1
|
El-Serafi I, Steele S. Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics. Adv Pharmacol Pharm Sci 2024; 2024:4862706. [PMID: 38966316 PMCID: PMC11223907 DOI: 10.1155/2024/4862706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cyclophosphamide (Cy) is a prodrug that is mainly bioactivated by cytochrome P450 (CYP) 2B6 enzyme. Several other enzymes are also involved in its bioactivation and affect its kinetics. Previous studies have shown the effect of the enzymes' genetic polymorphisms on Cy kinetics and its clinical outcome. These results were controversial primarily because of the involvement of several interacting enzymes in the Cy metabolic pathway, which can also be affected by several clinical factors as well as other drug interactions. In this review article, we present the effect of CYP2B6 polymorphisms on Cy kinetics since it is the main bioactivating enzyme, as well as discussing all previously reported enzymes and clinical factors that can alter Cy efficacy. Additionally, we present explanations for key Cy side effects related to the nature and site of its bioactivation. Finally, we discuss the role of busulphan in conditioning regimens in the Cy metabolic pathway as a clinical example of drug-drug interactions involving several enzymes. By the end of this article, our aim is to have provided a comprehensive summary of Cy pharmacogenomics and the effect on its kinetics. The utility of these findings in the development of new strategies for Cy personalized patient dose adjustment will aid in the future optimization of patient specific Cy dosages and ultimately in improving clinical outcomes. In conclusion, CYP2B6 and several other enzyme polymorphisms can alter Cy kinetics and consequently the clinical outcomes. However, the precise quantification of Cy kinetics in any individual patient is complex as it is clearly under multifactorial genetic control. Additionally, other clinical factors such as the patient's age, diagnosis, concomitant medications, and clinical status should also be considered.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Basic Medical Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
- Department of Hand Surgery, and Plastic Surgery and BurnsLinköping University Hospital, Linkoöping, Sweden
| | - Sinclair Steele
- Pathological Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
| |
Collapse
|
2
|
Stenta T, Assis M, Ayers K, Tucker EJ, Halman A, Gook D, Sinclair AH, Elliott DA, Jayasinghe Y, Conyers R. Pharmacogenomic studies of fertility outcomes in pediatric cancer survivors - A systematic review. Clin Transl Sci 2024; 17:e13827. [PMID: 38924306 PMCID: PMC11199333 DOI: 10.1111/cts.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024] Open
Abstract
For the same age, sex, and dosage, there can be significant variation in fertility outcomes in childhood cancer survivors. Genetics may explain this variation. This study aims to: (i) review the genetic contributions to infertility, (ii) search for pharmacogenomic studies looking at interactions of cancer treatment, genetic predisposition and fertility-related outcomes. Systematic searches in MEDLINE Ovid, Embase Classic+Embase, and PubMed were conducted using the following selection criteria: (i) pediatric, adolescent, and young adult cancer survivors, below 25 years old at the time of diagnosis, (ii) fertility outcome measures after cancer therapy, (iii) genetic considerations. Studies were excluded if they were (i) conducted in animal models, (ii) were not published in English, (iii) editorial letters, (iv) theses. Articles were screened in Covidence by at least two independent reviewers, followed by data extraction and a risk of bias assessment using the Quality in Prognostic Studies tool. Eight articles were reviewed with a total of 29 genes. Outcome measures included sperm concentration, azoospermia, AMH levels, assessment of premature menopause, ever being pregnant or siring a pregnancy. Three studies included replication cohorts, which attempted replication of SNP findings for NPY2R, BRSK1, FANCI, CYP2C19, CYP3A4, and CYP2B6. Six studies were rated with a high risk of bias. Differing methods may explain a lack of replication, and small cohorts may have contributed to few significant findings. Larger, prospective longitudinal studies with an unbiased genome-wide focus will be important to replicate significant results, which can be applied clinically.
Collapse
Affiliation(s)
- Tayla Stenta
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Michael Assis
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of Obstetrics, Gynaecology and Newborn HealthRoyal Women's Hospital, University of MelbourneParkvilleVictoriaAustralia
| | - Katie Ayers
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Reproductive DevelopmentMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Elena J. Tucker
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Reproductive DevelopmentMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Andreas Halman
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Debra Gook
- Department of Obstetrics, Gynaecology and Newborn HealthRoyal Women's Hospital, University of MelbourneParkvilleVictoriaAustralia
- Gynaecology, Royal Children‘s HospitalParkvilleVictoriaAustralia
- Reproductive Services, The Royal Women's HospitalParkvilleVictoriaAustralia
| | - Andrew H. Sinclair
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Reproductive DevelopmentMurdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - David A. Elliott
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Yasmin Jayasinghe
- Department of Obstetrics, Gynaecology and Newborn HealthRoyal Women's Hospital, University of MelbourneParkvilleVictoriaAustralia
- Gynaecology, Royal Children‘s HospitalParkvilleVictoriaAustralia
| | - Rachel Conyers
- Cancer Therapies, Stem Cell MedicineMurdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
- Children's Cancer Centre, The Royal Children's HospitalParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Bono A, La Monica G, Alamia F, Mingoia F, Gentile C, Peri D, Lauria A, Martorana A. In Silico Mixed Ligand/Structure-Based Design of New CDK-1/PARP-1 Dual Inhibitors as Anti-Breast Cancer Agents. Int J Mol Sci 2023; 24:13769. [PMID: 37762072 PMCID: PMC10531453 DOI: 10.3390/ijms241813769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
CDK-1 and PARP-1 play crucial roles in breast cancer progression. Compounds acting as CDK-1 and/or PARP-1 inhibitors can induct cell death in breast cancer with a selective synthetic lethality mechanism. A mixed treatment by means of CDK-1 and PARP-1 inhibitors resulted in radical breast cancer cell growth reduction. Inhibitors with a dual target mechanism of action could arrest cancer progression by simultaneously blocking the DNA repair mechanism and cell cycle, resulting in advantageous monotherapy. To this aim, in the present work, we identified compound 645656 with a significant affinity for both CDK-1 and PARP-1 by a mixed ligand- and structure-based virtual screening protocol. The Biotarget Predictor Tool was used at first in a Multitarget mode to filter the large National Cancer Institute (NCI) database. Then, hierarchical docking studies were performed to further screen the compounds and evaluate the ligands binding mode, whose putative dual-target mechanism of action was investigated through the correlation between the antiproliferative activity data and the target proteins' (CDK-1 and PARP-1) expression pattern. Finally, a Molecular Dynamics Simulation confirmed the high stability of the most effective selected compound 645656 in complex with both PARP-1 and CDK-1.
Collapse
Affiliation(s)
- Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy;
| | - Carla Gentile
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Daniele Peri
- Dipartimento di Ingegneria dell’Innovazione Industriale e Digitale, Università degli Studi di Palermo, Viale 10 delle Scienze Ed. 6, 90128 Palermo, Italy;
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| |
Collapse
|
5
|
Mangó K, Fekete F, Kiss ÁF, Erdős R, Fekete JT, Bűdi T, Bruckner E, Garami M, Micsik T, Monostory K. Association between CYP2B6 genetic variability and cyclophosphamide therapy in pediatric patients with neuroblastoma. Sci Rep 2023; 13:11770. [PMID: 37479763 PMCID: PMC10361978 DOI: 10.1038/s41598-023-38983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
Cyclophosphamide, an oxazaphosphorine prodrug is frequently used in treatment of neuroblastoma, which is one of the most prevalent solid organ malignancies in infants and young children. Cytochrome P450 2B6 (CYP2B6) is the major catalyst and CYP2C19 is the minor enzyme in bioactivation and inactivation pathways of cyclophosphamide. CYP-mediated metabolism may contribute to the variable pharmacokinetics of cyclophosphamide and its toxic byproducts leading to insufficient response to the therapy and development of clinically significant side effects. The aim of the study was to reveal the contribution of pharmacogenetic variability in CYP2B6 and CYP2C19 to the treatment efficacy and cyclophosphamide-induced side effects in pediatric neuroblastoma patients under cyclophosphamide therapy (N = 50). Cyclophosphamide-induced hematologic toxicities were pivotal in all patients, whereas only moderate hepatorenal toxicity was developed. The patients' CYP2B6 metabolizer phenotypes were associated with the occurrence of lymphopenia, thrombocytopenia, and monocytopenia as well as of liver injury, but not with kidney or urinary bladder (hemorrhagic cystitis) toxicities. Furthermore, the patients' age (< 1.5 years, P = 0.03) and female gender (P ≤ 0.02), but not CYP2B6 or CYP2C19 metabolizer phenotypes appeared as significant prognostic factors in treatment outcomes. Our results may contribute to a better understanding of the impact of CYP2B6 variability on cyclophosphamide-induced side effects.
Collapse
Affiliation(s)
- Katalin Mangó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői 26, 1085, Budapest, Hungary
| | - Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - Réka Erdős
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
| | - János Tibor Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Tamás Bűdi
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Edit Bruckner
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Miklós Garami
- Center of Pediatrics, Semmelweis University, Tűzoltó 7-9, 1094, Budapest, Hungary
| | - Tamás Micsik
- Fejér County Saint George University Teaching Hospital, Seregélyesi 3, 8000, Székesfehérvár, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, 1117, Budapest, Hungary.
| |
Collapse
|
6
|
Salama S, Shou Q, Abd El-Wahed AA, Elias N, Xiao J, Swillam A, Umair M, Guo Z, Daglia M, Wang K, Khalifa SAM, El-Seedi HR. Royal Jelly: Beneficial Properties and Synergistic Effects with Chemotherapeutic Drugs with Particular Emphasis in Anticancer Strategies. Nutrients 2022; 14:nu14194166. [PMID: 36235818 PMCID: PMC9573021 DOI: 10.3390/nu14194166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is one of the major causes of death globally. Currently, various methods are used to treat cancer, including radiotherapy, surgery, and chemotherapy, all of which have serious adverse effects. A healthy lifestyle, especially a nutritional diet, plays a critical role in the treatment and prevention of many disorders, including cancer. The above notion, plus the trend in going back to nature, encourages consumers and the food industry to invest more in food products and to find potential candidates that can maintain human health. One of these agents, and a very notable food agent, is royal jelly (RJ), known to be produced by the hypopharyngeal and mandibular salivary glands of young nurse honeybees. RJ contains bioactive substances, such as carbohydrates, protein, lipids, peptides, mineral salts and polyphenols which contribute to the appreciated biological and pharmacological activities. Antioxidant, anticancer, anti-inflammatory, antidiabetic, and antibacterial impacts are among the well-recognized benefits. The combination of RJ or its constituents with anticancer drugs has synergistic effects on cancer disorders, enhancing the drug’s effectiveness or reducing its side effects. The purpose of the present review is to emphasize the possible interactions between chemotherapy and RJ, or its components, in treating cancer illnesses.
Collapse
Affiliation(s)
- Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish 51111, Sudan
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Correspondence: (Q.S.); (S.A.M.K.); (H.R.E.-S.); Tel.: +46-700-43-43-43 (H.R.E.-S.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt
| | - Nizar Elias
- Faculty of Medicine, University of Kalamoon, Dayr Atiyah P.O. Box 222, Syria
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Ahmed Swillam
- Faculty of Pharmacy, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Muhammad Umair
- Department of Food Science and Technology, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
- Correspondence: (Q.S.); (S.A.M.K.); (H.R.E.-S.); Tel.: +46-700-43-43-43 (H.R.E.-S.)
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE 751 24 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
- Correspondence: (Q.S.); (S.A.M.K.); (H.R.E.-S.); Tel.: +46-700-43-43-43 (H.R.E.-S.)
| |
Collapse
|
7
|
Breast Cancer Metastasis: Mechanisms and Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23126806. [PMID: 35743249 PMCID: PMC9224686 DOI: 10.3390/ijms23126806] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide. Metastasis is the leading cause of high mortality in most cancers. Although predicting the early stage of breast cancer before metastasis can increase the survival rate, breast cancer is often discovered or diagnosed after metastasis has occurred. In general, breast cancer has a poor prognosis because it starts as a local disease and can spread to lymph nodes or distant organs, contributing to a significant impediment in breast cancer treatment. Metastatic breast cancer cells acquire aggressive characteristics from the tumor microenvironment (TME) through several mechanisms including epithelial–mesenchymal transition (EMT) and epigenetic regulation. Therefore, understanding the nature and mechanism of breast cancer metastasis can facilitate the development of targeted therapeutics focused on metastasis. This review discusses the mechanisms leading to metastasis and the current therapies to improve the early diagnosis and prognosis in patients with metastatic breast cancer.
Collapse
|
8
|
Hwang M, Medley S, Shakeel F, Vanderwerff B, Zawistowski M, Kidwell KM, Hertz DL. Lack of association of CYP2B6 pharmacogenetics with cyclophosphamide toxicity in patients with cancer. Support Care Cancer 2022; 30:7355-7363. [PMID: 35606478 DOI: 10.1007/s00520-022-07118-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Cyclophosphamide is a commonly used cancer agent that is metabolically activated by polymorphic enzymes. This study aims to investigate the association between predicted activity of candidate pharmacogenes with severe toxicity during cyclophosphamide treatment. METHODS Genome-wide genetic data was collected from an institutional genetic data repository for CYP2B6, CYP3A4, CYP2C9, CYP2C19, GSTA1, GSTP1, ALDH1A1, ALDH3A1, ABCC1, ABCB1, and ERCC1. Treatment and toxicity data were retrospectively collected from the patient's medical record. The a priori selected primary hypothesis was that patients who have CYP2B6 reduced metabolizer activity (poor or intermediate (PM/IM) vs. normal (NM) metabolizer) have lower risk of severe toxicity or cyclophosphamide treatment modification due to toxicity. RESULTS In the primary analysis of 510 cyclophosphamide-treated patients with available genetic data, there was no difference in the odds of severe toxicity or treatment modification due to toxicity in CYP2B6 PM/IM vs. NM (odds ratio = 0.97, 95% Confidence Interval: 0.62-1.50, p = 0.88). In an exploratory, statistically uncorrected secondary analysis, carriers of the ALDH1A1 rs8187996 variant had a lower risk of the primary toxicity endpoint compared with wild-type homozygous patients (odds ratio = 0.31, 95% Confidence Interval: 0.09-0.78, p = 0.028). None of the other tested phenotypes or genotypes was associated with the primary or secondary endpoints in unadjusted analysis (all p > 0.05). CONCLUSION The finding that patients who carry ALDH1A1 rs8187996 may have a lower risk of cyclophosphamide toxicity than wild-type patients contradicts a prior finding for this variant and should be viewed with skepticism. We found weak evidence that any of these candidate pharmacogenetic predictors of cyclophosphamide toxicity may be useful to personalize cyclophosphamide dosing to optimize therapeutic outcomes in patients with cancer.
Collapse
Affiliation(s)
- Mary Hwang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Room 2560C, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| | - Sarah Medley
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA
| | - Faisal Shakeel
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Room 2560C, 428 Church St., Ann Arbor, MI, 48109-1065, USA
| | - Brett Vanderwerff
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Room 2560C, 428 Church St., Ann Arbor, MI, 48109-1065, USA.
| |
Collapse
|
9
|
Dong H, Tan R, Chen Z, Wang L, Song Y, Jin M, Yin J, Li H, Li J, Yang D. The Effects of Immunosuppression on the Lung Microbiome and Metabolites in Rats. Front Microbiol 2022; 13:817159. [PMID: 35237248 PMCID: PMC8882871 DOI: 10.3389/fmicb.2022.817159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunosuppressed patients are more likely to suffer from pneumonia, especially Streptococcus and Enterobacter pneumonia. Studies have demonstrated the existence of a complex and dynamic microbiota on the surface of human respiratory epithelial cells, both in healthy and diseased states. However, it is not clear whether the pneumonia in immunosuppressed patients is caused by inhaled oropharyngeal pathogens or abnormal proliferation of pulmonary proteobacteria. In this study, immunosuppressed model was made by intraperitoneal injection of cyclophosphamide and oropharyngeal saliva aspiration was simulated by oral and pharyngeal tracheal instillation of sterilized phosphate buffered saline (PBS). Furthermore, the effects of immunosuppression on the lung microbial community and its metabolism were investigated using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. The 16S rRNA gene sequencing results showed that immunosuppression alone did not change the composition of pulmonary bacteria. Moreover, although the bacteria brought by sterilized PBS from oropharynx to lower respiratory tract changed the composition of the microflora in healthy and immunosuppressed rats, the change in the latter was more obvious. Metabolomic analysis revealed that the levels of pulmonary metabolites were disturbed in the immunosuppressed rats. The altered lung microbiota, including Streptococcaceae and Enterobacteriaceae, showed significant positive correlations with pulmonary metabolites. Our study suggested that the source of the pathogens of pneumonia in immunosuppressed rats was via inhalation and explored the relationship between lung microbiome and metabolites in immunosuppressed rats. Our results provide the basis for the development of prevention and treatment strategies for pneumonia.
Collapse
|
10
|
Effects of cyclophosphamide related genetic variants on clinical outcomes of adult hematopoietic cell transplant patients. Cancer Chemother Pharmacol 2022; 89:543-549. [PMID: 35083501 DOI: 10.1007/s00280-021-04389-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/15/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE Genetic variants may influence the pharmacokinetics and pharmacodynamics (PKPD) of cyclophosphamide (CY). CY plays a critical role in conditioning chemotherapy for hematopoietic cell transplantation (HCT), but its use is limited by toxicity. We explored the effect of genetic variants, potentially affecting PKPD of CY, and outcomes after HCT. METHODS This observational pharmacogenomic study included 85 adults with hematologic malignancies who received reduced intensity conditioning with CY, fludarabine, and total body irradiation. We collected recipient DNA prior to HCT and evaluated 97 candidate variants in 66 genes and 3 metabolism phenotypes potentially involved in PKPD pathways of CY. In multivariable analysis we investigated the association between the genotypes and four clinical outcomes: Day 180 non-relapse mortality (NRM) and day 180 overall survival (OS), acute graft-versus-host-disease (aGVHD) grades 2-4, and engraftment. p values were not adjusted for multiple testing. RESULTS The median recipient age was 63 years (range 21-75). Acute myeloid leukemia was the most common diagnosis (34%; n = 29). In multivariable analysis adjusted for exposure to phosphoramide mustard, the final active metabolite of CY, we identified 6 variants in 6 genes associated with at least one of the clinical outcomes. An ABCC4 variant (rs9561778) was associated with poor Day 180 NRM (p < 0.01), MUTYH variant (rs3219484) with higher Day 180 NRM and aGVHD (both p < 0.01), and SYNE1 variant (rs4331993) with better Day 180 OS and engraftment (both p ≤ 0.01). CONCLUSION The present study suggests that genetic variants influencing the PKPD of CY may help identify patients at risk for inferior outcomes after HCT using CY-based reduced-intensity conditioning.
Collapse
|
11
|
Moringa Oleifera Seed Extract Concomitantly Supplemented with Chemotherapy Worsens Tumor Progression in Mice with Triple Negative Breast Cancer and Obesity. Nutrients 2021; 13:nu13092923. [PMID: 34578801 PMCID: PMC8472177 DOI: 10.3390/nu13092923] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/26/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive and highly metastatic breast cancer subtype with limited treatment options. Obesity and insulin resistance are associated with a worse prognosis in those with TNBC. Moringa oleifera (moringa) is a tropical edible plant used for both food and medicinal purposes and found to have anti-obesity and anti-cancer effects in vitro and in preclinical models. The anti-cancer effects of moringa seed extract alone and in combination with chemotherapy were evaluated in immunocompromised female mice with diet-induced obesity bearing MDA-MB-231-derived xenograft tumors. Moringa supplementation protected against high-fat diet- and chemotherapy-induced increases in fasting glucose and improved insulin sensitivity. Moringa supplementation alone did not attenuate tumor growth relative to chemotherapy alone, and in combination worsened tumor progression. Moringa supplementation alone reduced angiogenesis, but this effect was abrogated in combination with chemotherapy. Moringa supplementation may be an effective strategy to improve metabolic health in mice with obesity and TNBC and reduce angiogenesis in tumors, but may have a negative interaction when used as a concurrent complementary therapy. Caution should be taken when considering the consumption of moringa seed extracts while receiving chemotherapy for breast cancer treatment. Further investigations of alternative timings of moringa therapy are warranted.
Collapse
|