1
|
Liu Y, Meng Y, Zhang J, Gu L, Shen S, Zhu Y, Wang J. Pharmacology Progresses and Applications of Chloroquine in Cancer Therapy. Int J Nanomedicine 2024; 19:6777-6809. [PMID: 38983131 PMCID: PMC11232884 DOI: 10.2147/ijn.s458910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Department of Pharmacological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| |
Collapse
|
2
|
Agalakova NI. Chloroquine and Chemotherapeutic Compounds in Experimental Cancer Treatment. Int J Mol Sci 2024; 25:945. [PMID: 38256019 PMCID: PMC10815352 DOI: 10.3390/ijms25020945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Chloroquine (CQ) and its derivate hydroxychloroquine (HCQ), the compounds with recognized ability to suppress autophagy, have been tested in experimental works and in clinical trials as adjuvant therapy for the treatment of tumors of different origin to increase the efficacy of cytotoxic agents. Such a strategy can be effective in overcoming the resistance of cancer cells to standard chemotherapy or anti-angiogenic therapy. This review presents the results of the combined application of CQ/HCQ with conventional chemotherapy drugs (doxorubicin, paclitaxel, platinum-based compounds, gemcitabine, tyrosine kinases and PI3K/Akt/mTOR inhibitors, and other agents) for the treatment of different malignancies obtained in experiments on cultured cancer cells, animal xenografts models, and in a few clinical trials. The effects of such an approach on the viability of cancer cells or tumor growth, as well as autophagy-dependent and -independent molecular mechanisms underlying cellular responses of cancer cells to CQ/HCQ, are summarized. Although the majority of experimental in vitro and in vivo studies have shown that CQ/HCQ can effectively sensitize cancer cells to cytotoxic agents and increase the potential of chemotherapy, the results of clinical trials are often inconsistent. Nevertheless, the pharmacological suppression of autophagy remains a promising tool for increasing the efficacy of standard chemotherapy, and the development of more specific inhibitors is required.
Collapse
Affiliation(s)
- Natalia I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, Saint-Petersburg 194223, Russia
| |
Collapse
|
3
|
Rashidzadeh H, Ramazani A, Tabatabaei Rezaei SJ, Danafar H, Rahmani S, Veisi H, Rajaeinejad M, Jamalpoor Z, Hami Z. Targeted co-delivery of methotrexate and chloroquine via a pH/enzyme-responsive biocompatible polymeric nanohydrogel for colorectal cancer treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1824-1842. [PMID: 36869798 DOI: 10.1080/09205063.2023.2187986] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023]
Abstract
Application of conventional chemotherapy regardless of its unique effectiveness have been gradually being edged aside due to limited targeting capability, lack of selectivity and chemotherapy-associated side effects. To this end, colon-targeted nanoparticles via combination therapy have shown great therapeutic potential against cancer. Herein, pH/enzyme-responsive biocompatible polymeric nanohydrogels based on poly(methacrylic acid) (PMAA) containing methotrexate (MTX) and chloroquine (CQ) were fabricated. PMAA-MTX-CQ exhibited high drug loading capacity of which MTX was 4.99% and was CQ 25.01% and displayed pH/enzyme-triggered drug release behavior. Higher CQ release rate (76%) under simulated acidic microenvironment of tumor tissue whereas 39% of CQ was released under normal physiological conditions. Intestinally, MTX release was facilitated in the presence of proteinase K enzyme. TEM image demonstrated spherical morphology with particle size of less than 50 nm. In vitro and in vivo toxicity assessments indicated that developed nanoplatforms possessed great biocompatibility. These nanohydrogels did not cause any adverse effects against Artemia Salina and HFF2 cells (around 100% cell viability) which highlight the safety of prepared nanohydrogels. There was no death in mice received different concentrations of nanohydrogel through oral administration and less than 5% hemolysis was found in red blood cells incubated with PMAA nanohydrogels. In vitro anti-cancer results showed that combination therapy based on PMAA-MTX-CQ can effectively suppress the growth of SW480 colon cancer cells (29% cell viability) compared to monotherapy. Altogether, these findings suggest that pH/enzyme-responsive PMAA-MTX-CQ could effectively inhibit cancer cell growth and progression via site-specific delivery of its cargo in a safe and controlled manner.
Collapse
Affiliation(s)
- Hamid Rashidzadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Jamal Tabatabaei Rezaei
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shayan Rahmani
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Hassan Veisi
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Zahra Hami
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sun Y, Li X, Cheng H, Wang S, Zhou D, Ding J, Ma F. Drug resistance and new therapies in gallbladder cancer. Drug Discov Ther 2023; 17:220-229. [PMID: 37587052 DOI: 10.5582/ddt.2023.01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignancy, which poses significant challenges for timely diagnosis, resulting in a dismal prognosis. Chemotherapy serves as a primary treatment option in cases where surgery is not feasible. However, the emergence of chemoresistance poses a significant challenge to the effectiveness of chemotherapy, ultimately resulting in a poor prognosis. Despite extensive research on mechanisms of chemotherapeutic resistance in oncology, the underlying mechanisms of chemoresistance in GBC remain poorly understood. In this review, we present the findings from the last decade on the molecular mechanisms of chemotherapeutic resistance in GBC. We hope that these insights may provide novel therapeutic and experimental targets for further investigations into this lethal disease.
Collapse
Affiliation(s)
- Yuxin Sun
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxuan Li
- Qingdao University, Qingdao, Shandong, China
| | - Haihong Cheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ding
- Department of Biliary and Pancreatic Surgery, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Ma
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
5
|
Lai J, Yang S, Lin Z, Huang W, Li X, Li R, Tan J, Wang W. Update on Chemoresistance Mechanisms to First-Line Chemotherapy for Gallbladder Cancer and Potential Reversal Strategies. Am J Clin Oncol 2023; 46:131-141. [PMID: 36867653 PMCID: PMC10030176 DOI: 10.1097/coc.0000000000000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
OBJECTIVE Gallbladder cancer (GBC) mortality remains high and chemoresistance is increasing. This review consolidates what is known about the mechanisms of chemoresistance to inform and accelerate the development of novel GBC-specific chemotherapies. METHODS Studies related to GBC-related chemoresistance were systematically screened in PubMed using the advanced search function. Search terms included GBC, chemotherapy, and signaling pathway. RESULTS Analysis of existing studies showed that GBC has poor sensitivity to cisplatin, gemcitabine (GEM), and 5-fluorouracil. DNA damage repair-related proteins, including CHK1, V-SCR, and H2AX, are involved in tumor adaptation to drugs. GBC-specific chemoresistance is often accompanied by changes in the apoptosis and autophagy-related molecules, BCL-2, CRT, and GBCDRlnc1. CD44 + and CD133 + GBC cells are less resistant to GEM, indicating that tumor stem cells are also involved in chemoresistance. In addition, glucose metabolism, fat synthesis, and glutathione metabolism can influence the development of drug resistance. Finally, chemosensitizers such as lovastatin, tamoxifen, chloroquine, and verapamil are able improve the therapeutic effect of cisplatin or GEM in GBC. CONCLUSIONS This review summarizes recent experimental and clinical studies of the molecular mechanisms of chemoresistance, including autophagy, DNA damage, tumor stem cells, mitochondrial function, and metabolism, in GBC. Information on potential chemosensitizers is also discussed. The proposed strategies to reverse chemoresistance should inform the clinical use of chemosensitizers and gene-based targeted therapy for this disease.
Collapse
Affiliation(s)
- Jinbao Lai
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Songlin Yang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Zhuying Lin
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Wenwen Huang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Xiao Li
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Ruhong Li
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Jing Tan
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| | - Wenju Wang
- Yan’an Affiliated Hospital of Kunming Medical University
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province
- Kunming Key Laboratory of Biotherapy, Kunming, Yunnan, China
| |
Collapse
|
6
|
Taheriazam A, Abad GGY, Hajimazdarany S, Imani MH, Ziaolhagh S, Zandieh MA, Bayanzadeh SD, Mirzaei S, Hamblin MR, Entezari M, Aref AR, Zarrabi A, Ertas YN, Ren J, Rajabi R, Paskeh MDA, Hashemi M, Hushmandi K. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J Control Release 2023; 354:503-522. [PMID: 36641122 DOI: 10.1016/j.jconrel.2023.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mechanical strength, and the capacity for surface modification. These nanostructures have been extensively used in cancer therapy for drug and gene delivery, photothermal therapy, overcoming chemotherapy resistance, and for imaging procedures. In the current review, we focus on the biological functions of GO nanoparticles as regulators of apoptosis and autophagy, the two major forms of programmed cell death. GO nanoparticles can either induce or inhibit autophagy in cancer cells, depending on the conditions. By stimulating autophagy, GO nanocarriers can promote the sensitivity of cancer cells to chemotherapy. However, by impairing autophagy flux, GO nanoparticles can reduce cell survival and enhance inflammation. Similarly, GO nanomaterials can increase ROS production and induce DNA damage, thereby sensitizing cancer cells to apoptosis. In vitro and in vivo experiments have investigated whether GO nanomaterials show any toxicity in major body organs, such as the brain, liver, spleen, and heart. Molecular pathways, such as ATG, MAPK, JNK, and Akt, can be regulated by GO nanomaterials, leading to effects on autophagy and apoptosis. These topics are discussed in this review to shed some lights towards the biomedical potential of GO nanoparticles and their biocompatibility, paving the way for their future application in clinical trials.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Yao J, Ma C, Feng K, Tan G, Wen Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022; 12:1565. [PMID: 36358919 PMCID: PMC9687214 DOI: 10.3390/biom12111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a critical cellular adaptive response in tumor formation. Nutritional deficiency and hypoxia exacerbate autophagic flux in established malignancies, promoting tumor cell proliferation, migration, metastasis, and resistance to therapeutic interventions. Pro-survival autophagy inhibition may be a promising treatment option for advanced cancer. Furthermore, excessive or persistent autophagy is cytotoxic, resulting in tumor cell death. Targeted autophagy activation has also shown significant promise in the fight against tumor drug resistance. Several research groups have examined the ability of natural products (NPs) such as alkaloids, terpenoids, polyphenols, and anthraquinones to serve as autophagy inhibitors or activators. The data support the capacity of NPs that promote lethal autophagy or inhibit pro-survival autophagy from being employed against tumor drug resistance. This paper discusses the potential applications of NPs that regulate autophagy in the fight against tumor drug resistance, some limitations of the current studies, and future research needs and priorities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kaixuan Feng
- Department of Anesthesiology, The Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
8
|
Zhang L, Zhu Y, Zhang J, Zhang L, Chen L. Inhibiting Cytoprotective Autophagy in Cancer Therapy: An Update on Pharmacological Small-Molecule Compounds. Front Pharmacol 2022; 13:966012. [PMID: 36034776 PMCID: PMC9403721 DOI: 10.3389/fphar.2022.966012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Autophagy is a self-degradation process in which damaged proteins and organelles are engulfed into autophagosomes for digestion and eventually recycled for cellular metabolism to maintain intracellular homeostasis. Accumulating studies have reported that autophagy has the Janus role in cancer as a tumor suppressor or an oncogenic role to promote the growth of established tumors and developing drug resistance. Importantly, cytoprotective autophagy plays a prominent role in many types of human cancers, thus inhibiting autophagy, and has been regarded as a promising therapeutic strategy for cancer therapy. Here, we focus on summarizing small-molecule compounds inhibiting the autophagy process, as well as further discuss other dual-target small-molecule compounds, combination strategies, and other strategies to improve potential cancer therapy. Therefore, these findings will shed new light on exploiting more small-molecule compounds inhibiting cytoprotective autophagy as candidate drugs for fighting human cancers in the future.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiahui Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
- *Correspondence: Lan Zhang, ; Lu Chen,
| | - Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Lan Zhang, ; Lu Chen,
| |
Collapse
|
9
|
Jiao J, Xiao F, Wang C, Zhang Z. Iodine-Promoted Metal-Free Cyclization and O/S Exchange of Acrylamides with Thiuram: One-Step Synthesis of Quinolino-2-thiones. J Org Chem 2022; 87:4965-4970. [DOI: 10.1021/acs.joc.1c03030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jing Jiao
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fangtao Xiao
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Cheng Wang
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhipeng Zhang
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
10
|
Wang Y, Du J, Wu X, Abdelrehem A, Ren Y, Liu C, Zhou X, Wang S. Crosstalk between autophagy and microbiota in cancer progression. Mol Cancer 2021; 20:163. [PMID: 34895252 PMCID: PMC8665582 DOI: 10.1186/s12943-021-01461-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved catabolic process seen in eukaryotes and is essentially a lysosome-dependent protein degradation pathway. The dysregulation of autophagy is often associated with the pathogenesis of numerous types of cancers, and can not only promote the survival of cancer but also trigger the tumor cell death. During cancer development, the microbial community might predispose cells to tumorigenesis by promoting mucosal inflammation, causing systemic disorders, and may also regulate the immune response to cancer. The complex relationship between autophagy and microorganisms can protect the body by activating the immune system. In addition, autophagy and microorganisms can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses involved in cancer progression. Various molecular mechanisms, correlating the microbiota disorders and autophagy activation, control the outcomes of protumor or antitumor responses, which depend on the cancer type, tumor microenvironment and disease stage. In this review, we mainly emphasize the leading role of autophagy during the interaction between pathogenic microorganisms and human cancers and investigate the various molecular mechanisms by which autophagy modulates such complicated biological processes. Moreover, we also highlight the possibility of curing cancers with multiple molecular agents targeting the microbiota/autophagy axis. Finally, we summarize the emerging clinical trials investigating the therapeutic potential of targeting either autophagy or microbiota as anticancer strategies, although the crosstalk between them has not been explored thoroughly.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Jiang Du
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| | - Ahmed Abdelrehem
- Department of Craniomaxillofacial and Plastic Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070 China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| |
Collapse
|
11
|
Lu S, Gao J, Jia H, Li Y, Duan Y, Song F, Liu Z, Ma S, Wang M, Zhao T, Zhong J. PD-1-siRNA Delivered by Attenuated Salmonella Enhances the Antitumor Effect of Chloroquine in Colon Cancer. Front Immunol 2021; 12:707991. [PMID: 34295341 PMCID: PMC8290856 DOI: 10.3389/fimmu.2021.707991] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
The widespread appearance of drug tolerance and the low efficiency of single treatment have severely affected the survival time of the patients with colorectal cancer. Exploring new treatment options and combined treatment strategies have become the key to improving the prognosis. The combination of immunotherapy and chemotherapy have shown good clinical expectations. Here, we studied the cooperative effects of chloroquine, an anti-malarial drug that is now widely used in anti-tumor research, and RNA interference (RNAi) targeting the immune checkpoint molecule Programmed Death-1 (PD-1) delivered with attenuated Salmonella. Our results show that chloroquine can not only significantly inhibit the survival of colon cancer cells and induce apoptosis, but also effectively inhibit cell invasion and migration. The results of in vivo experiments show that chloroquine can increase the expression of PD-1 in tumor tissues. Combining chloroquine and PD-1 siRNA can further inhibit the growth and metastases of colon cancer and induce apoptosis. The mechanism underlying this phenomenon is the occurrence of chloroquine-induced apoptosis and the effective immune response caused by the attenuated Salmonella carrying PD-1 siRNA. This study suggests that the combined application of PD-1-based immunotherapy and anti-cancer drugs has become a new expectation for clinical treatment of colorectal cancer.
Collapse
Affiliation(s)
- Shuya Lu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Jianhui Gao
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Huijie Jia
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Yang Li
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Yongbin Duan
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Fuyang Song
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Zhiang Liu
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Shuai Ma
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Mingyong Wang
- Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Tiesuo Zhao
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Jiateng Zhong
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
- Laboratory of Molecular Biology of Tumor Reversal, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|