1
|
Wan Y, Jiang H, Liu Z, Bai C, Lian Y, Zhang C, Zhang Q, Huang J. Exploring the Molecular Mechanisms of Huaier on Modulating Metabolic Reprogramming of Hepatocellular Carcinoma: A Study based on Network Pharmacology, Molecular Docking and Bioinformatics. Curr Pharm Des 2024; 30:1894-1911. [PMID: 38747231 DOI: 10.2174/0113816128287535240429043610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/12/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Huaier (Trametes robiniophila Murr), a traditional Chinese medicine, is widely used in China as a complementary and alternative therapy to treat hepatocellular carcinoma (HCC). Past studies have shown that Huaier can arrest the cell cycle, promote apoptosis and inhibit the proliferation of cancer cells. However, how it regulates the metabolism of HCC is still unclear. OBJECTIVE This study explores the metabolic-related function of Huaier in treating HCC with an in-silico approach. METHODS A network pharmacology and bioinformatics-based approach was employed to investigate the molecular pathogenesis of metabolic reprogramming in HCC with Huaier. The compounds of Huaier were obtained from public databases. Oral bioavailability and drug likeness were screened using the TCMSP platform. The differential gene expressions between HCC and non-tumor tissue were calculated and used to find the overlap from the targets of Huaier. The enrichment analysis of the overlapped targets by Metascape helped filter out the metabolism-related targets of Huaier in treating HCC. Protein-protein interaction (PPI) network construction and topological screening revealed the hub nodes. The prognosis and clinical correlation of these targets were validated from the cancer genome atlas (TCGA) database, and the interactions between the hub nodes and active ingredients were validated by molecular docking. RESULTS The results showed that Peroxyergosterol, Daucosterol, and Kaempferol were the primary active compounds of Huaier involved in the metabolic reprogramming of HCC. The top 6 metabolic targets included AKR1C3, CYP1A1, CYP3A4, CYP1A2, CYP17A1, and HSD11B1. The decreased expression of CYP3A4 and increased expression of AKR1C3 were related to the poor overall survival of HCC patients. The molecular docking validated that Peroxyergosterol and Kaempferol exhibited the potential to modulate CYP3A4 and AKR1C3 from a computational perspective. CONCLUSION This study provided a workflow for understanding the mechanism of Huaier in regulating the metabolic reprogramming of HCC.
Collapse
Affiliation(s)
- Yuxiang Wan
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Honglin Jiang
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Zeyu Liu
- Department of VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chen Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanyan Lian
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Chunguang Zhang
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Qiaoli Zhang
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| | - Jinchang Huang
- Department of Acupuncture and Mini-invasive Oncology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China
| |
Collapse
|
2
|
Elmetwalli A, Kamosh NH, El Safty R, Youssef AI, Salama MM, Abd El-Razek KM, El-Sewedy T. Novel phloretin-based combinations targeting glucose metabolism in hepatocellular carcinoma through GLUT2/PEPCK axis of action: in silico molecular modelling and in vivo studies. Med Oncol 2023; 41:12. [PMID: 38078989 DOI: 10.1007/s12032-023-02236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is commonly associated with disturbances in glucose metabolism and enhanced glycolysis. However, a controversial role for gluconeogenesis was reported to be tumor-promoting and tumor-suppressive. We investigated novel anti-HCC treatments through either the simultaneous inhibition of glycolysis and gluconeogenesis by "phloretin" and "sodium meta-arsenite", respectively (Combination 1); or the concurrent inhibition of glycolysis and induction of gluconeogenesis by phloretin and dexamethasone, respectively, (combination 2). A total of 110 Swiss albino mice were divided into eleven groups, HCC was induced by N, N-dimethyl-4-aminoazobenzene. We have measured the expression of the glucose transporter 2 (GLUT2), Phosphoenolpyruvate carboxykinases (PEPCK), Caspase-3, Beclin 1, Cyclin D1, and cytokeratin 18 genes; blood glucose and ATP levels; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Furthermore, in silico molecular docking was performed to investigate the potential drug-receptor interactions. Histologically, the phloretin-based combinations resulted in a significant regression of malignant tissue compared to various treatments. GLUT2 and PEPCK mRNA analysis indicated successful off/on modulation of glycolysis and gluconeogenesis. Docking confirmed the potent binding between phloretin, sodium meta-arsenite, and dexamethasone with GLUT2, PEPCK, and Retinoid X Receptor Alpha, respectively. Molecularly, Combination 2 resulted in the highest reduction in cyclin D1, cytokeratin 18, and Beclin 1 expression contemporaneously with the upregulation in Caspase-3 levels. Biochemically, both combinations caused a significant reduction in ATP levels, ALT, and AST activity compared to the other groups. In conclusion, we propose two novel phloretin-based combinations that can be used in treating HCC through the regulation of glucose metabolism and ATP production.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | | | | | - Amany I Youssef
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammed M Salama
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Khaled M Abd El-Razek
- Experimental Animal Unit, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Yi Y, Cai J, Xu P, Xiong L, Lu Z, Zeng Z, Liu A. Potential benefit of osismertinib plus bevacizumab in leptomeningeal metastasis with EGFR mutant non-small-cell lung cancer. J Transl Med 2022; 20:122. [PMID: 35287683 PMCID: PMC8919569 DOI: 10.1186/s12967-022-03331-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Background EGFR-mutant non-small cell lung cancer (NSCLC) is prone to leptomeningeal metastasis (LM) after Tyrosine kinase inhibitors (TKIs) treatment. Our previous study suggested that osimertinib plus bevacizumab was safe and effective in LM from EGFR-mutant NSCLC. This study aimed to compare the efficacy of osimertinib plus bevacizumab with osimertinib in EGFR-mutant NSCLC patients with LM. Methods We retrospectively reviewed the data from 27 LM patients with EGFR-mutant NSCLC who received osimertinib with or without bevacizumab at the Second Affiliated Hospital of Nanchang University. Next, we investigated the antitumor efficacy of osimertinib plus bevacizumab in an LM xenograft model using the H1975 (EGFR exon20 T790M and exon21 L858R) cell line. We examined the ability of osimertinib plus bevacizumab compared with osimertinib to penetrate the blood–brain barrier (BBB) and explored the potential mechanism. Results Our retrospective study observed the improved survival of LM patients in osimertinib plus bevacizumab group. The median overall survival (OS) of the patients who received osimertinib and bevacizumab (n = 16) compared with osimertinib group (n = 11) was 18.0 months versus 13.7 months (log-rank test, p = 0.046, HR = 2.867, 95% CI 1.007–8.162). The median intracranial Progression-free Survival (iPFS) was 10.6 months versus 5.5 months (log-rank test, p = 0.037, HR = 3.401, 95% CI 1.079–10.720). In the LM xenograft model with H1975 cells, the combined treatment significantly increased the effective intracranial concentration of osimertinib, modulated the level of E-cadherin and downregulated the levels of EGFR and downstream signaling pathways including p-AKT and reduced tumor microvessel density (TMD), indicated that combined osimertinib with bevacizumab may exhibit a synergistic effect in EGFR-mutant LM model possibly by modulating the level of E-cadherin. Conclusions Our findings indicate the potential benefit of osimertinib plus bevacizumab in LM with EGFR-mutant NSCLC, and more larger sample size research are still needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03331-9.
Collapse
|
4
|
Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
|
5
|
Luo J, Sun P, Zhang X, Lin G, Xin Q, Niu Y, Chen Y, Xu N, Zhang Y, Xie W. Canagliflozin Modulates Hypoxia-Induced Metastasis, Angiogenesis and Glycolysis by Decreasing HIF-1α Protein Synthesis via AKT/mTOR Pathway. Int J Mol Sci 2021; 22:ijms222413336. [PMID: 34948132 PMCID: PMC8704642 DOI: 10.3390/ijms222413336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
The microenvironment plays a vital role in tumor progression, and hypoxia is a typical microenvironment feature in nearly all solid tumors. In this study, we focused on elucidating the effect of canagliflozin (CANA), a new class of antidiabetic agents, on hepatocarcinoma (HCC) tumorigenesis under hypoxia, and demonstrated that CANA could significantly inhibit hypoxia-induced metastasis, angiogenesis, and metabolic reprogramming in HCC. At the molecular level, this was accompanied by a reduction in VEGF expression level, as well as a reduction in the epithelial-to-mesenchymal transition (EMT)-related proteins and glycolysis-related proteins. Next, we focused our study particularly on the modulation of HIF-1α by CANA, which revealed that CANA decreased HIF-1α protein level by inhibiting its synthesis without affecting its proteasomal degradation. Furthermore, the AKT/mTOR pathway, which plays an important role in HIF-1α transcription and translation, was also inhibited by CANA. Thus, it can be concluded that CANA decreased metastasis, angiogenesis, and metabolic reprogramming in HCC by inhibiting HIF-1α protein accumulation, probably by targeting the AKT/mTOR pathway. Based on our results, we propose that CANA should be evaluated as a new treatment modality for liver cancer.
Collapse
MESH Headings
- Animals
- Canagliflozin/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Hypoxia/drug effects
- Cell Hypoxia/genetics
- Glycolysis/drug effects
- Hep G2 Cells
- Human Umbilical Vein Endothelial Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mice, SCID
- Neoplasm Metastasis
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jingyi Luo
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.L.); (P.S.); (X.Z.); (G.L.); (Q.X.); (Y.N.); (Y.C.); (N.X.); (Y.Z.)
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Pengbo Sun
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.L.); (P.S.); (X.Z.); (G.L.); (Q.X.); (Y.N.); (Y.C.); (N.X.); (Y.Z.)
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xun Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.L.); (P.S.); (X.Z.); (G.L.); (Q.X.); (Y.N.); (Y.C.); (N.X.); (Y.Z.)
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guanglan Lin
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.L.); (P.S.); (X.Z.); (G.L.); (Q.X.); (Y.N.); (Y.C.); (N.X.); (Y.Z.)
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qilei Xin
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.L.); (P.S.); (X.Z.); (G.L.); (Q.X.); (Y.N.); (Y.C.); (N.X.); (Y.Z.)
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yaoyun Niu
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.L.); (P.S.); (X.Z.); (G.L.); (Q.X.); (Y.N.); (Y.C.); (N.X.); (Y.Z.)
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yang Chen
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.L.); (P.S.); (X.Z.); (G.L.); (Q.X.); (Y.N.); (Y.C.); (N.X.); (Y.Z.)
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Naihan Xu
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.L.); (P.S.); (X.Z.); (G.L.); (Q.X.); (Y.N.); (Y.C.); (N.X.); (Y.Z.)
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.L.); (P.S.); (X.Z.); (G.L.); (Q.X.); (Y.N.); (Y.C.); (N.X.); (Y.Z.)
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.L.); (P.S.); (X.Z.); (G.L.); (Q.X.); (Y.N.); (Y.C.); (N.X.); (Y.Z.)
- Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
6
|
Asano K, Tsukada A, Yanagisawa Y, Higuchi M, Takagi K, Ono M, Tanaka T, Tomita K, Yamada K. Melatonin stimulates transcription of the rat phosphoenolpyruvate carboxykinase gene in hepatic cells. FEBS Open Bio 2020; 10:2712-2721. [PMID: 33070478 PMCID: PMC7714082 DOI: 10.1002/2211-5463.13007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/24/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
Melatonin plays physiological roles in various critical processes, including circadian rhythms, oxidative stress defenses, anti-inflammation responses, and immunity; however, the current understanding of the role of melatonin in hepatic glucose metabolism is limited. In this study, we examined whether melatonin affects gene expression of the key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (PEPCK). We found that melatonin treatment increased PEPCK mRNA levels in rat highly differentiated hepatoma (H4IIE) cells and primary cultured hepatocytes. In addition, we found that melatonin induction was synergistically enhanced by dexamethasone, whereas it was dominantly inhibited by insulin. We also report that the effect of melatonin was blocked by inhibitors of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK), RNA polymerase II, and protein synthesis. Furthermore, the phosphorylated (active) forms of ERK1 and ERK2 (ERK1/2) increased 15 min after melatonin treatment. We performed luciferase reporter assays to show that melatonin specifically stimulated promoter activity of the PEPCK gene. Additional reporter analysis using 5'-deleted constructs revealed that the regulatory regions responsive to melatonin mapped to two nucleotide regions, one between -467 and -398 nucleotides and the other between -128 and +69 nucleotides, of the rat PEPCK gene. Thus, we conclude that melatonin induces PEPCK gene expression via the ERK1/2 pathway at the transcriptional level, and that induction requires de novo protein synthesis.
Collapse
Affiliation(s)
- Kosuke Asano
- Department of Health and Nutritional Science, Faculty of Human Health Science, Matsumoto University, Matsumoto, Japan
| | - Akiko Tsukada
- Department of Health and Nutritional Science, Faculty of Human Health Science, Matsumoto University, Matsumoto, Japan
| | - Yuki Yanagisawa
- Matsumoto University Graduate School of Health Science, Matsumoto, Japan
| | - Mariko Higuchi
- Matsumoto University Graduate School of Health Science, Matsumoto, Japan
| | - Katsuhiro Takagi
- Department of Health and Nutritional Science, Faculty of Human Health Science, Matsumoto University, Matsumoto, Japan.,Matsumoto University Graduate School of Health Science, Matsumoto, Japan
| | - Moe Ono
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Takashi Tanaka
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Koji Tomita
- Laboratory of Molecular Biology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Kazuya Yamada
- Department of Health and Nutritional Science, Faculty of Human Health Science, Matsumoto University, Matsumoto, Japan.,Matsumoto University Graduate School of Health Science, Matsumoto, Japan
| |
Collapse
|
7
|
Tompkins SC, Sheldon RD, Rauckhorst AJ, Noterman MF, Solst SR, Buchanan JL, Mapuskar KA, Pewa AD, Gray LR, Oonthonpan L, Sharma A, Scerbo DA, Dupuy AJ, Spitz DR, Taylor EB. Disrupting Mitochondrial Pyruvate Uptake Directs Glutamine into the TCA Cycle away from Glutathione Synthesis and Impairs Hepatocellular Tumorigenesis. Cell Rep 2020; 28:2608-2619.e6. [PMID: 31484072 PMCID: PMC6746334 DOI: 10.1016/j.celrep.2019.07.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a devastating cancer increasingly caused by non-alcoholic fatty liver disease (NAFLD). Disrupting the liver Mitochondrial Pyruvate Carrier (MPC) in mice attenuates NAFLD. Thus, we considered whether liver MPC disruption also prevents HCC. Here, we use the N-nitrosodiethylamine plus carbon tetrachloride model of HCC development to test how liver-specific MPC knock out affects hepatocellular tumorigenesis. Our data show that liver MPC ablation markedly decreases tumorigenesis and that MPC-deficient tumors transcriptomically downregulate glutathione metabolism. We observe that MPC disruption and glutathione depletion in cultured hepatomas are synthetically lethal. Stable isotope tracing shows that hepatocyte MPC disruption reroutes glutamine from glutathione synthesis into the tricarboxylic acid (TCA) cycle. These results support a model where inducing metabolic competition for glutamine by MPC disruption impairs hepatocellular tumorigenesis by limiting glutathione synthesis. These findings raise the possibility that combining MPC disruption and glutathione stress may be therapeutically useful in HCC and additional cancers. Tompkins et al. utilize stable glutamine isotope tracers in vivo and ex vivo to demonstrate hepatocyte MPC disruption increases TCA cycle glutamine utilization at the expense of glutathione synthesis and decreases hepatocellular tumorigenesis.
Collapse
Affiliation(s)
- Sean C Tompkins
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ryan D Sheldon
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adam J Rauckhorst
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Maria F Noterman
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Shane R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Jane L Buchanan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Alvin D Pewa
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Lawrence R Gray
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Lalita Oonthonpan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Arpit Sharma
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Diego A Scerbo
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Eric B Taylor
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
8
|
Mohamady S, Galal M, Eldehna WM, Gutierrez DC, Ibrahim HS, Elmazar MM, Ali HI. Dual Targeting of VEGFR2 and C-Met Kinases via the Design and Synthesis of Substituted 3-(Triazolo-thiadiazin-3-yl)indolin-2-one Derivatives as Angiogenesis Inhibitors. ACS OMEGA 2020; 5:18872-18886. [PMID: 32775889 PMCID: PMC7408256 DOI: 10.1021/acsomega.0c02038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/03/2020] [Indexed: 05/07/2023]
Abstract
The vascular endothelial growth factor receptor 2 (VEGFR2) and c-mesenchymal epithelial transition factor (c-Met) are members of receptor tyrosine kinases which have a crucial role in the process of angiogenesis. Isatin moiety is a versatile group that is shared in many compounds targeting both c-Met and VEGFR2 kinases. In this study, we designed and synthesized different derivatives of substituted 3-(triazolo-thiadiazin-3-yl)indolin-2-one derivatives (6a-y) as dual inhibitors for c-Met and VEGFR2 enzymes. Eight compounds 6a, 6b, 6e, 6l, 6n, 6r, 6v, and 6y were assessed for their anticancer activities against a panel of 58 cancer cell lines according to the US-NCI protocol. Compound 6b revealed the most effective antiproliferative potency (GI %), with broad-spectrum activity against different subpanels of the most NCI 58 tumor cell lines. An in vivo hen's egg-chorioallantoic membrane (HET-CAM) angiogenic study was carried out for 21 compounds 6a, b, d, f, h, i, k-o, t, and 6x to check their mortality and toxicity. At 100 μM concentration, all compounds produced 100% mortality of the chick embryos. At 40 μM concentration, 13 compounds did not exhibit any detectable mortality (nontoxic) and revealed a potent antiangiogenic effect. Seven compounds 6b, 6d, 6f, 6n, 6o, 6t, and 6x significantly decreased the number of blood vessels, and compound 6b was the most effective antiangiogenic agent comparable to dexamethasone. Molecular docking studies were conducted for compound 6b to investigate its mode of interaction within the binding site of both c-Met and VEGFR2 kinases.
Collapse
Affiliation(s)
- Samy Mohamady
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk City, Cairo 11837, Egypt
| | - Mahmoud Galal
- Department
of Pharmacology, Faculty of Pharmacy, Helwan
University, Helwan, Cairo, Egypt
| | - Wagdy M. Eldehna
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
| | - David C. Gutierrez
- Department
of Pharmaceutical Sciences, Rangel College of Pharmacy, Health Science
Center, Texas A&M University, Kingsville, Kingsville, Texas 78363, United States
| | - Hany S. Ibrahim
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr
City, Cairo 11829, Egypt
| | - Mohey M. Elmazar
- Department
of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk City, Cairo 11837, Egypt
| | - Hamed I. Ali
- Department
of Pharmaceutical Sciences, Rangel College of Pharmacy, Health Science
Center, Texas A&M University, Kingsville, Kingsville, Texas 78363, United States
| |
Collapse
|
9
|
Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag Res 2020; 12:5957-5974. [PMID: 32765096 PMCID: PMC7381782 DOI: 10.2147/cmar.s258196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a tumor that exhibits glucometabolic reprogramming, with a high incidence and poor prognosis. Usually, HCC is not discovered until an advanced stage. Sorafenib is almost the only drug that is effective at treating advanced HCC, and promising metabolism-related therapeutic targets of HCC are urgently needed. The “Warburg effect” illustrates that tumor cells tend to choose aerobic glycolysis over oxidative phosphorylation (OXPHOS), which is closely related to the features of the tumor microenvironment (TME). The HCC microenvironment consists of hypoxia, acidosis and immune suppression, and contributes to tumor glycolysis. In turn, the glycolysis of the tumor aggravates hypoxia, acidosis and immune suppression, and leads to tumor proliferation, angiogenesis, epithelial–mesenchymal transition (EMT), invasion and metastasis. In 2017, a mechanism underlying the effects of gluconeogenesis on inhibiting glycolysis and blockading HCC progression was proposed. Treating HCC by increasing gluconeogenesis has attracted increasing attention from scientists, but few articles have summarized it. In this review, we discuss the mechanisms associated with the TME, glycolysis and gluconeogenesis and the current treatments for HCC. We believe that a treatment combination of sorafenib with TME improvement and/or anti-Warburg therapies will set the trend of advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Huining Tian
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| |
Collapse
|
10
|
Jiang Z, Zhang C, Liu X, Ma X, Bian X, Xiao X, Gao R, Sun Y, Wu W, Zhao P. Dexamethasone inhibits stemness maintenance and enhances chemosensitivity of hepatocellular carcinoma stem cells by inducing deSUMOylation of HIF‑1α and Oct4. Int J Oncol 2020; 57:780-790. [PMID: 32705164 PMCID: PMC7384854 DOI: 10.3892/ijo.2020.5097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
It has been controversial whether patients with hepatocellular carcinoma (HCC) should receive glucocorticoid therapy during chemotherapy. Recent studies have demonstrated that glucocorticoids increase the therapeutic sensitivity of tumors to some chemotherapeutic drugs, but the specific mechanism remains unclear. In the present study, dexamethasone (Dex) was used to treat HCC stem cells. The results demonstrated that Dex reduced stemness maintenance and self-renewal of HCC stem cells, promoted epithelial-to-mesenchymal transition, inhibited migration and angiogenesis and, more importantly, increased cell sensitivity to the herpes simplex virus thymidine kinase/ganciclovir drug system in vitro and in vivo. Further mechanistic analyses demonstrated that Dex inhibited small ubiquitin-like modifier (SUMO) modification of several proteins in HCC stem cells, including hypoxia-inducible factor (HIF)-1α, an important hypoxia tolerance protein, and octamer-binding transcription factor 4 (Oct4), a crucial stemness maintenance protein. Inducing deSUMOylation of HIF-1α and Oct4 reduced their accumulation in the nucleus, thereby inhibiting tumor angiogenesis and stemness maintenance. These findings provide a new perspective to the study of the mechanism underlying the anti-hepatocarcinogenesis effects of Dex. Due to the few side effects of glucocorticoids at low doses and their anti-inflammatory effects, the appropriate combination of glucocorticoids and chemotherapeutic drugs is expected to improve the survival of HCC patients and their prognosis.
Collapse
Affiliation(s)
- Zhongmin Jiang
- Department of Pathology, Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| | - Chunyan Zhang
- Department of Pharmacy, Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin 300450, P.R. China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaofang Ma
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiyun Bian
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaolin Xiao
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Rui Gao
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yajing Sun
- Department of Pathology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Wenhan Wu
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Po Zhao
- Department of Pathology, Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
11
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W, Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:126. [PMID: 32631382 PMCID: PMC7336654 DOI: 10.1186/s13046-020-01629-4] [Citation(s) in RCA: 317] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Liver cancer has become the sixth most diagnosed cancer and the fourth leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is responsible for up to 75–85% of primary liver cancers, and sorafenib is the first targeted drug for advanced HCC treatment. However, sorafenib resistance is common because of the resultant enhancement of aerobic glycolysis and other molecular mechanisms. Aerobic glycolysis was firstly found in HCC, acts as a hallmark of liver cancer and is responsible for the regulation of proliferation, immune evasion, invasion, metastasis, angiogenesis, and drug resistance in HCC. The three rate-limiting enzymes in the glycolytic pathway, including hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), and pyruvate kinases type M2 (PKM2) play an important role in the regulation of aerobic glycolysis in HCC and can be regulated by many mechanisms, such as the AMPK, PI3K/Akt pathway, HIF-1α, c-Myc and noncoding RNAs. Because of the importance of aerobic glycolysis in the progression of HCC, targeting key factors in its pathway such as the inhibition of HK2, PFK or PKM2, represent potential new therapeutic approaches for the treatment of HCC.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China.
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China. .,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China. .,Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China. .,Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, number 1291, Jiangning road, Putuo, Shanghai, 200060, China. .,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, number 301, Middle Yanchang road, Jing'an, Shanghai, 200072, China.
| |
Collapse
|
12
|
Tamari T, Elimelech R, Cohen G, Cohen T, Doppelt O, Eskander-Hashoul L, Zigdon-Giladi H. Endothelial Progenitor Cells inhibit jaw osteonecrosis in a rat model: A major adverse effect of bisphosphonate therapy. Sci Rep 2019; 9:18896. [PMID: 31827217 PMCID: PMC6906486 DOI: 10.1038/s41598-019-55383-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a serious adverse effect of antiresorptive and antiangiogenic therapies. MRONJ is identified by chronic wounds in the oral mucosa associated with exposed necrotic bone. We hypothesized that zoledronic acid (ZOL) impairs keratinocyte and fibroblast function and reduces soft tissue vascularization; therefore, treating MRONJ with proangiogenic cells may benefit MRONJ patients. The effect of ZOL and dexamethasone (DEX) on gingival fibroblasts and keratinocytes was investigated. In-vitro, ZOL inhibited fibroblast and keratinocyte proliferation, delaying scratch healing. In-vivo, exposed bone was detected at tooth extraction sites, mainly in ZOL(+)/DEX(+) rats; and was associated with significantly decreased soft tissue vascularization, serum-VEGF, and tissue-VEGF. Local injection of early and late endothelial progenitor cells (EPCs) healed 13 of 14 MRONJ lesions compared with 2/7 lesions in the mesenchymal stem cells, and 2/6, in culture-medium group. The EPCs reduced necrotic bone area, increased serum and tissue VEGF levels. EPCs engraftment was minimal, suggesting their paracrine role in MRONJ healing. The EPC-conditioned medium improved scratch healing of keratinocytes and fibroblasts via VEGF pathway and elevated mRNA of VEGFA and collagen1A1. In conclusion, a novel MRONJ treatment with EPCs, increased vascularization and improved epithelial and fibroblast functions as well as cured the lesion.
Collapse
Affiliation(s)
- Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Rina Elimelech
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel.,Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Gal Cohen
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Talia Cohen
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ofri Doppelt
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lana Eskander-Hashoul
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel.,Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel. .,Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel. .,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
13
|
Martens B, Drebert Z. Glucocorticoid-mediated effects on angiogenesis in solid tumors. J Steroid Biochem Mol Biol 2019; 188:147-155. [PMID: 30654109 DOI: 10.1016/j.jsbmb.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 12/28/2022]
Abstract
Angiogenesis is essential in tumor development to maintain the oxygen and nutrient supply. Glucocorticoids have shown both direct and indirect angiostatic properties in various types of solid cancers. In most of the reported cases glucocorticoid-mediated actions involved suppression of multiple pro-angiogenic factors expression by cancer cells. The anti-angiogenic properties of glucocorticoids correlated with diminished tumor vasculature and reduced tumor growth in multiple in vivo studies. However, when glucocorticoid treatment is considered, possible adverse events should be taken into account. Additional research is needed to further test the use of these steroidal drugs in cancer therapy.
Collapse
Affiliation(s)
- Broes Martens
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Zuzanna Drebert
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
14
|
Therapeutic Effect of Traditional Chinese Medicine on a Rat Model of Branch Retinal Vein Occlusion. J Ophthalmol 2019; 2019:9521379. [PMID: 30906588 PMCID: PMC6398022 DOI: 10.1155/2019/9521379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
Branch retinal vein occlusion (BRVO) is a common retinal vascular disorder leading to visual impairment. Currently, the general strategies for BRVO are symptomatic therapies. Cardiovascular aspects are essential risk factors for BRVO. The traditional Chinese medicine hexuemingmu (HXMM), consisting of tanshinol and baicalin, dilates the vasculature and accelerates microcirculation. Therefore, the aim of this study was to determine the efficacy and possible mechanism of HXMM in a BRVO rat model established by laser photocoagulation. Successful BRVO rat models were treated with different doses of HXMM. Fundus photography and fluorescein fundus angiography (FFA) of the animals were applied. The retinal layers were measured by optical coherence tomography (OCT). Full-field electroretinography (ffERG) was applied to evaluate the retinal function. The ear vein flow velocity was measured via a microcirculation detector. The expression of the vascular endothelial growth factor (VEGF-α) was measured via western blotting and immunofluorescent staining. Our study found that retinal edema predominantly occurred in the inner nuclear layer (INL) and outer nuclear layer (ONL). The retinal edema of the treated groups was significantly relieved in the early stage of BRVO as visualized via OCT detection and HE staining. The amplitudes of the b wave and oscillatory potentials (OPs) waves of ffERG in the treated groups were increased compared with those of the control group at several detection points (3, 5, 7, 10, 14, and 21 d postocclusion). The expression of VEGF-α was reduced in the treated groups at an early stage of BRVO. Furthermore, the ear vein flow velocity of the HXMM treatment groups was faster than that of the control group. Thus, our study indicates that the traditional Chinese medicine HXMM could ameliorate retinal edema and rescue the retinal structure and function in BRVO models through promoting occluded vein recanalization, improving microcirculation, and regulating the expression of VEGF-α.
Collapse
|
15
|
Wang Z, Dong C. Gluconeogenesis in Cancer: Function and Regulation of PEPCK, FBPase, and G6Pase. Trends Cancer 2018; 5:30-45. [PMID: 30616754 DOI: 10.1016/j.trecan.2018.11.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 01/19/2023]
Abstract
Cancer cells display a high rate of glycolysis in the presence of oxygen to promote proliferation. Gluconeogenesis, the reverse pathway of glycolysis, can antagonize aerobic glycolysis in cancer via three key enzymes - phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), and glucose-6-phosphatase (G6Pase). Recent studies have revealed that, in addition to metabolic regulation, these enzymes also play a role in signaling, proliferation, and the cancer stem cell (CSC) tumor phenotype. Multifaceted regulation of PEPCK, FBPase, and G6Pase through transcription, epigenetics, post-translational modification, and enzymatic activity is observed in different cancers. We review here the function and regulation of key gluconeogenic enzymes and new therapeutic opportunities.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (Breast Center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (Breast Center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
16
|
Iftikhar F, Yaqoob F, Tabassum N, Jan MS, Sadiq A, Tahir S, Batool T, Niaz B, Ansari FL, Choudhary MI, Rashid U. Design, synthesis, in-vitro thymidine phosphorylase inhibition, in-vivo antiangiogenic and in-silico studies of C-6 substituted dihydropyrimidines. Bioorg Chem 2018; 80:99-111. [PMID: 29894893 DOI: 10.1016/j.bioorg.2018.05.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/15/2023]
Abstract
Thymidine phosphorylase (TP) is an angiogenic enzyme. It plays an important role in angiogenesis, tumour growth, invasion and metastasis. In current research work, we study the effect of structural modification of dihydropyrimidine-2-ones (DHPM-2-ones) on TP inhibition. A series of eighteen new derivatives of 3,4-dihydropyrimidone-2-one were designed and synthesized through the structural modification at C-6 position. All these new derivatives were then assessed for in-vitro inhibition of thymidine phosphorylase (TP) from E. coli. Oxadiazole derivatives 4a-e exhibited excellent TP-inhibition at low micromolar concentration levels better than standard drug 7-deazaxanthine (7-DX). Among all these compounds, 4b was found to be the most potent with IC50 = 1.09 ± 0.004 μM. Anti-angiogenesis potential of representative compounds were also studied in a chorioallantoic membrane (CAM) assay. Here again, compound 4b was found to be the potent anti-angiogenesis compound in a CAM assay. Docking studies were also performed with Molecular Operating Environment (MOE) to further analyse the mode of inhibition of these compounds. Binding mode analysis of the most active inhibitors showed that these are well accommodated into the binding site of enzyme though stable hydrogen bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Fatima Iftikhar
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Farhana Yaqoob
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Nida Tabassum
- Department of Pharmacology, Rawalpindi Medical University, Rawalpindi 463000, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, University of Malakand, Chakdara 18000, Dir (L), Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara 18000, Dir (L), Pakistan
| | - Saba Tahir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Tahira Batool
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biotechnology, University of Azad Jammu & Kashmir Bagh, Pakistan
| | - Basit Niaz
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | | | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan.
| |
Collapse
|
17
|
Niu L, Chen Q, Hua C, Geng Y, Cai L, Tao S, Ni Y, Zhao R. Effects of chronic dexamethasone administration on hyperglycemia and insulin release in goats. J Anim Sci Biotechnol 2018; 9:26. [PMID: 29568520 PMCID: PMC5855938 DOI: 10.1186/s40104-018-0242-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/01/2018] [Indexed: 11/10/2022] Open
Abstract
Background Dexamethasone (Dex), a synthetic glucocorticoid, is among the most commonly used drugs worldwide in animals and humans as an anti-inflammatory and immunosuppressive agent. GC has profound effects on plasma glucose level and other metabolic conditions. However, the effect of prolonged use of Dex on glucose metabolism in ruminants is still unclear. Results Ten goats were randomly assigned to two groups: the control goats were injected with saline, and the Dex-treated goats were intramuscularly injected daily for 21 d with 0.2 mg/kg Dex. The results showed that plasma glucose and insulin concentrations were significantly increased after Dex administration (P < 0.05). Additionally, the content of hepatic glycogen was also markedly increased in Dex-treated goats (P < 0.01), while the content of glycogen in dorsal longissimus was unchanged by Dex (P > 0.05). The expression of several key genes, involved in blood glucose regulation, was detected by real-time PCR in the small intestine, skeletal muscle and liver. The expression of glucose transporter type 2 (GLUT2), sodium-glucose transporter 1 (SGLT1) and sodium-potassium ATPase (Na-K/ATPase) in the small intestine were generally increased by Dex, and GLUT2 mRNA expression was significantly up-regulated (P < 0.05). In liver, the expression of genes involved in gluconeogenesis including glucose-6-phosphatase catalytic subunit (G6PC), cytosolic form of phosphoenolpyruvate carboxykinase (PCK1) and pyruvate carboxylase (PC), were significantly down-regulated by Dex. However, the protein expression levels of PCK1 & PCK2 were significantly increased by Dex, suggesting a post-transcriptional regulation. In dorsal longissimus, the mRNA expression of genes associated with gluconeogenesis and the insulin signaling pathway were generally up-regulated by Dex, but the mRNA expression of two markers of muscle atrophy, namely F-box protein 32 (FBXO32/Atrogin1) and muscle RING-finger protein 1 (MuRF1), was not altered by Dex. Conclusions Taken together, these results indicate that chronic administration of a low dosage of Dex induces hyperglycemia mainly through gluconeogenesis activation in the goat liver.
Collapse
Affiliation(s)
- Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Qu Chen
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095 People's Republic of China
| |
Collapse
|
18
|
Gong X, Wu J, Wu J, Liu J, Gu H, Shen H. Correlation of SASH1 expression and ultrasonographic features in breast cancer. Onco Targets Ther 2017; 10:271-276. [PMID: 28138250 PMCID: PMC5237597 DOI: 10.2147/ott.s119244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objective SASH1 is a member of the SH3/SAM adapter molecules family and has been identified as a new tumor suppressor and critical protein in signal transduction. An ectopic expression of SASH1 is associated with decreased cell viability of breast cancer. The aim of this study was to explore the association between SASH1 expression and the ultrasonographic features in breast cancer. Patients and methods A total of 186 patients diagnosed with breast cancer were included in this study. The patients received preoperative ultrasound examination, and the expression of SASH1 was determined using immunohistochemistry methods. Spearman’s rank correlation analysis was used to analyze the correlation between SASH1-positive expression and the ultrasonographic features. Results The positive expression of SASH1 was observed in 63 (33.9%) patients. The positive expression rate of SASH1 was significantly decreased in patients with breast cancer (63/186, 33.9%) compared with controls (P<0.001). The positive expression rate of SASH1 was significantly decreased in patients with edge burr sign (P=0.025), lymph node metastasis (P=0.007), and a blood flow grade of III (P=0.013) compared with patients without those adverse ultrasonographic features. The expression of SASH1 was negatively correlated with edge burr sign (P=0.025), lymph node metastasis (P=0.007), and blood flow grade (P=0.003) of the patients with breast cancer. Conclusion The expression of SASH1 was inversely correlated with some critical ultrasonographic features, including edge burr sign, lymph node metastasis, and blood flow grade in breast cancer, and decreased SASH1 expression appears to be associated with adverse clinical and imaging features in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Shen
- Department of Doppler Ultrasonic, Traditional Chinese Medicine Hospital of Nantong City, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|