1
|
Xu A, Luo Y, Tang Y, Yang F, Gao X, Qiao G, Zhu X, Zhou J. Chitinases as a potential diagnostic and prognostic biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurol Sci 2024; 45:2489-2503. [PMID: 38194198 PMCID: PMC11081993 DOI: 10.1007/s10072-024-07301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the degeneration of motor neurons, and there is currently a lack of reliable diagnostic biomarkers. This meta-analysis aimed to evaluate CHIT1, CHI3L1, and CHI3L2 levels in the cerebrospinal fluid (CSF) or blood and their diagnostic potential in ALS patients. A systematic, comprehensive search was performed of peer-reviewed English-language articles published before April 1, 2023, in PubMed, Scopus, Embase, Cochrane Library, and Web of Science. After a thorough screening, 13 primary articles were included, and their chitinases-related data were extracted for systematic review and meta-analysis. In ALS patients, the CSF CHIT1 levels were significantly elevated compared to controls with healthy control (HC) (SMD, 1.92; 95% CI, 0.78 - 3.06; P < 0.001). CHIT1 levels were elevated in the CSF of ALS patients compared to other neurodegenerative diseases (ONDS) control (SMD, 0.74; 95% CI, 0.22 - 1.27; P < 0.001) and exhibited an even more substantial increase when compared to ALS-mimicking diseases (AMDS) (SMD, 1.15; 95% CI, 0.35 - 1.94, P < 0.001). Similarly, the CSF CHI3L1 levels were significantly higher in ALS patients compared to HC (SMD, 3.16; 95% CI, 1.26 - 5.06, P < 0.001). CHI3L1 levels were elevated in the CSF of ALS patients compared to ONDS (SMD, 0.75; 95% CI, 0.32 - 1.19; P = 0.017) and exhibited a more pronounced increase when compared to AMDS (SMD, 1.92; 95% CI, 0.41 - 3.42; P < 0.001). The levels of CSF chitinases in the ALS patients showed a significant increase, supporting the role of CSF chitinases as diagnostic biomarkers for ALS.
Collapse
Affiliation(s)
- Aoling Xu
- School of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yujun Luo
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430061, China
- First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yudi Tang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Fen Yang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaolian Gao
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Guiyuan Qiao
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinhong Zhu
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China.
| | - Jing Zhou
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
- Department of Tuina and Rehabilitation Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.
- Department of Tuina and Rehabilitation Medicine, Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430061, China.
- First Clinical Medical College, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
2
|
Zhang W, Xu K, Li Z, Wang L, Chen H. Tumor immune microenvironment components and the other markers can predict the efficacy of neoadjuvant chemotherapy for breast cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1579-1593. [PMID: 36652115 DOI: 10.1007/s12094-023-03075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Breast cancer is an epithelial malignant tumor that occurs in the terminal ducts of the breast. Neoadjuvant chemotherapy (NACT) is an important part of breast cancer treatment. Its purpose is to use systemic treatment for some locally advanced breast cancer patients, to decrease the tumor size and clinical stage so that non-operable breast cancer patients can have a chance to access surgical treatment, or patients who are not suitable for breast-conserving surgery can get the opportunity of breast-conserving. However, some patients who do not respond to NACT will lead deterioration in their condition. Therefore, prediction of NACT efficacy in breast cancer is vital for precision therapy. The tumor microenvironment (TME) has a crucial role in the carcinogenesis and therapeutic response of breast cancer. In this review, we summarized the immune cells, immune checkpoints, and other biomarkers in the TME that can evaluate the efficacy of NACT in treating breast cancer. We believe that the detection and evaluation of the TME components in breast cancer are helpful to predict the efficacy of NACT, and the prediction methods are in the prospect. In addition, we also summarized other predictive factors of NACT, such as imaging examination, biochemical markers, and multigene/multiprotein profiling.
Collapse
Affiliation(s)
- Weiqian Zhang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ke Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zhengfa Li
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Linwei Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Honglei Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China. .,Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
3
|
Patysheva M, Frolova A, Larionova I, Afanas'ev S, Tarasova A, Cherdyntseva N, Kzhyshkowska J. Monocyte programming by cancer therapy. Front Immunol 2022; 13:994319. [PMID: 36341366 PMCID: PMC9631446 DOI: 10.3389/fimmu.2022.994319] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/27/2022] [Indexed: 08/27/2023] Open
Abstract
Monocytes in peripheral blood circulation are the precursor of essential cells that control tumor progression, that include tumor-associated macrophages (TAMs), dendritic cells (DCs) and myeloid-derive suppressor cells (MDSC). Monocytes-derived cells orchestrate immune reactions in tumor microenvironment that control disease outcome and efficiency of cancer therapy. Four major types of anti-cancer therapy, surgery, radiotherapy, chemotherapy, and most recent immunotherapy, affect tumor-associated macrophage (TAM) polarization and functions. TAMs can also decrease the efficiency of therapy in a tumor-specific way. Monocytes is a major source of TAMs, and are recruited to tumor mass from the blood circulation. However, the mechanisms of monocyte programming in circulation by different therapeutic onsets are only emerging. In our review, we present the state-of-the art about the effects of anti-cancer therapy on monocyte progenitors and their dedifferentiation, on the content of monocyte subpopulations and their transcriptional programs in the circulation, on their recruitment into tumor mass and their potential to give origin for TAMs in tumor-specific microenvironment. We have also summarized very limited available knowledge about genetics that can affect monocyte interaction with cancer therapy, and highlighted the perspectives for the therapeutic targeting of circulating monocytes in cancer patients. We summarized the knowledge about the mediators that affect monocytes fate in all four types of therapies, and we highlighted the perspectives for targeting monocytes to develop combined and minimally invasive anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Marina Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Tumor Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anastasia Frolova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Tumor Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Sergey Afanas'ev
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Department of Abdominal Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna Tarasova
- Department of Abdominal Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
- Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| |
Collapse
|
4
|
Sanfilippo C, Castrogiovanni P, Vinciguerra M, Imbesi R, Ulivieri M, Fazio F, Blennow K, Zetterberg H, Di Rosa M. A sex-stratified analysis of neuroimmune gene expression signatures in Alzheimer's disease brains. GeroScience 2022; 45:523-541. [PMID: 36136224 PMCID: PMC9886773 DOI: 10.1007/s11357-022-00664-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/14/2022] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of progressively disabling dementia. The chitinases CHI3L1 and CHI3L2 have long been known as biomarkers for microglial and astrocytic activation in neurodegeneration. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of non-demented controls (NDC) (n = 460), and of deceased patients with AD (n = 697). The AD patients were stratified according to sex. Comparing the high CHI3L1 and CHI3L2 expression group (75th percentile), and low CHI3L1 and CHI3L2 expression group (25th percentile), we obtained eight signatures according to the sex of patients and performed a genomic deconvolution analysis using neuroimmune signatures (NIS) belonging to twelve cell populations. Expression analysis revealed significantly higher CHI3L1 and CHI3L2 expression in AD compared with NDC, and positive correlations of these genes with GFAP and TMEM119. Furthermore, deconvolution analysis revealed that CHI3L1 and CHI3L2 high expression was associated with inflammatory signatures in both sexes. Neuronal activation profiles were significantly activated in AD patients with low CHI3L1 and CHI3L2 expression levels. Furthermore, gene ontology analysis of common genes regulated by the two chitinases unveiled immune response as a main biological process. Finally, microglia NIS significantly correlated with CHI3L2 expression levels and were more than 98% similar to microglia NIS determined by CHI3L1. According to our results, high levels of CHI3L1 and CHI3L2 in the brains of AD patients are associated with inflammatory transcriptomic signatures. The high correlation between CHI3L1 and CHI3L2 suggests strong co-regulation.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU “Policlinico-San Marco”, Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Catania, Sicily Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic ,Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Martina Ulivieri
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Francesco Fazio
- Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,UK Dementia Research Institute at UCL, London, UK ,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
5
|
Nimbalkar VP, Kruthika BS, Sravya P, Rao S, Sugur HS, Chickabasaviah YT, Somanna S, Arivazhagan A, Kondaiah P, Santosh V. Chitinase 3-Like 2. Am J Clin Pathol 2022; 158:521-529. [PMID: 35913110 DOI: 10.1093/ajcp/aqac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We aimed to evaluate the expression pattern of chitinase 3-like 2 (CHI3L2) in the tumor core and peritumoral brain zone (PBZ) of newly diagnosed glioblastoma (GBM) in recurrent tumors and its association with patient prognosis. METHODS The study was conducted on three sample sets derived from different patient cohorts. Messenger RNA (mRNA) expression of CHI3L2 in the tumor core and PBZ (n = 34) compared with control (n = 20) tissues was studied by quantitative polymerase chain reaction in sample set 1. Sample set 2 included 19 paired, primary-recurrent GBM tissues. Sample set 3 comprised 82 GBM tissues of patients with treatment and follow-up information. Immunohistochemistry (IHC) was performed on all three sample sets. RESULTS mRNA expression of CHI3L2 was significantly higher in the tumor core and PBZ compared with control (P < .0001). By IHC, CHI3L2 showed strong cytoplasmic staining in tumor cells. Recurrent tumors had a higher expression of CHI3L2 compared with primary tumors (P = .007). Survival analysis showed CHI3L2 expression was associated with shorter overall survival (P = .034) and progression-free survival (P = .010), which was in line with The Cancer Genome Atlas cohort (P = .043). CONCLUSIONS High expression of CHI3L2 in the tumor core and PBZ, as well as its association with tumor recurrence and poor patient prognosis, suggests it might be contributing to tumor spread and recurrence.
Collapse
Affiliation(s)
- Vidya P Nimbalkar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Banavathy S Kruthika
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Palavalasa Sravya
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Harsha S Sugur
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Yasha T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sampath Somanna
- Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
6
|
Kinoshita J, Fushida S, Yamaguchi T, Moriyama H, Saito H, Shimada M, Terai S, Okamoto K, Nakamura K, Ninomiya I, Yagi S, Inaki N. Prognostic value of tumor-infiltrating CD163 +macrophage in patients with metastatic gastric cancer undergoing multidisciplinary treatment. BMC Cancer 2022; 22:608. [PMID: 35658848 PMCID: PMC9166590 DOI: 10.1186/s12885-022-09713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The multidisciplinary treatment including induction chemotherapy plus conversion surgery (CS) has attracted attention as a new strategy to improve the outcome of metastatic gastric cancer (MGC). However, it is unclear which patients achieve a good response to chemotherapy and successful CS. Tumor-infiltrating immune cells (TIICs) have been reported to be both prognostic and predictive biomarkers not only in immunotherapy but also in chemotherapy in many cancer types. However, there have been no reports on the usefulness of TIICs as biomarkers in conversion surgery for MGC. The aim of the present study was to evaluate the association between the TIICs and treatment outcome for the multidisciplinary treatment in MGC. METHODS We retrospectively analyzed 68 MGC patients who received docetaxel plus cisplatin plus S-1 (DCS) therapy between April 2006 and March 2019 in our institute. The number of tumor-infiltrating CD4+, CD8+, Foxp3+lymphocytes, CD68+, CD163+macrophages in pre-treatment endoscopic biopsy samples were evaluated to investigate their predictive value for multidisciplinary treatment. RESULTS Fifty patients underwent CS following DCS therapy (CS group), whereas 18 patients underwent DCS therapy alone (non-CS group). The median survival time (MST) of CS group was 33.3 months, which was significantly longer than the MST of 9.0 months in non-CS group (p < 0.01). The number of CD163+macrophages was extracted as an independent prognostic factor for overall survival in all patients. There were more cases of high infiltration of CD163+macrophages in non-CS group than in CS group. Furthermore, in CS group, pathological responders to DCS therapy showed low infiltration of CD163+ macrophages, and high infiltration of CD8+lymphocyte. CD163 low group showed a significant prolonged survival compared with CD163 high group in patients who underwent CS (p = 0.02). CONCLUSIONS The pre-treatment CD163+macrophages infiltration would be a pivotal biomarker for predicting prognosis and pathological response to multidisciplinary treatment among TIICs in MGC. Thus, for patients with low CD163+macrophage infiltration in pre-treatment biopsy sample, diagnostic imaging should be performed frequently during chemotherapy to avoid missing the optimal timing for CS, and CS should be aggressively considered as a treatment option if curative resection is deemed feasible.
Collapse
Affiliation(s)
- Jun Kinoshita
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Sachio Fushida
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Takahisa Yamaguchi
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hideki Moriyama
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroto Saito
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Mari Shimada
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shiro Terai
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Keishi Nakamura
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shintaro Yagi
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Noriyuki Inaki
- Department of Gastrointestinal Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
7
|
Zhang J, Pan S, Jian C, Hao L, Dong J, Sun Q, Jin H, Han X. Immunostimulatory Properties of Chemotherapy in Breast Cancer: From Immunogenic Modulation Mechanisms to Clinical Practice. Front Immunol 2022; 12:819405. [PMID: 35069604 PMCID: PMC8766762 DOI: 10.3389/fimmu.2021.819405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy among females. Chemotherapy drugs remain the cornerstone of treatment of BC and undergo significant shifts over the past 100 years. The advent of immunotherapy presents promising opportunities and constitutes a significant complementary to existing therapeutic strategies for BC. Chemotherapy as a cytotoxic treatment that targets proliferation malignant cells has recently been shown as an effective immune-stimulus in multiple ways. Chemotherapeutic drugs can cause the release of damage-associated molecular patterns (DAMPs) from dying tumor cells, which result in long-lasting antitumor immunity by the key process of immunogenic cell death (ICD). Furthermore, Off-target effects of chemotherapy on immune cell subsets mainly involve activation of immune effector cells including natural killer (NK) cells, dendritic cells (DCs), and cytotoxic T cells, and depletion of immunosuppressive cells including Treg cells, M2 macrophages and myeloid-derived suppressor cells (MDSCs). Current mini-review summarized recent large clinical trials regarding the combination of chemotherapy and immunotherapy in BC and addressed the molecular mechanisms of immunostimulatory properties of chemotherapy in BC. The purpose of our work was to explore the immune-stimulating effects of chemotherapy at the molecular level based on the evidence from clinical trials, which might be a rationale for combinations of chemotherapy and immunotherapy in BC.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Jian
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Hao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie Dong
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Qingqing Sun
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Yuan K, Zeng R, Deng P, Zhang A, Liu H, Wang N, Tang Y, Yin Z, Liu H. Identification and Verification of Immune-Related Genes Prognostic Signature Based on ssGSEA for Adrenocortical Carcinoma (ACC). Int J Gen Med 2022; 15:1471-1483. [PMID: 35210821 PMCID: PMC8857983 DOI: 10.2147/ijgm.s345123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/26/2022] [Indexed: 01/07/2023] Open
Abstract
Purpose Adrenocortical carcinoma (ACC) is an endocrine malignant tumor with poor prognosis. The study aimed to construct ACC immune-related gene prognostic signature and verify the efficacy of prognostic signature. Methods ACC RNA-seq data and clinical information are downloaded from TCGA databases and GEO databases. We used single sample gene set enrichment analysis (ssGSEA) to assess immune cell infiltration in ACC patients and ACC patients were divided into high- and low-immune cell infiltration clusters. The validity of ssGSEA grouping was verified using the ESTIMATE algorithm. A total of 275 differentially expressed immune-related genes (IRGs) were obtained from the intersection of IRGs and differentially expressed genes (DEGs) in high and low immune cell infiltration clusters. LASSO analysis was used to identify 13 IRGs that regulate the prognosis of ACC patients through immune infiltration. Kaplan–Meier analysis, ROC curve, univariate and multivariate Cox regression further confirmed that these 13 immune-related gene signatures were innovative and significant prognostic factors, which were independent of clinical features. Finally, ACC prognostic nomogram was constructed, ROC curve and calibration curve were drawn to evaluate the accuracy of the prognostic nomogram. Results LASSO regression analysis was used to screen out ACC survival-related genes. Univariate and multivariate Cox proportional risk regression models were used to analyze and construct the ACC prognosis nomogram. The AUC for predicting 1-, 3- and 5-year overall survival rate of ACC patients was 0.799, 0.966 and 0.969, suggesting good prediction accuracy. The calibration curve shows that the predicted results of the prognostic nomogram are in good agreement with the actual situation. Conclusion ssGSEA technique plays an important role in the construction of ACC prognostic model. Based on IRGs associated with survival independently predicted ACC prognosis, we identified thirteen immune-related genes as prognostic signature for ACC.
Collapse
Affiliation(s)
- Kaisheng Yuan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ruiqi Zeng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Pengteng Deng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Aiping Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Huiqian Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ning Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yongxi Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhikang Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Hang Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Hang Liu, Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China, Tel +86-185-8030-9681, Email
| |
Collapse
|
9
|
Stakheyeva M, Patysheva M, Kaigorodova E, Zavyalova M, Tarabanovskaya N, Choynzonov E, Cherdyntseva N. Tumor Properties Mediate the Relationship Between Peripheral Blood Monocytes and Tumor-Associated Macrophages in Breast Cancer. Cancer Invest 2021; 40:442-456. [PMID: 34882039 DOI: 10.1080/07357907.2021.2016803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In cancer patients, circulating monocytes show functional alterations. Since monocytes are precursors of tumor-associated macrophages (TAMs), TAMs ensuring tumor viability are potentially replenished through the recruitment of monocytes with specific properties. We demonstrated that locoregional metastasis and circulating factors, such as CD45-EpCAM + CD44 + CD24-/low circulating tumor cells, and serum MCP-1 and HMGB1 were statistically associated with modulation of the monocyte features in breast cancer patients. The count of circulating CD45-EpCAM + cells correlated with CD68+, CD163 + monocyte in blood, and with density of CD68 + TAM in breast cancer tumors. Overall, the relationship between monocytes and TAMs is mediated by the tumor in breast cancer patients.
Collapse
Affiliation(s)
- Marina Stakheyeva
- Laboratory Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Marina Patysheva
- Laboratory Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| | - Evgenia Kaigorodova
- Department of General and Molecular Pathology, Cancer Research Institute Tomsk National Research Medical Center, Tomsk, Russia
| | - Marina Zavyalova
- Department of General and Molecular Pathology, Cancer Research Institute Tomsk National Research Medical Center, Tomsk, Russia
| | - Natalia Tarabanovskaya
- Department of General Oncology, Cancer Research Institute Tomsk National Research Medical Center, Tomsk, Russia
| | - Evgeny Choynzonov
- Department of Head and Neck Oncology, Cancer Research Institute Tomsk National Research Medical Center, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| |
Collapse
|
10
|
Du J, Dong Y, Li Y. Identification and Prognostic Value Exploration of Cyclophosphamide (Cytoxan)-Centered Chemotherapy Response-Associated Genes in Breast Cancer. DNA Cell Biol 2021; 40:1356-1368. [PMID: 34704810 DOI: 10.1089/dna.2021.0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to explore cyclophosphamide (Cytoxan) response-associated genes and constructed a model to predict the prognosis of breast cancer (BRCA) patients. Samples obtained from TCGA and GEO databases were subjected to Weighted Gene Coexpression Network Analysis (WGCNA) and univariate Cox and LASSO Cox regression analysis to identify and validate the Cytoxan response-related prognostic signature. Moreover, multivariate Cox regression analysis was performed to analyze the independence of factors, and the nomogram model was constructed by including all the independent factors. WGCNA revealed that 159 genes are significantly correlated with Cytoxan response in BRCA samples, and the samples with a different prognosis could be effectively distinguished based on the expression of those 159 genes. Ten genes were further selected to be related to the prognosis of BRCA patients, including PCDHB2, GRIK2, FRMD7, CCSER1, PCDHGA1, PCDHA1, LRRC37A6P, PCDHGA12, ZNF486, and PCDHGB5, based on the Risk Score model. Among them, PCDHA1 expression was validated in cells and patient samples. Multivariate Cox regression analysis confirmed that the Risk Score is an independent factor. Furthermore, the nomogram model showed that the predicted survival probability is closely related to the actual survival probability. In conclusion, we identified 159 genes potentially correlated with the Cytoxan response of BRCA patients, which had prognostic value in BRCA.
Collapse
Affiliation(s)
- Jiawei Du
- Department of Medicine, Soochow University, Suzhou, China.,Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanru Dong
- Department of Clinical Laboratory, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yuhong Li
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
11
|
Lai F, Zhang H, Xu B, Xie Y, Yu H. Long non-coding RNA NBR2 suppresses the progress of colorectal cancer in vitro and in vivo by regulating the polarization of TAM. Bioengineered 2021; 12:5462-5475. [PMID: 34506209 PMCID: PMC8806745 DOI: 10.1080/21655979.2021.1958558] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) threatens the health of patients with high mortality, which lacks sensitive biomarkers for diagnosis to improve total survival. The lncRNA NBR2 is reported to be downregulated in CRC and suppresses the proliferation of CRC cells. However, the underlying mechanisms remain unclear. The present study aimed to explore the regulatory function of the lncRNA NBR2 on tumor-associated macrophage (TAM) polarization and its consequent anti-tumor effect. Two CRC cell lines were used in this study. We found that the lncRNA NBR2, TNF-α, and HLA-DR were downregulated, and Arg-1, CD163, CD206, and IL-4 were upregulated in CRC tumors. M1 polarization was activated and M2 polarization was suppressed in NBR2-overexpressed macrophages, accompanied by increased production of inflammatory factors, decreased proliferation, and inhibited migration ability in the co-culture system of HCT-116 cells (SW480 cells) and NBR2-overexpressed macrophages. The promoted proliferation and migration were observed in the co-culture system of HCT-116 cells (SW480 cells) and NBR2-knockdown macrophages. The tumor growth of both HCT-116 cells and SW480 cells in the xenograft model was suppressed by co-planting NBR2-overexpressed macrophages and was facilitated by the co-planting of NBR2-knockdown macrophages. The release of inflammatory factors was induced, M1 polarization was facilitated, and M2 polarization was suppressed in tumor tissues in the NBR2-overexpressed group, which were all reversed in the NBR2-knockdown group. Therefore, the lncRNA NBR2 suppressed the progression of colorectal cancer in vitro and in vivo by regulating TAM polarization.
Collapse
|
12
|
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13133253. [PMID: 34209679 PMCID: PMC8268686 DOI: 10.3390/cancers13133253] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Since the targeting of a single pro-angiogenic factor fails to improve oncological disease outcome, significant efforts have been made to identify new pro-angiogenic factors that could compensate for the deficiency of current therapy or act independently as single drugs. Our review aims to present the state-of-the art for well-known and recently described factors produced by macrophages that induce and regulate angiogenesis. A number of positive and negative regulators of angiogenesis in the tumor microenvironment are produced by tumor-associated macrophages (TAMs). Accumulating evidence has indicated that, apart from the well-known angiogenic factors, there are plenty of novel angiogenesis-regulating proteins that belong to different classes. We summarize the data regarding the direct or indirect mechanisms of the interaction of these factors with endothelial cells during angiogenesis. We highlight the recent findings that explain the limitations in the efficiency of current anti-angiogenic therapy approaches. Abstract Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
- Correspondence: (I.L.); (J.K.)
| | - Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
- Correspondence: (I.L.); (J.K.)
| |
Collapse
|
13
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. Resveratrol as an Adjuvant for Normal Tissues Protection and Tumor Sensitization. Curr Cancer Drug Targets 2021; 20:130-145. [PMID: 31738153 DOI: 10.2174/1568009619666191019143539] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most complicated diseases in present-day medical science. Yearly, several studies suggest various strategies for preventing carcinogenesis. Furthermore, experiments for the treatment of cancer with low side effects are ongoing. Chemotherapy, targeted therapy, radiotherapy and immunotherapy are the most common non-invasive strategies for cancer treatment. One of the most challenging issues encountered with these modalities is low effectiveness, as well as normal tissue toxicity for chemo-radiation therapy. The use of some agents as adjuvants has been suggested to improve tumor responses and also alleviate normal tissue toxicity. Resveratrol, a natural flavonoid, has attracted a lot of attention for the management of both tumor and normal tissue responses to various modalities of cancer therapy. As an antioxidant and anti-inflammatory agent, in vitro and in vivo studies show that it is able to mitigate chemo-radiation toxicity in normal tissues. However, clinical studies to confirm the usage of resveratrol as a chemo-radioprotector are lacking. In addition, it can sensitize various types of cancer cells to both chemotherapy drugs and radiation. In recent years, some clinical studies suggested that resveratrol may have an effect on inducing cancer cell killing. Yet, clinical translation of resveratrol has not yielded desirable results for the combination of resveratrol with radiotherapy, targeted therapy or immunotherapy. In this paper, we review the potential role of resveratrol for preserving normal tissues and sensitization of cancer cells in combination with different cancer treatment modalities.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48175-861, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed E Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
14
|
Liu L, Yang Y, Duan H, He J, Sun L, Hu W, Zeng J. CHI3L2 Is a Novel Prognostic Biomarker and Correlated With Immune Infiltrates in Gliomas. Front Oncol 2021; 11:611038. [PMID: 33937022 PMCID: PMC8084183 DOI: 10.3389/fonc.2021.611038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
CHI3L2 (Chitinase-3-Like Protein 2) is a member of chitinase-like proteins (CLPs), which belong to the glycoside hydrolase 18 family. Its homologous gene, CHI3L1, has been extensively studied in various tumors and has been shown to be related to immune infiltration in breast cancer and glioblastoma. High CHI3L2 expression was reported to be associated with poor prognosis in breast cancer and renal cell carcinoma. However, the prognostic significance of CHI3L2 in glioma and its correlation between immune infiltration remains unclear. In this study, we examined 288 glioma samples by immunohistochemistry to find that CHI3L2 is expressed in tumor cells and macrophages in glioma tissues and highly expressed in glioblastoma and IDH wild-type gliomas. Relationships between CHI3L2 expression and clinical features (grade, age, Ki67 index, P53, PHH3 (mitotic figures), ATRX, TERTp, MGMTp, IDH, and 1p/19q co-deleted status) were evaluated. Kaplan-Meier survival was conducted to show high CHI3L2 expression in tumor cells (TC) and macrophage cells (MC) indicated poor prognosis in diffusely infiltrating glioma (DIG), lower-grade glioma (LGG), and IDH wild-type gliomas (IDH-wt). The overall survival time was higher in patients with dual-low CHI3L2 expression in TC and MC compared to those in patients with non-dual CHI3L2 expression and dual high expression in DIG and IDH wild-type gliomas. By univariate and multivariate analysis, we found that high CHI3L2 expression in tumor cells was an independent unfavorable prognostic factor in glioma patients. Moreover, we used two datasets (TCGA and CGGA) to verify the results of our study and explore the potential functional role of CHI3L2 by GO and KEGG analyses in gliomas. TIMER platform analysis indicated CHI3L2 expression was closely related to diverse marker genes of tumor immune infiltrating cells, including monocytes, TAMs, M1 macrophages, M2 macrophages, TGFβ1+ Treg and T cell exhaustion in GBM and LGG. Western Blot validated CHI3L2 is expressed in glioma cells and microglia cells. The results of flow cytometry showed that CHI3L2 induces the apoptosis of CD8+ T cells. In conclusion, these results demonstrate CHI3L2 is related to poor prognosis and immune infiltrates in gliomas, suggesting it may serve as a promising prognostic biomarker and represent a new target for glioma patients.
Collapse
Affiliation(s)
- Liling Liu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yuanzhong Yang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hao Duan
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Neurosurgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiahua He
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lu Sun
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wanming Hu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jing Zeng
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
15
|
Zhang J, Yu S, Hu W, Wang M, Abudoureyimu D, Luo D, Li T, Long L, Zeng H, Cheng C, Lei Z, Teng J, Kang X. Comprehensive Analysis of Cell Population Dynamics and Related Core Genes During Vitiligo Development. Front Genet 2021; 12:627092. [PMID: 33679890 PMCID: PMC7933673 DOI: 10.3389/fgene.2021.627092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
Vitiligo is a common immune-related depigmentation condition, and its pathogenesis remains unclear. This study used a combination of bioinformatics methods and expression analysis techniques to explore the relationship between immune cell infiltration and gene expression in vitiligo. Previously reported gene expression microarray data from the skin (GSE53146 and GSE75819) and peripheral blood (GSE80009 and GSE90880) of vitiligo patients and healthy controls was used in the analysis. R software was used to filter the differentially expressed genes (DEGs) in each dataset, and the KOBAS 2.0 server was used to perform functional enrichment analysis. Compared with healthy controls, the upregulated genes in skin lesions and peripheral blood leukocytes of vitiligo patents were highly enriched in immune response pathways and inflammatory response signaling pathways. Immunedeconv software and the EPIC method were used to analyze the expression levels of marker genes to obtain the immune cell population in the samples. In the lesional skin of vitiligo patients, the proportions of macrophages, B cells and NK cells were increased compared with healthy controls. In the peripheral blood of vitiligo patients, CD8+ T cells and macrophages were significantly increased. A coexpression analysis of the cell populations and DEGs showed that differentially expressed immune and inflammation response genes had a strong positive correlation with macrophages. The TLR4 receptor pathway, interferon gamma-mediated signaling pathway and lipopolysaccharide-related pathway were positively correlated with CD4+ T cells. Regarding immune response-related genes, the overexpression of IFITM2, TNFSF10, GZMA, ADAMDEC1, NCF2, ADAR, SIGLEC16, and WIPF2 were related to macrophage abundance, while the overexpression of ICOS, GPR183, RGS1, ILF2 and CD28 were related to CD4+ T cell abundance. GZMA and CXCL10 expression were associated with CD8+ T cell abundance. Regarding inflammatory response-related genes, the overexpression of CEBPB, ADAM8, CXCR3, and TNIP3 promoted macrophage infiltration. Only ADORA1 expression was associated with CD4+ T cell infiltration. ADAM8 and CXCL10 expression were associated with CD8+ T cell abundance. The overexpression of CCL18, CXCL10, FOS, NLRC4, LY96, HCK, MYD88, and KLRG1, which are related to inflammation and immune responses, were associated with macrophage abundance. We also found that immune cells infiltration in vitiligo was associated with antigen presentation-related genes expression. The genes and pathways identified in this study may point to new directions for vitiligo treatment.
Collapse
Affiliation(s)
- Jingzhan Zhang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Shirong Yu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Wen Hu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Man Wang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Dilinuer Abudoureyimu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Dong Luo
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Tingting Li
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Linglong Long
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Hui Zeng
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Chao Cheng
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Zixian Lei
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Jianan Teng
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Medical School, Shihezi University, Shihezi, China
| | - Xiaojing Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| |
Collapse
|
16
|
Korbecki J, Olbromski M, Dzięgiel P. CCL18 in the Progression of Cancer. Int J Mol Sci 2020; 21:ijms21217955. [PMID: 33114763 PMCID: PMC7663205 DOI: 10.3390/ijms21217955] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
A neoplastic tumor consists of cancer cells that interact with each other and non-cancerous cells that support the development of the cancer. One such cell are tumor-associated macrophages (TAMs). These cells secrete many chemokines into the tumor microenvironment, including especially a large amount of CCL18. This chemokine is a marker of the M2 macrophage subset; this is the reason why an increase in the production of CCL18 is associated with the immunosuppressive nature of the tumor microenvironment and an important element of cancer immune evasion. Consequently, elevated levels of CCL18 in the serum and the tumor are connected with a worse prognosis for the patient. This paper shows the importance of CCL18 in neoplastic processes. It includes a description of the signal transduction from PITPNM3 in CCL18-dependent migration, invasion, and epithelial-to-mesenchymal transition (EMT) cancer cells. The importance of CCL18 in angiogenesis has also been described. The paper also describes the effect of CCL18 on the recruitment to the cancer niche and the functioning of cells such as TAMs, regulatory T cells (Treg), cancer-associated fibroblasts (CAFs) and tumor-associated dendritic cells (TADCs). The last part of the paper describes the possibility of using CCL18 as a therapeutic target during anti-cancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Correspondence: ; Tel.: +48-717-841-354
| | - Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chałubińskiego 6a St, 50-368 Wrocław, Poland; (M.O.); (P.D.)
- Department of Physiotherapy, Wroclaw University School of Physical Education, Ignacego Jana Paderewskiego 35 Av., 51-612 Wroclaw, Poland
| |
Collapse
|
17
|
Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E, Kzhyshkowska J. Tumor-Associated Macrophages in Human Breast, Colorectal, Lung, Ovarian and Prostate Cancers. Front Oncol 2020; 10:566511. [PMID: 33194645 PMCID: PMC7642726 DOI: 10.3389/fonc.2020.566511] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major innate immune cells that constitute up to 50% of the cell mass of human tumors. TAMs are highly heterogeneous cells that originate from resident tissue-specific macrophages and from newly recruited monocytes. TAMs' variability strongly depends on cancer type, stage, and intratumor heterogeneity. Majority of TAMs are programmed by tumor microenvironment to support primary tumor growth and metastatic spread. However, TAMs can also restrict tumor growth and metastasis. In this review, we summarized the knowledge about the role of TAMs in tumor growth, metastasis and in the response to cancer therapy in patients with five aggressive types of cancer: breast, colorectal, lung, ovarian, and prostate cancers that are frequently metastasize into distant organs resulting in high mortality of the patients. Two major TAM parameters are applied for the evaluation of TAM correlation with the cancer progression: total amount of TAMs and specific phenotype of TAMs identified by functional biomarkers. We summarized the data generated in the wide range of international patient cohorts on the correlation of TAMs with clinical and pathological parameters of tumor progression including lymphatic and hematogenous metastasis, recurrence, survival, therapy efficiency. We described currently available biomarkers for TAMs that can be measured in patients' samples (tumor tissue and blood). CD68 is the major biomarker for the quantification of total TAM amounts, while transmembrane receptors (stabilin-1, CD163, CD206, CD204, MARCO) and secreted chitinase-like proteins (YKL-39, YKL-40) are used as biomarkers for the functional TAM polarization. We also considered that specific role of TAMs in tumor progression can depend on the localization in the intratumoral compartments. We have made the conclusion for the role of TAMs in primary tumor growth, metastasis, and therapy sensitivity for breast, colorectal, lung, ovarian, and prostate cancers. In contrast to other cancer types, majority of clinical studies indicate that TAMs in colorectal cancer have protective role for the patient and interfere with primary tumor growth and metastasis. The accumulated data are essential for using TAMs as biomarkers and therapeutic targets to develop cancer-specific immunotherapy and to design efficient combinations of traditional therapy and new immunomodulatory approaches.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Gulnara Tuguzbaeva
- Department of Pathophysiology, Bashkir State Medical University, Ufa, Russia
| | - Anastasia Ponomaryova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina Stakheyeva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Valentin Pavlov
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Evgeniy Choinzonov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, Mannheim, Germany
| |
Collapse
|
18
|
Chen Y, Li Y, Zheng G, Zhou P. Construction and analysis of macrophage infiltration related circRNA-miRNA-mRNA regulatory networks in hepatocellular carcinoma. PeerJ 2020; 8:e10198. [PMID: 33150086 PMCID: PMC7583625 DOI: 10.7717/peerj.10198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Macrophage play a crucial role in regulating tumor progression. This study intended to investigate the circular RNA (circRNA) regulatory network associated with macrophage infiltration in hepatocellular carcinoma (HCC). METHODS The immune cell fractions of HCC from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium were calculated by Estimation of the Proportion of Immune and Cancer cells algorithm. The differentially expressed mRNAs (DEmRNAs), microRNAs (DEmiRNAs) and circRNAs (DEcircRNAs) were identified from HCC and adjacent non-tumor cases of TCGA or Gene Expression Omnibus database. The DEmRNAs related to macrophage were selected by weighted gene co-expression network analysis and then utilized to generate the circRNA-miRNA-mRNA network. A hub circRNA regulatory network was established based on the co-expressed DEmiRNAs and DEmRNAs owning contrary correlation with the clinical characteristics, survival and macrophage infiltration level. A gene signature based on the DEmRNAs in hub network was also generated for further evaluation. The circRNA binding bite for miRNA was detected by luciferase assay. RESULTS High macrophage fraction predicted good survival for HCC. A circRNA-miRNA-mRNA network was constructed by 27 macrophage related DEmRNAs, 21 DEmiRNAs, and 15 DEcircRNAs. Among this network, the expression of hsa-miR-139-5p was negatively correlated with CDCA8, KPNA2, PRC1 or TOP2A. Hsa-miR-139-5p low or targeted DEmRNA high expression was associated with low macrophage infiltration, high grade, advanced stage and poor prognosis of HCC. Additionally, the risk score generated by 4-DEmRNA signature could reflect the macrophage infiltration status and function as an independent prognostic factor for HCC. Finally, hsa_circ_0007456 acting on hsa-miR-139-5p related network was viewed as the hub circRNA regulatory network. Taken together, some circRNA regulatory networks may be associated with macrophage infiltration, which provides clues for mechanism study and therapeutic strategies of HCC.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yalin Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guanglei Zheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Peitao Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Crezee T, Rabold K, de Jong L, Jaeger M, Netea-Maier RT. Metabolic programming of tumor associated macrophages in the context of cancer treatment. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1028. [PMID: 32953828 PMCID: PMC7475452 DOI: 10.21037/atm-20-1114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor associated macrophages (TAMs) are important components of the tumor microenvironment (TME). They are characterized by a remarkable functional plasticity, thereby mostly promoting cancer progression. Changes in immune cell metabolism are paramount for this functional adaptation. Here, we review the functional consequences of the metabolic programming of TAMs and the influence of local and systemic targeted therapies on the metabolic characteristics of the TME that shape the functional phenotype of the TAMs. Understanding these metabolic changes within the context of the cross-talk between the different components of the TME including the TAMs and the tumor cells is an essential step that can pave the way towards identifications of ways to improve responses to different treatments, to overcome resistance to treatments, tumor progression and reduce treatment-specific toxicity.
Collapse
Affiliation(s)
- Thomas Crezee
- Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Katrin Rabold
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Lisanne de Jong
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine, Division of Endocrinology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
20
|
CHI3L2 Expression Levels Are Correlated with AIF1, PECAM1, and CALB1 in the Brains of Alzheimer's Disease Patients. J Mol Neurosci 2020; 70:1598-1610. [PMID: 32705525 DOI: 10.1007/s12031-020-01667-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) represents one of the main forms of dementia that afflicts our society. The expression of several genes has been associated with disease development. Despite this, the number of genes known to be capable of discriminating between AD patients according to sex remains deficient. In our study, we performed a transcriptomes meta-analysis on a large court of brains of healthy control subjects (n = 2139) (NDHC) and brains of AD patients (n = 1170). Our aim was to verify the brain expression levels of CHI3L2 and its correlation with genes associated with microglia-mediated neuroinflammation (IBA1), alteration of the blood-brain barrier (PECAM1), and neuronal damage (CALB1). We showed that the CHI3L2, IBA1, PECAM1, and CALB1 expression levels were modulated in the brains of patients with AD compared to NDHC subjects. Furthermore, both in NDHC and in AD patient's brains, the CHI3L2 expression levels were directly correlated with IBA1 and PECAM1 and inversely with CALB1. Additionally, the expression levels of CHI3L2, PECAM1, and CALB1 but not of IBA1 were sex-depended. By stratifying the samples according to age and sex, correlation differences emerged between the expression levels of CHI3L2, IBA1, PECAM1, and CALB1 and the age of NDHC subjects and AD patients. CHI3L2 represents a promising gene potentially involved in the key processes underlying Alzheimer's disease. Its expression in the brains of sex-conditioned AD patients opens up new possible sex therapeutic strategies aimed at controlling imbalance in disease progression.
Collapse
|
21
|
Gaur N, Perner C, Witte OW, Grosskreutz J. The Chitinases as Biomarkers for Amyotrophic Lateral Sclerosis: Signals From the CNS and Beyond. Front Neurol 2020; 11:377. [PMID: 32536900 PMCID: PMC7267218 DOI: 10.3389/fneur.2020.00377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative condition, most widely characterized by the selective vulnerability of motor neurons and the poor life expectancy of afflicted patients. Limited disease-modifying therapies currently exist, which only further attests to the substantial heterogeneity associated with this disease. In addition to established prognostic factors like genetic background, site of onset, and age at onset, wide consensus on the role of neuroinflammation as a disease exacerbator and driver has been established. In lieu of this, the emerging literature on chitinases in ALS is particularly intriguing. Individual groups have reported substantially elevated chitotriosidase (CHIT1), chitinase-3-like-1 (CHI3L1), and chitinase-3-like-2 (CHI3L2) levels in the cerebrospinal, motor cortex, and spinal cord of ALS patients with multiple—and often conflicting—lines of evidence hinting at possible links to disease severity and progression. This mini-review, while not exhaustive, will aim to discuss current evidence on the involvement of key chitinases in ALS within the wider framework of other neurodegenerative conditions. Implications for understanding disease etiology, developing immunomodulatory therapies and biomarkers, and other translational opportunities will be considered.
Collapse
Affiliation(s)
- Nayana Gaur
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Caroline Perner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA, United States
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Jena Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,Jena Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
22
|
Teixeira AAS, Biondo LA, Silveira LS, Lima EA, Batatinha HA, Diniz TA, Oliveira De Souza C, Comin J, Neto JCR. Doxorubicin modulated clock genes and cytokines in macrophages extracted from tumor-bearing mice. Cancer Biol Ther 2020; 21:344-353. [PMID: 31931676 PMCID: PMC7515505 DOI: 10.1080/15384047.2019.1702400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythm is essential for cellular regulation of physiological, metabolic, and immune functions. Perturbations of circadian rhythms have been correlated with increased susceptibility to cancer and poor prognosis in the cancer treatment. Our aim is to investigate the role of doxorubicin (DOX) treatment on clock genes expression and inflammation in intraperitoneal macrophages and the antitumoral response. Methods: Macrophages were extracted from intraperitoneal cavity of mice without or with Lewis lung carcinoma (LLC) and treated with DOX totaling four groups (CTL, LLC, LLC+DOX and DOX) and analyzes of clock genes in six time points (ZT02, ZT06, ZT10, ZT14, ZT18 AND ZT22). Intraperitoneal macrophages cell culture was stimulated with LPS and DOX and clock genes and inflammatory profile were analyzed. In tumor were analyzed macrophages markers. Results: The expression of F4/80 (ZT22) and CD11c (ZT06) tumor tissue was significantly differed between LLC and LCC+DOX groups. In the intraperitoneal macrophages, DOX increased Clock (ZT10), Rev-Erbα (ZT18 and ZT22) and Per2 expressions (ZT18); in the LLC+DOX group was increased Bmal1 (ZT10), Per2 (ZT18) and NF-kB (ZT22) expressions; IL-6 expression increased in the LCC group (ZT02). In intraperitoneal macrophages cell culture stimulated with DOX and LPS after 24 h decreased Clock and Per1. DOX causes depression after 6 and 24 h in TNF-α content and Per2 gene expression after 24 h IL-1β expression was reduced also. Conclusion: DOX treatment in vivo disrupted cytokine and clock genes expression in intraperitoneal macrophages suppressing immune response. Moreover, macrophages cultured with DOX had decreased expression of LPS-stimulated inflammatory cytokines.
Collapse
Affiliation(s)
| | | | - Loreana S Silveira
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | - Edson A Lima
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | - Helena A Batatinha
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | - Tiego A Diniz
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | | | - Jeferson Comin
- Institute of BiomedicalSciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
23
|
Perelmuter VM, Tashireva LA, Savelieva OE, Denisov EV, Kaigorodova EV, Zavyalova MV, Cherdyntseva NV. Mechanisms behind prometastatic changes induced by neoadjuvant chemotherapy in the breast cancer microenvironment. BREAST CANCER-TARGETS AND THERAPY 2019; 11:209-219. [PMID: 31308736 PMCID: PMC6616300 DOI: 10.2147/bctt.s175161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Chemotherapy, along with surgery and radiotherapy, is a key treatment option for malignant tumors. Neoadjuvant chemotherapy (NACT) reduces the tumor size and enables total tumor resection. In addition, NACT is believed to be more effective in destroying micrometastases than the same chemotherapy performed after surgery. To date, various NACT regimens have been tested and implemented, which provide a favorable outcome in primary tumors and reduce the risk of progression. However, there is increasing evidence of the NACT ability to increase the risk of cancer progression. This review discusses potential mechanisms by which NACT promotes distant metastasis of breast cancer through changes in the microenvironment of tumor cells. We describe prometastatic NACT-mediated changes in angiogenesis, immuno-inflammatory reactions in the stroma, intravasation, and amount of circulating tumor cells. The role of NACT-related cellular stress in cancer metastasis is also discussed.
Collapse
Affiliation(s)
- Vladimir M Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Liubov A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Olga E Savelieva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia
| | - Evgeny V Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia
| | - Evgeniya V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Department of Biochemistry, Siberian State Medical University, Tomsk 634055, Russia
| | - Marina V Zavyalova
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Department of Pathological Anatomy, Siberian State Medical University, Tomsk 634055, Russia
| | - Nadezhda V Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk 634050, Russia.,Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia
| |
Collapse
|
24
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019. [PMID: 31143517 DOI: 10.1080/2162402x.2019.1596004] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
25
|
Little AC, Pathanjeli P, Wu Z, Bao L, Goo LE, Yates JA, Oliver CR, Soellner MB, Merajver SD. IL-4/IL-13 Stimulated Macrophages Enhance Breast Cancer Invasion Via Rho-GTPase Regulation of Synergistic VEGF/CCL-18 Signaling. Front Oncol 2019; 9:456. [PMID: 31214501 PMCID: PMC6554436 DOI: 10.3389/fonc.2019.00456] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/14/2019] [Indexed: 01/16/2023] Open
Abstract
Tumor associated macrophages (TAMs) are increasingly recognized as major contributors to the metastatic progression of breast cancer and enriched levels of TAMs often correlate with poor prognosis. Despite our current advances it remains unclear which subset of M2-like macrophages have the highest capacity to enhance the metastatic program and which mechanisms regulate this process. Effective targeting of macrophages that aid cancer progression requires knowledge of the specific mechanisms underlying their pro-metastatic actions, as to avoid the anticipated toxicities from generalized targeting of macrophages. To this end, we set out to understand the relationship between the regulation of tumor secretions by Rho-GTPases, which were previously demonstrated to affect them, macrophage differentiation, and the converse influence of macrophages on cancer cell phenotype. Our data show that IL-4/IL-13 in vitro differentiated M2a macrophages significantly increase migratory and invasive potential of breast cancer cells at a greater rate than M2b or M2c macrophages. Our previous work demonstrated that the Rho-GTPases are potent regulators of macrophage-induced migratory responses; therefore, we examined M2a-mediated responses in RhoA or RhoC knockout breast cancer cell models. We find that both RhoA and RhoC regulate migration and invasion in MDA-MB-231 and SUM-149 cells following stimulation with M2a conditioned media. Secretome analysis of M2a conditioned media reveals high levels of vascular endothelial growth factor (VEGF) and chemokine (C-C motif) ligand 18 (CCL-18). Results from our functional assays reveal that M2a TAMs synergistically utilize VEGF and CCL-18 to promote migratory and invasive responses. Lastly, we show that pretreatment with ROCK inhibitors Y-276332 or GSK42986A attenuated VEGF/CCL-18 and M2a-induced migration and invasion. These results support Rho-GTPase signaling regulates downstream responses induced by TAMs, offering a novel approach for the prevention of breast cancer metastasis by anti-RhoA/C therapies.
Collapse
Affiliation(s)
- Andrew C. Little
- Department of Internal Medicine, Hematology-Oncology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | | | | | | | | | | | | | | | - Sofia D. Merajver
- Department of Internal Medicine, Hematology-Oncology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
26
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology 2019; 8:1596004. [PMID: 31143517 PMCID: PMC6527283 DOI: 10.1080/2162402x.2019.1596004] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/17/2019] [Accepted: 03/09/2019] [Indexed: 02/08/2023] Open
Abstract
It has been recently recognized that the tumor microenvironment (TME) is an essential factor that defines the efficiency of chemotherapy. The local TME, consisting of immune cells with diverse phenotypes and functions, can strongly modulate the response to chemotherapy. Tumor-associated macrophages (TAMs) that display pronounced heterogeneity and phenotypic plasticity are the major innate immune component in the microenvironment of solid tumors. In our review, we elucidate the complex role of TAMs in the progression of different types of solid tumors, summarize the current knowledge about the effects of different anticancer chemotherapeutic agents on monocytes/macrophages, and describe the mechanisms of chemotherapy resistance mediated by TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Nadezhda Cherdyntseva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Tengfei Liu
- Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Marina Patysheva
- laboratory of molecular oncology and immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia.,Department of Innate Immunity and Tolerance, University of Heidelberg, Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
27
|
Qin Y, Wang J, Zhu G, Li G, Tan H, Chen C, Pi L, She L, Chen X, Wei M, Li Z, Liu Z, Huang D, Liu Y, Zhang X. CCL18 promotes the metastasis of squamous cell carcinoma of the head and neck through MTDH-NF-κB signalling pathway. J Cell Mol Med 2019; 23:2689-2701. [PMID: 30768878 PMCID: PMC6433669 DOI: 10.1111/jcmm.14168] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023] Open
Abstract
Metastasis is one of the primary causes for high mortality in patients with squamous cell carcinoma of the head and neck (SCCHN). Our previous study showed that chemokine (C‐C motif) ligand 18 (CCL18), derived from tumour‐associated macrophages (TAMs), regulates SCCHN metastasis by promoting epithelial‐mesenchymal transition (EMT) and preserving stemness. However, the underlying mechanism needs to be further investigation. Interestingly, metadherin (MTDH) expression was induced when SCCHN cells were stimulated with recombinant CCL18 protein in this study. Suppressing MTDH expression reversed CCL18‐induced migration, invasion and EMT in SCCHN cells. Furthermore, the NF‐κB signalling pathway was involved in the MTDH knock‐down cells with CCL18 stimulation. We performed ELISA to evaluate the CCL18 levels in the serums of 132 treatment‐naive SCCHN patients, 25 patients with precancerous lesion and 32 healthy donors. Our results demonstrated that serum CCL18 levels were significantly higher in SCCHN patients than patients with precancerous lesion and healthy individuals. CCL18 levels were found to be significantly correlated with tumour classification, clinical stage, lymph node metastasis and histological grade in SCCHN patients. Thus, our findings suggest that CCL18 may serve as a potential biomarker for diagnosis of SCCHN and promote SCCHN invasion, migration and EMT by MTDH‐NF‐κB signalling pathway.
Collapse
Affiliation(s)
- Yuexiang Qin
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China.,Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Juncheng Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Gangcai Zhu
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Haolei Tan
- Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, People's Republic of China
| | - Changhan Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Leiming Pi
- Department of Otolaryngology Head and Neck Surgery, Zhuzhou Central Hospital, Zhuzhou, Hunan, People's Republic of China
| | - Li She
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Xiyu Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Ming Wei
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Zhexuan Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Zhifeng Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, People's Republic of China
| |
Collapse
|