1
|
Li D, Cai S, Wang P, Cheng H, Cheng B, Zhang Y, Liu G. Innovative Design Strategies Advance Biomedical Applications of Phthalocyanines. Adv Healthc Mater 2023; 12:e2300263. [PMID: 37039069 DOI: 10.1002/adhm.202300263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Owing to their long absorption wavelengths, high molar absorptivity, and tunable photosensitivity, phthalocyanines have been widely used in photodynamic therapy (PDT). However, phthalocyanines still face the drawbacks of poor targeting, "always-on" photosensitizing properties, and unsatisfactory therapeutic efficiency, which limit their wide applications in biomedical fields. Thus, new design strategies such as modification of targeting molecules, formation of nanoparticles, and activating photosensitizers are developed to improve the above defects. Notably, recent studies have shown that novel phthalocyanines are not only used in fluorescence imaging and PDT, but also in photoacoustic imaging, photothermal imaging, sonodynamic therapy, and photothermal therapy. This review focuses on recent design strategies, applications in biomedicine, and clinical development of phthalocyanines, providing ideas and references for the design and application of phthalocyanine, so as to promote their future transformation into clinical applications.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shundong Cai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Peiyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bingwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Wang G, Yang L, Jiang L, Chen J, Jing Q, Mai Y, Deng L, Lin Y, Chen L, Chen Z, Xu P, Jiang L, Yuan C, Huang M. A new class of quaternary ammonium compounds as potent and environmental friendly disinfectants. JOURNAL OF CLEANER PRODUCTION 2022; 379:134632. [PMID: 36246409 PMCID: PMC9552062 DOI: 10.1016/j.jclepro.2022.134632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 05/21/2023]
Abstract
Quaternary ammonium compounds (QACs) are inexpensive and readily available disinfectants, and have been widely used, especially since the COVID-19 outbreak. The toxicity of QACs to humans has raised increasing concerns in recent years. Here, a new type of QACs was synthesized by replacing the alkyl chain with zinc phthalocyanine (ZnPc), which consists of a large aromatic ring and is hydrophobic in nature, similar to the alkyl chain of QACs. Three ZnPc-containing disinfectants were synthesized and fully characterized. These compounds showed 15-16 fold higher antimicrobial effect against Gram-negative bacteria than the well-known QACs with half-maximal inhibitory (IC50) values of 1.43 μM, 2.70 μM, and 1.31 μM, respectively. With the assistance of 680 nm light, compounds 4 and 6 had much higher bactericidal toxicities at nanomolar concentrations. Compound 6 had a bactericidal efficacy of close to 6 logs (99.9999% kill rate) at 1 μM to Gram-positive bacteria, including MRSA, under light illumination. Besides, these compounds were safe for mammalian cells. In a mouse model, compound 6 was effective in healing wound infection. Importantly, compound 6 was easily degraded at working concentrations under sunlight illumination, and is environmentally friendly. Thus, compound 6 is a novel and promising disinfectant.
Collapse
Affiliation(s)
- Guodong Wang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Ling Yang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Libin Jiang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Jingyi Chen
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Qian Jing
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yuhan Mai
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Lina Deng
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yuxin Lin
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Liyun Chen
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Zheng Chen
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| |
Collapse
|
3
|
Yu S, Sun G, Sui Y, Li H, Mai Y, Wang G, Zhang N, Bi Y, Gao GF, Xu P, Jiang L, Yuan C, Yang Y, Huang M. Potent inhibition of Severe Acute Respiratory Syndrome Coronavirus 2 by photosensitizers compounds. DYES AND PIGMENTS : AN INTERNATIONAL JOURNAL 2021; 194:109570. [PMID: 34183871 PMCID: PMC8216852 DOI: 10.1016/j.dyepig.2021.109570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 05/30/2023]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) posed a major challenge to the public health. Currently, no proven antiviral treatment for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is available. Here we report compounds pentalysine β-carbonylphthalocyanine zinc (ZnPc5K) and chlorin e6 (ce6) potently inhibited the viral infection and replication in vitro with EC50 values at nanomolar level. These compounds were first identified by screening a panel of photosensitizers for photodynamic viral inactivation. Such viral inactivation strategy is implementable, and has unique advantages, including resistance to virus mutations, affordability compared to the monoclonal antibodies, and lack of long-term toxicity.
Collapse
Affiliation(s)
- Shujuan Yu
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Gaohui Sun
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yaqun Sui
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Hanlin Li
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yuhan Mai
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Guodong Wang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Ning Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| |
Collapse
|
4
|
Blood distribution and plasma protein binding of PHOTOCYANINE: a promising phthalocyanine photosensitizer inphaseⅡ clinical trials. Eur J Pharm Sci 2020; 153:105491. [PMID: 32726646 DOI: 10.1016/j.ejps.2020.105491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 12/30/2022]
Abstract
Blood distribution and plasma protein binding are the important properties that can influence pharmacokinetics and ultimately the anticancer efficacy of photosensitizers in clinical photodynamic therapy. As a novel and promising phthalocyanine photosensitizer under clinical phase Ⅱ investigation in China, the superiority of PHOCYANINE is speculated on its attribution to its binding with plasma proteins. To verify this hypothesis, explore the targeting mechanism and further apply foundation for its clinical trial evaluation, we further study its in vitro and in vivo human blood distribution, in vitro plasma protein and lipoprotein binding in detail. PHOTOCYANINE was found to be mainly distributed in plasma with low KBP and KEP values. Moreover, its high binding rates to plasma proteins among various species (mouse, rat, dog, monkey, and human) were then determined. Among these plasma proteins, human serum albumin and α1-acid-glycoprotein were found to bind PHOTOCYANINE highly, and low-density lipoproteins have the highest percentage of PHOTOCYANINE over other lipoproteins. This study is expected to provide some guidance for PDT clinical evaluations and for further molecular design and development of photosensitizers.
Collapse
|