.04.031] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 11/19/2022]
Abstract
Combinations of topoisomerase inhibitors I and II have been found to synergistically inhibit cancer cell growth in vitro, yet clinical studies of these types of combinations have not progressed beyond phase II trials. The results of clinical combinations of topoisomerase (top) I and II inhibitors typically fall within one of two categories: little to no improvement in therapeutic efficacy, or augmented toxicity compared to the single drug counterparts. Hence, despite the promising activity of top I and II inhibitor combinations in vitro, their clinical applicability has not been realized. Here, we report the use of polymer-drug conjugates as a means to co-deliver synergistic doses of top I and II inhibitors camptothecin (CPT) and doxorubicin (DOX) to tumors in vivo in a 4T1 breast cancer model. At specific molar ratios, DOX and CPT were found to be among the most synergistic combinations reported to date, with combination indices between 0.01 and 0.1. The identified optimal ratios were controllably conjugated to hyaluronic acid, and elicited significant tumor reduction of murine 4T1 breast cancer model when administered intravenously. This study elucidates a method to identify synergistic drug combinations and translate them to in vivo by preserving the synergistic ratio via conjugation to a carrier polymer, thus opening a promising approach to translate drug combinations to clinically viable treatment regimens.
Collapse
Affiliation(s)
- Kathryn M Camacho
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sunny Kumar
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Stefano Menegatti
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Douglas R Vogus
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Aaron C Anselmo
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
6
|
Montagner IM, Merlo A, Carpanese D, Zuccolotto G, Renier D, Campisi M, Pasut G, Zanovello P, Rosato A. Drug conjugation to hyaluronan widens therapeutic indications for ovarian cancer. Oncoscience 2015; 2:373-81. [PMID: 26097871 PMCID: PMC4468323 DOI: 10.18632/oncoscience.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022] Open
Abstract
Management of ovarian cancer still requires improvements in therapeutic options. A drug delivery strategy was tested that allows specific targeting of tumor cells in combination with a controlled release of a cytotoxic molecule. To this aim, the efficacy of a loco-regional intraperitoneal treatment with a bioconjugate (ONCOFID-S) derived by chemical linking of SN-38, the active metabolite of irinotecan (CPT-11), to hyaluronan was assessed in a mouse model of ovarian carcinomatosis. In vitro, the bioconjugate selectively interacted with ovarian cancer cells through the CD44 receptor, disclosed a dose-dependent tumor growth inhibition efficacy comparable to that of free SN-38 drug, and inhibited Topoisomerase I function leading to apoptosis by a mechanism involving caspase-3 and -7 activation and PARP cleavage. In vivo, the intraperitoneal administration of ONCOFID-S in tumor-bearing mice did not induce inflammation, and evidenced an improved therapeutic efficacy compared with CPT-11. In conclusion, SN-38 conjugation to hyaluronan significantly improved the profile of in vivo tolerability and widened the field of application of irinotecan. Therefore, this approach can be envisaged as a promising therapeutic strategy for loco-regional treatment of ovarian cancer.
Collapse
Affiliation(s)
| | - Anna Merlo
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Debora Carpanese
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | | | | | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Paola Zanovello
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy ; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Antonio Rosato
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy ; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
7
|
Yu B, Li H, Zhang J, Zheng W, Chen T. Rational design and fabrication of a cancer-targeted chitosan nanocarrier to enhance selective cellular uptake and anticancer efficacy of selenocystine. J Mater Chem B 2015; 3:2497-2504. [DOI: 10.1039/c4tb02146k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cancer-targeted chitosan nanocarrier has been rationally designed to enhance the selective cellular uptake and anticancer efficacy of selenocystine.
Collapse
Affiliation(s)
- Bo Yu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Hong Li
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jinhui Zhang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Wenjie Zheng
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
8
|
Bian Z, Yu Y, Quan C, Guan R, Jin Y, Wu J, Xu L, Chen F, Bai J, Sun W, Fu S. RPL13A as a reference gene for normalizing mRNA transcription of ovarian cancer cells with paclitaxel and 10-hydroxycamptothecin treatments. Mol Med Rep 2014; 11:3188-94. [PMID: 25523336 DOI: 10.3892/mmr.2014.3108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Gene transcription analysis is important in cancer research, and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) has been demonstrated to be an effective method to evaluate gene transcription in cancer. RT‑qPCR requires an internal reference gene with a consistent level of mRNA transcription across various experimental conditions. However, it has been suggested that different treatments, including anticancer therapy, may influence the transcriptional stability of internal reference genes. Paclitaxel (PTX) and 10‑hydroxycamptothecin (HCPT) are widely used to treat various types of cancer, and a suitable internal reference gene is required in order to analyze the transcription profiles of the cells following treatment. In the current study, the transcriptional stability of 30 candidate reference genes was investigated in cancer cells following treatment with PTX and HCPT. The two ovarian cancer cell lines, UACC‑1598 and SKOV3, were treated with PTX and HCPT for 24 and 48 h, and the transcriptional levels of the candidate reference genes were subsequently evaluated by RT‑qPCR analysis. The transcriptional stability of the selected genes was then analyzed using qbase+ and NormFinder software. A total of 9 genes were demonstrated to exhibit high transcriptional stability and one of these genes, ribosomal protein L13a (RPL13A), was identified to exhibit high transcriptional stability in every group. The current study identified various reference genes suitable under different circumstances, while RPL13A was indicated to be the most suitable reference gene for analyzing the transcription profile of ovarian cancer cells following treatment with PTX and HCPT.
Collapse
Affiliation(s)
- Zehua Bian
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Chao Quan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Rongwei Guan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lidan Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|