1
|
Bai T, Cui B, Xing M, Chen S, Zhu Y, Lin D, Guo Y, Du M, Wang X, Zhou D, Yan H. Stable inhibition of choroidal neovascularization by adeno-associated virus 2/8-vectored bispecific molecules. Gene Ther 2024; 31:511-523. [PMID: 38961279 DOI: 10.1038/s41434-024-00461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Neovascular age-related macular degeneration (nAMD) causes severe visual impairment. Pigment epithelium-derived factor (PEDF), soluble CD59 (sCD59), and soluble fms-like tyrosine kinase-1 (sFLT-1) are potential therapeutic agents for nAMD, which target angiogenesis and the complement system. Using the AAV2/8 vector, two bi-target gene therapy agents, AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59, were generated, and their therapeutic efficacy was investigated in laser-induced choroidal neovascularization (CNV) and Vldlr-/- mouse models. After a single injection, AAV2/8-mediated gene expression was maintained at high levels in the retina for two months. Both AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 significantly reduced CNV development for an extended period without side effects and provided efficacy similar to two injections of current anti-vascular endothelial growth factor monotherapy. Mechanistically, these agents suppressed the extracellular signal-regulated kinase and nuclear factor-κB pathways, resulting in anti-angiogenic activity. This study demonstrated the safety and long-lasting effects of AAV2/8-PEDF-P2A-sCD59 and AAV2/8-sFLT-1-P2A-sCD59 in CNV treatment, providing a promising therapeutic strategy for nAMD.
Collapse
Affiliation(s)
- Tinghui Bai
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Bohao Cui
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Dongxue Lin
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China.
| |
Collapse
|
2
|
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res 2024; 239:109770. [PMID: 38145794 DOI: 10.1016/j.exer.2023.109770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) can lead to irreversible impairment of visual function, and the number of patients with AMD has been increasing globally. The immunoinflammatory theory is an important pathogenic mechanism of AMD, with macrophages serving as the primary inflammatory infiltrating cells in AMD lesions. Its powerful immunoinflammatory regulatory function has attracted considerable attention. Herein, we provide an overview of the involvement of macrophage-regulated immunoinflammation in different stages of AMD. Additionally, we summarize novel therapeutic approaches for AMD, focusing on targeting macrophages, such as macrophage/microglia modulators, reduction of macrophage aggregation in the subretinal space, modulation of macrophage effector function, macrophage phenotypic alterations, and novel biomimetic nanocomposites development based on macrophage-associated functional properties. We aimed to provide a basis and reference for the further exploration of AMD pathogenesis, developmental influences, and new therapeutic approaches.
Collapse
Affiliation(s)
- Qin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, No.7 Jinsui Road, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Zhang Y, Park YS, Kim IB. A Distinct Microglial Cell Population Expressing Both CD86 and CD206 Constitutes a Dominant Type and Executes Phagocytosis in Two Mouse Models of Retinal Degeneration. Int J Mol Sci 2023; 24:14236. [PMID: 37762541 PMCID: PMC10532260 DOI: 10.3390/ijms241814236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Microglial cells are the key regulators of inflammation during retinal degeneration (RD) and are conventionally classified as M1 or M2. However, whether the M1/M2 classification exactly reflects the functional classification of microglial cells in the retina remains debatable. We examined the spatiotemporal changes of microglial cells in the blue-LED and NaIO3-induced RD mice models using M1/M2 markers and functional genes. TUNEL assay was performed to detect photoreceptor cell death, and microglial cells were labeled with anti-IBA1, P2RY12, CD86, and CD206 antibodies. FACS was used to isolate microglial cells with anti-CD206 and CD86 antibodies, and qRT-PCR was performed to evaluate Il-10, Il-6, Trem-2, Apoe, and Lyz2 expression. TUNEL-positive cells were detected in the outer nuclear layer (ONL) from 24 h to 72 h post-RD induction. At 24 h, P2RY12 was decreased and CD86 was increased, and CD86/CD206 double-labeled cells occupied the dominant population at 72 h. And CD86/CD206 double-labeled cells showed a significant increase in Apoe, Trem2, and Lyz2 levels but not in those of Il-6 and Il-10. Our results demonstrate that microglial cells in active RD cannot be classified as M1 or M2, and the majority of microglia express both CD86 and CD206, which are involved in phagocytosis rather than inflammation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.Z.); (Y.S.P.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.Z.); (Y.S.P.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.Z.); (Y.S.P.)
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Dähmcke M, Busch M, Pfeil JM, Brauckmann T, Schulz D, Omran W, Morawiec-Kisiel E, Wähler F, Paul S, Tayar A, Bründer MC, Grundel B, Stahl A. Circulating MicroRNAs as Biomarker for Vessel-Associated Retinal Diseases. Ophthalmologica 2023; 246:227-237. [PMID: 37721532 DOI: 10.1159/000533481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Vessel-associated retinal diseases are a major cause of blindness and severe visual impairment. The identification of appropriate biomarkers is of great importance to better anticipate disease progression and establish more targeted treatment options. MicroRNAs (miRNAs) are short, single-stranded, noncoding ribonucleic acids that are involved in the posttranscriptional regulation of gene expression through hybridization with messenger RNA. The expression of certain miRNAs can be different in patients with pathological processes and can be used for the detection and differentiation of various diseases. In this study, we investigate to what extent previously in vitro identified miRNAs are present as cell-free circulating miRNAs in the serum and vitreous of human patients with and without vessel-associated retinal diseases. METHODS Relative quantification by quantitative real-time polymerase chain reaction was used to analyze miRNA expression in patients with vessel-associated retinal diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinal vein occlusion compared with control patients. RESULTS In serum samples, miR-29a-3p and miR-192-5p showed increased expression in patients with neovascular AMD relative to control patients. Similarly, miR-335-5p, miR-192-5p, and miR-194-5p showed increased expression in serum from patients with proliferative DR. In vitreous samples, miR-100-5p was decreased in patients with proliferative DR. Differentially expressed miRNAs showed good diagnostic accuracy in receiver operating characteristic (ROC) and area under the ROC curve analysis. CONCLUSION The miRNAs investigated in this study may have the potential to serve as biomarkers for vessel-associated retinal diseases. Combining multiple miRNAs may enhance the predictive power of the analysis.
Collapse
Affiliation(s)
- Merlin Dähmcke
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Busch
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Johanna M Pfeil
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Tara Brauckmann
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Daniel Schulz
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Wael Omran
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Ewa Morawiec-Kisiel
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Fabienne Wähler
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Sebastian Paul
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Allam Tayar
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | | | - Bastian Grundel
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Stahl
- Department of Ophthalmology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Hata M, Hata M, Andriessen EM, Juneau R, Pilon F, Crespo-Garcia S, Diaz-Marin R, Guber V, Binet F, Fournier F, Buscarlet M, Grou C, Calderon V, Heckel E, Melichar HJ, Joyal JS, Wilson AM, Sapieha P. Early-life peripheral infections reprogram retinal microglia and aggravate neovascular age-related macular degeneration in later life. J Clin Invest 2023; 133:159757. [PMID: 36787231 PMCID: PMC9927938 DOI: 10.1172/jci159757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/16/2022] [Indexed: 02/15/2023] Open
Abstract
Pathological neovascularization in age-related macular degeneration (nvAMD) drives the principal cause of blindness in the elderly. While there is a robust genetic association between genes of innate immunity and AMD, genome-to-phenome relationships are low, suggesting a critical contribution of environmental triggers of disease. Possible insight comes from the observation that a past history of infection with pathogens such as Chlamydia pneumoniae, or other systemic inflammation, can predispose to nvAMD in later life. Using a mouse model of nvAMD with prior C. pneumoniae infection, endotoxin exposure, and genetic ablation of distinct immune cell populations, we demonstrated that peripheral infections elicited epigenetic reprogramming that led to a persistent memory state in retinal CX3CR1+ mononuclear phagocytes (MNPs). The immune imprinting persisted long after the initial inflammation had subsided and ultimately exacerbated choroidal neovascularization in a model of nvAMD. Single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) identified activating transcription factor 3 (ATF3) as a central mediator of retina-resident MNP reprogramming following peripheral inflammation. ATF3 polarized MNPs toward a reparative phenotype biased toward production of proangiogenic factors in response to subsequent injury. Therefore, a past history of bacterial endotoxin-induced inflammation can lead to immunological reprograming within CNS-resident MNPs and aggravate pathological angiogenesis in the aging retina.
Collapse
Affiliation(s)
- Masayuki Hata
- Department of Ophthalmology,,Department of Biochemistry and Molecular Medicine, and
| | | | - Elisabeth M.M.A. Andriessen
- Department of Biomedical Sciences, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Sergio Crespo-Garcia
- Department of Ophthalmology,,Department of Biochemistry and Molecular Medicine, and
| | | | | | | | | | | | - Caroline Grou
- Bioinformatics Core Facility, Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
| | - Virginie Calderon
- Bioinformatics Core Facility, Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
| | - Emilie Heckel
- Department of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Ste-Justine Research Center, Montreal, Quebec, Canada
| | - Heather J. Melichar
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Sebastien Joyal
- Department of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier Universitaire Ste-Justine Research Center, Montreal, Quebec, Canada
| | | | - Przemyslaw Sapieha
- Department of Ophthalmology,,Department of Biochemistry and Molecular Medicine, and,Department of Biomedical Sciences, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
El-Darzi N, Mast N, Hammer SS, Dorweiler TF, Busik JV, Pikuleva IA. 2-Hydroxypropyl-β-cyclodextrin mitigates pathological changes in a mouse model of retinal cholesterol dyshomeostasis. J Lipid Res 2022; 64:100323. [PMID: 36586438 PMCID: PMC9883287 DOI: 10.1016/j.jlr.2022.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
CYP46A1 is a CNS-specific enzyme, which eliminates cholesterol from the brain and retina by metabolism to 24-hydroxycholesterol, thus contributing to cholesterol homeostasis in both organs. 2-Hydroxypropyl-β-cyclodextrin (HPCD), a Food and Drug Administration-approved formulation vehicle, is currently being investigated off-label for treatment of various diseases, including retinal diseases. HPCD was shown to lower retinal cholesterol content in mice but had not yet been evaluated for its therapeutic benefits. Herein, we put Cyp46a1-/- mice on high fat cholesterol-enriched diet from 1 to 14 months of age (control group) and at 12 months of age, started to treat a group of these animals with HPCD until the age of 14 months. We found that as compared with mature and regular chow-fed Cyp46a1-/- mice, control group had about 6-fold increase in the retinal total cholesterol content, focal cholesterol and lipid deposition in the photoreceptor-Bruch's membrane region, and retinal macrophage activation. In addition, aged animals had cholesterol crystals at the photoreceptor-retinal pigment epithelium interface and changes in the Bruch's membrane ultrastructure. HPCD treatment mitigated all these manifestations of retinal cholesterol dyshomeostasis and altered the abundance of six groups of proteins (genetic information transfer, vesicular transport, and cytoskeletal organization, endocytosis and lysosomal processing, unfolded protein removal, lipid homeostasis, and Wnt signaling). Thus, aged Cyp46a1-/- mice on high fat cholesterol-enriched diet revealed pathological changes secondary to retinal cholesterol overload and supported further studies of HPCD as a potential therapeutic for age-related macular degeneration and diabetic retinopathy associated with retinal cholesterol dyshomeostasis.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sandra S. Hammer
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Tim F. Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA,For correspondence: Irina A. Pikuleva
| |
Collapse
|
7
|
Dissecting Regulators of Aging and Age-Related Macular Degeneration in the Retinal Pigment Epithelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6009787. [PMID: 36439688 PMCID: PMC9683958 DOI: 10.1155/2022/6009787] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Age-related macular degeneration (AMD), the leading cause of blindness in elderly populations, involves the loss of central vision due to progressive dysfunction of the retinal pigment epithelium (RPE) and subsequent loss of light-sensing photoreceptors. While age is a key risk factor, not every aged individual develops AMD. Thus, the critical question is what specific cellular changes tip the balance from healthy aging to disease. To distinguish between changes associated with aging and AMD, we compared the RPE proteome in human eye bank tissue from nondiseased donors during aging (n = 50, 29-91 years) and in donors with AMD (n = 36) compared to age-matched donors without disease (n = 28). Proteins from RPE cells were separated on two-dimensional gels, analyzed for content, and identified using mass spectrometry. A total of 58 proteins displayed significantly altered content with either aging or AMD. Proteins involved in metabolism, protein turnover, stress response, and cell death were altered with both aging and AMD. However, the direction of change was predominantly opposite. With aging, we detected an overall decrease in metabolism and reductions in stress-associated proteins, proteases, and chaperones. With AMD, we observed upregulation of metabolic proteins involved in glycolysis, TCA, and fatty acid metabolism, with a concurrent decline in oxidative phosphorylation, suggesting a reprogramming of energy utilization. Additionally, we detected upregulation of proteins involved in the stress response and protein turnover. Predicted upstream regulators also showed divergent results, with inhibition of inflammation and immune response with aging and activation of these processes with AMD. Our results support the idea that AMD is not simply advanced aging but rather the culmination of perturbed protein homeostasis, defective bioenergetics, and increased oxidative stress within the aging RPE, exacerbated by environmental factors and the genetic background of an individual.
Collapse
|
8
|
DeMaio A, Mehrotra S, Sambamurti K, Husain S. The role of the adaptive immune system and T cell dysfunction in neurodegenerative diseases. J Neuroinflammation 2022; 19:251. [PMID: 36209107 PMCID: PMC9548183 DOI: 10.1186/s12974-022-02605-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
The adaptive immune system and associated inflammation are vital in surveillance and host protection against internal and external threats, but can secondarily damage host tissues. The central nervous system is immune-privileged and largely protected from the circulating inflammatory pathways. However, T cell involvement and the disruption of the blood-brain barriers have been linked to several neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Under normal physiological conditions, regulatory T cells (Treg cells) dampen the inflammatory response of effector T cells. In the pathological states of many neurodegenerative disorders, the ability of Treg cells to mitigate inflammation is reduced, and a pro-inflammatory environment persists. This perspective review provides current knowledge on the roles of T cell subsets (e.g., effector T cells, Treg cells) in neurodegenerative and ocular diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, and glaucoma. Many neurodegenerative and ocular diseases have been linked to immune dysregulation, but the cellular events and molecular mechanisms involved in such processes remain largely unknown. Moreover, the role of T cells in ocular pathologies remains poorly defined and limited literature is available in this area of research. Adoptive transfer of Treg cells appears to be a vital immunological approach to control ocular pathologies. Similarities in T cell dysfunction seen among non-ocular neurodegenerative diseases suggest that this area of research has a great potential to develop better therapeutic agents for ocular diseases and warrants further studies. Overall, this perspective review article provides significant information on the roles of T cells in numerous ocular and non-ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexa DeMaio
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, SC, 29425, Charleston, USA
| | - Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Room 713, Medical University of South Carolina, 167 Ashley Ave, SC, 29425, Charleston, USA.
| |
Collapse
|
9
|
Turgut B, Mercan K, Ilhan N, Semih Aydogan S. Evaluation of Serum Concentration of the Myokine Irisin (FNDC5) in Patients with Age-Related. BEYOGLU EYE JOURNAL 2021; 6:180-184. [PMID: 35005513 PMCID: PMC8697044 DOI: 10.14744/bej.2021.52533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study evaluated the serum irisin level of patients with age-related macular degeneration (ARMD) and compared it with that of healthy individuals. METHODS The serum irisin level of 15 healthy controls (Group 1) and 15 dry ARMD patients (Group 2) and 15 wet ARMD patients (Group 3) were measured using the enzyme-linked immunosorbent assay (ELISA) method and compared. RESULTS There was no statistically significant difference between the groups in terms of age or gender (p>0.05). The mean serum irisin levels of Group 1, Group 2, and Group 3 were 25.81±24.04 ng/mL, 22.93±19.05 ng/mL, and 12.38±8.16 ng/mL, respectively. Although the mean irisin level in the wet ARMD patients was lower than that of the control and dry ARMD groups, there was no statistically significant difference between the groups (p>0.05). CONCLUSION The results suggest that the serum irisin level in ARMD patients is not different from that of healthy individuals. Studies of larger groups that examine the irisin level in the vitreous and neovascular membranes will further elucidate any role in the pathogenesis of ARMD.
Collapse
Affiliation(s)
- Burak Turgut
- Department of Ophthalmology, Onsekiz Mart University Faculty of Medicine, Canakkale, Turkey
| | - Kadir Mercan
- Department of Ophthalmology, Private Sevgi Hospital, Malatya, Turkey
| | - Nevin Ilhan
- Department of Biochemistry, Firat University Faculty of Medicine, Elazig, Turkey
| | | |
Collapse
|
10
|
Retinal toxicities of systemic anticancer drugs. Surv Ophthalmol 2021; 67:97-148. [PMID: 34048859 DOI: 10.1016/j.survophthal.2021.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Newer anticancer drugs have revolutionized cancer treatment in the last decade, but conventional chemotherapy still occupies a central position in many cancers, with combination therapy and newer methods of delivery increasing their efficacy while minimizing toxicities. We discuss the retinal toxicities of anticancer drugs with an emphasis on the mechanism of toxicity. Uveitis is seen with the use of v-raf murine sarcoma viral oncogene homolog B editing anticancer inhibitors as well as immunotherapy. Most of the cases are mild with only anterior uveitis, but severe cases of posterior uveitis, panuveitis, and Vogt-Koyanagi-Harada-like disease may also occur. In the retina, a transient neurosensory detachment is observed in almost all patients on mitogen-activated protein kinase kinase (MEK) inhibitors. Microvasculopathy is often seen with interferon α, but vascular occlusion is a more serious toxicity caused by interferon α and MEK inhibitors. Crystalline retinopathy with or without macular edema may occur with tamoxifen; however, even asymptomatic patients may develop cavitatory spaces seen on optical coherence tomography. A unique macular edema with angiographic silence is characteristic of taxanes. Delayed dark adaptation has been observed with fenretinide. Interestingly, this drug is finding potential application in Stargardt disease and age-related macular degeneration.
Collapse
|
11
|
Histopathology of Age-Related Macular Degeneration and Implications for Pathogenesis and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33847998 DOI: 10.1007/978-3-030-66014-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Aging is associated with a number of histological changes in the choroid, Bruch's membrane, RPE, and neuroretina. Outside of the normal physiologic aging spectrum of changes, abnormal deposits such as basal laminar deposits, basal linear deposits, and soft drusen are known to be associated with AMD. Progression of AMD to advanced stages involving geographic atrophy, choroidal neovascularization, and/or disciform scars can result in debilitating vision loss. Knowledge of the angiogenic pathway and its components that stimulate neovascularization has led to the development of a new paradigm of intravitreal anti-VEGF pharmacotherapy in the management of neovascular AMD. Currently however, there are no available treatments for the modification of disease progression in non-neovascular AMD, or for the treatment of geographic atrophy. Further understanding of the histopathology of AMD and the molecular mechanisms that contribute to pathogenesis of the disease may reveal additional therapeutic targets.
Collapse
|
12
|
Soundara Pandi SP, Ratnayaka JA, Lotery AJ, Teeling JL. Progress in developing rodent models of age-related macular degeneration (AMD). Exp Eye Res 2020; 203:108404. [PMID: 33340497 DOI: 10.1016/j.exer.2020.108404] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible central vision loss, typically affecting individuals from mid-life onwards. Its multifactorial aetiology and the lack of any effective treatments has spurred the development of animal models as research and drug discovery tools. Several rodent models have been developed which recapitulate key features of AMD and provide insights into its underlying pathology. These have contributed to making significant progress in understanding the disease and the identification of novel therapeutic targets. However, a major caveat with existing models is that they do not demonstrate the full disease spectrum. In this review, we outline advances in rodent AMD models from the last decade. These models feature various hallmarks associated with AMD, including oxidative stress, hypoxia, immune dysregulation, genetic mutations and environmental risk factors. The review summarises the methods by which each model was created, its pathological characteristics as well as its relation to the disease in humans.
Collapse
Affiliation(s)
- Sudha Priya Soundara Pandi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, United Kingdom; Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, United Kingdom.
| | - Jessica L Teeling
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, MP840, Tremona Road, Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|
13
|
Zor RK, Erşan S, Küçük E, Yıldırım G, Sarı İ. Serum malondialdehyde, monocyte chemoattractant protein-1, and vitamin C levels in wet type age-related macular degeneration patients. Ther Adv Ophthalmol 2020; 12:2515841420951682. [PMID: 33062929 PMCID: PMC7536475 DOI: 10.1177/2515841420951682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose: The purpose of this study was to investigate the serum levels of
malondialdehyde (MDA) which is a marker of oxidative stress, monocyte
chemoattractant protein-1 (MCP-1) which has an important role in
inflammation, and vitamin C which has antioxidant properties in patients
with wet age-related macular degeneration (wAMD). Methods: Thirty patients with wAMD were included in the study and serum levels of MDA,
MCP-1, and vitamin C were compared with healthy participants
(n = 30). Serum vitamin C and MDA levels were measured
using a spectrophotometric method. Serum MCP-1 levels were determined by the
ELISA method. Results: MCP-1 and MDA levels were higher in patients with wAMD compared with the
control group (p < 0.05). Serum vitamin C levels were
lower in patients with wAMD compared with the control group
(p < 0.05). Conclusions: The increase in the MCP-1 levels in patients with wAMD may be associated with
increased inflammation in wAMD. Decreased serum vitamin C and elevated MDA
levels in patients with wAMD suggest increased oxidative stress in wAMD
patients. These results indicate that the increased oxidative stress and
inflammation can play a role in the pathogenesis of wAMD.
Collapse
Affiliation(s)
- Ramazan Kürşad Zor
- Department of Ophthalmology, School of Medicine, Niğde Ömer Halisdemir University, Bor Yolu, Nigde 51100, Turkey
| | - Serpil Erşan
- Department of Biochemistry, School of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Erkut Küçük
- Department of Ophthalmology, School of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Gamze Yıldırım
- Department of Ophthalmology, Niğde Ömer Halisdemir Education and Research Hospital, Niğde, Turkey
| | - İsmail Sarı
- Department of Biochemistry, School of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| |
Collapse
|
14
|
Daftarian N, Zandi S, Piryaie G, Nikougoftar Zarif M, Ranaei Pirmardan E, Yamaguchi M, Behzadian Nejad Q, Hasanpour H, Samiei S, Pfister IB, Soheili ZS, Nakao S, Barakat A, Garweg JG, Ahmadieh H, Hafezi-Moghadam A. Peripheral blood CD163(+) monocytes and soluble CD163 in dry and neovascular age-related macular degeneration. FASEB J 2020; 34:8001-8011. [PMID: 32333612 DOI: 10.1096/fj.201901902rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 11/11/2022]
Abstract
Macrophages are the main infiltrating immune cells in choroidal neovascularization (CNV), a hallmark of the human wet, or neovascular age-related macular degeneration (AMD). Due to their plasticity and ability to adapt to the local microenvironment in a tissue-dependent manner, macrophages display polar functional phenotypes characterized by their cell surface markers and their cytokine profiles. We found accumulation of hemoglobin-scavenging cluster of differentiation 163 (CD163)(+) macrophages in laser-induced CNV lesions and higher expression of CD163(+) monocytes in the peripheral blood on day 7 post injury in mice. In comparison, CD80(+) macrophages did not differ with laser-injury in young or aged mice and did not significantly change in the peripheral blood of CNV mice. We examined the percentages of CD163(+), CD206(+), and CD80(+) monocytes in the peripheral blood of patients with wet AMD, patients with dry AMD, and in age-matched individuals without AMD as controls. Percentages of peripheral blood CD163(+) monocytes in both dry AMD (P < .001) and wet AMD (P < .05) were higher than in age-matched non-AMD controls, while there was no difference between the groups in the percentages of peripheral CD206(+) and CD80(+) monocytes. Further, serum level of soluble CD163 (sCD163) was elevated only in patients with wet AMD (P < .05). An examination of 40 cytokine levels across the study groups revealed that anti-VEGF treated patients with wet AMD, who showed no exudative signs on the day of blood drawing had a cytokine profile that was similar to that of non-AMD individuals. These results indicate that CD163 could be further evaluated for its potential as a useful marker of disease activity in patients with neovascular AMD. Future studies will address the origin and potential mechanistic role of CD163(+) macrophages in wet AMD pathologies of angiogenesis and leakage of blood components.
Collapse
Affiliation(s)
- Narsis Daftarian
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA.,Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Souska Zandi
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.,Swiss Eye Institute, Rotkreuz and Berner Augenklinik am Lindenhofspital, Bern, Switzerland.,Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Golbarg Piryaie
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Muneo Yamaguchi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Qurban Behzadian Nejad
- Negah Specialty Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hasanpour
- Negah Specialty Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Samiei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Isabel B Pfister
- Swiss Eye Institute, Rotkreuz and Berner Augenklinik am Lindenhofspital, Bern, Switzerland
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aliaa Barakat
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Justus G Garweg
- Swiss Eye Institute, Rotkreuz and Berner Augenklinik am Lindenhofspital, Bern, Switzerland.,Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hamid Ahmadieh
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA.,Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Arai Y, Takahashi H, Inoda S, Tan X, Sakamoto S, Inoue Y, Fujino Y, Kawashima H, Yanagi Y. Aqueous humour proteins and treatment outcomes of anti-VEGF therapy in neovascular age-related macular degeneration. PLoS One 2020; 15:e0229342. [PMID: 32155173 PMCID: PMC7064238 DOI: 10.1371/journal.pone.0229342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/04/2020] [Indexed: 11/19/2022] Open
Abstract
We aimed to construct a better model for predicting treatment outcomes of anti-vascular endothelial growth factor therapy for neovascular age-related macular degeneration (nAMD) using the concentrations of aqueous humour proteins at baseline and during treatment. From the data of 48 treatment-naïve nAMD eyes that received intravitreal ranibizumab pro re nata for up to 12 months, we used the aqueous humour concentrations of C-X-C motif chemokine ligand 1 (CXCL1), CXCL12, CXCL13, interferon-γ-induced protein 10, monocyte chemoattractant protein 1 (MCP-1), C-C motif chemokine ligand 11, interleukin 6 (IL-6), IL-10, and matrix metalloproteinase 9 (MMP-9). After stepwise regression, multivariate analysis was performed to identify which predictors were significantly associated with best-corrected visual acuity (BCVA) changes and the number of injections. The results demonstrated that besides male sex (β coefficient = -0.088, P = 0.040) and central retinal thickness (β coefficient = 0.00051 per μm, P = 0.027), MCP-1 (β coefficient = 0.44, P < 0.001) and IL-10 (β coefficient = -0.16, P = 0.033) were significantly correlated with baseline BCVA. Additionally, high MCP-1 at baseline (β coefficient = -0.20, P = 0.015) and low CXCL13 at baseline (β coefficient = 0.10, P = 0.0054) were independently associated with better BCVA change at 12 months. High MMP-9 at the first injection (β coefficient = 0.56, P = 0.01), CXCL12 at the third injection (β coefficient = 0.10, P = 0.0002), and IL-10 at the third injection (β coefficient = 1.3, P = 0.001) were predictor variables associated with the increased number of injections. In conclusion, aqueous humour protein concentrations may have predictive abilities of BCVA change over 12 months and the number of injections in pro re nata treatment of exudative nAMD.
Collapse
Affiliation(s)
- Yusuke Arai
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Hidenori Takahashi
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Japan Community Health Care Organization Tokyo Shinjuku Medical Center, Shinjuku-ku, Tokyo, Japan
| | - Satoru Inoda
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Xue Tan
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Japan Community Health Care Organization Tokyo Shinjuku Medical Center, Shinjuku-ku, Tokyo, Japan
| | - Shinichi Sakamoto
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yuji Inoue
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yujiro Fujino
- Japan Community Health Care Organization Tokyo Shinjuku Medical Center, Shinjuku-ku, Tokyo, Japan
| | - Hidetoshi Kawashima
- Department of Ophthalmology, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yasuo Yanagi
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa-shi, Hokkaido, Japan
- Medical Retina, Singapore National Eye Centre, Singapore, Singapore
- Medical Retina, Singapore Eye Research Institute, Singapore, Singapore
| |
Collapse
|
16
|
Age-related macular degeneration: A two-level model hypothesis. Prog Retin Eye Res 2019; 76:100825. [PMID: 31899290 DOI: 10.1016/j.preteyeres.2019.100825] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
Abstract
Age-related diseases, including age-related macular degeneration (AMD), are of growing importance in a world where population ageing has become a dominant global trend. Although a wide variety of risk factors for AMD have been identified, age itself remains by far the most important risk factor, making it an urgent priority to understand the connections between underlying ageing mechanisms and pathophysiology of AMD. Ageing is both multicausal and variable, so that differences between individuals in biological ageing processes are the focus of a growing number of pathophysiological studies seeking to explain how ageing contributes to chronic, age-related conditions. The aim of this review is to integrate the available knowledge on the pathophysiology of AMD within the framework of the biology of ageing. One highly significant feature of biological ageing is systemic inflammation, which arises as a second-level response to a first level of molecular damage involving oxidative stress, mutations etc. Combining these insights, the various co-existing pathophysiological explanations in AMD arrange themselves according to a two-level hypothesis. Accordingly, we describe how AMD can be considered the consequence of age-related random accumulation of molecular damage at the ocular level and the subsequent systemic inflammatory host response thereof. We summarize evidence and provide original data to enlighten where evidence is lacking. Finally, we discuss how this two-level hypothesis provides a foundation for thoughts and future studies in prevention, prognosis, and intervention.
Collapse
|
17
|
Elbaz-Hayoun S, Rinsky B, Hagbi-Levi S, Grunin M, Chowers I. Evaluation of antioxidant treatments for the modulation of macrophage function in the context of retinal degeneration. Mol Vis 2019; 25:479-488. [PMID: 31588172 PMCID: PMC6776439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/03/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose Oxidative stress and macrophages have been implicated in the pathogenesis of atrophic and neovascular age-related macular degeneration (aAMD and nvAMD). It is unclear whether oxidative injury mediates macrophage involvement in AMD. We aimed to investigate the effect of antioxidant treatments on human monocyte-derived macrophages (hMDMs) from patients with AMD in models for the disease. Methods Four antioxidant treatments were evaluated (G1: lutein + zeaxanthin, G2: lutein + zeaxanthin and zinc, G3: lutein + zeaxanthin, zinc, Lyc-O-Mato, and carnosic acid, G4: lutein + zeaxanthin, carnosic acid, and beta-carotene, G5: olive oil as vehicle control). The compounds were added to the culture medium of M1 (interferon-gamma [IFN-Ɣ] and lipopolysaccharide [LPS]) and M2a (interleukin-13 [IL-13] and IL-4) hMDMs from patients with AMD (n=7 and n=8, respectively). Mouse choroidal tissue was cultured with supernatants from treated M1/M2a hMDMs, to evaluate the effect of treatments on the angiogenic properties of macrophages with choroidal sprouting assay (CSA). Mouse retinal explants were cultured with treated hMDMs for 18 h, and evaluated for photoreceptor apoptosis using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) labeling. Adult BALB/c mice (n=8) were exposed to 8,000 lux bright light for 3 h, and treated orally with antioxidant supplements for 7 days that preceded light injury and following it. Oxidative stress was assessed using an anti-4 hydroxynonenal (4-HNE) antibody. Retinal function and the thickness of the outer nuclear layer were evaluated with electroretinography (ERG) and histological analysis, respectively. Results The G3 treatment reduced M2a hMDMs-associated sprouting in the CSA compared to the untreated group (n=7, -1.52-fold, p=0.05). Conversely, the G2 treatment was associated with an increased neurotoxic effect of M2a hMDMs in the retinal explant assay compared to the control group (n=7, 1.37-fold, p=0.047), as well as compared to the G3 treatment group (1.46-fold, p=0.01). The G4 treatment was also associated with increased cytotoxicity compared to the control group (1.48-fold, p=0.004), and compared to the G3 treatment group (1.58-fold, p=0.001). In the in vivo light damage model, mice (n=8) supplemented with G2, G3, and G4 had decreased levels of oxidative injury assessed using 4-HNE labeling (-2.32-fold, -2.17-fold, and -2.18-fold, respectively, p<0.05 for all comparisons). None of the treatments were associated with reduced photoreceptor cell loss, as shown with histology and ERG. Conclusions Antioxidant treatment modulates M2a hMDMs at the functional level. In particular, we found that the G3 combination has a beneficial effect on M2a macrophages in reducing their angiogenic and neurotoxic capacity ex vivo. In addition, antioxidant treatments considerably reduced the oxidative stress level in light-damaged retinas. Further research is required to assess whether such therapies may curb macrophage-driven photoreceptor loss and neovascularization in AMD.
Collapse
Affiliation(s)
- Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University - Hadassah School of Medicine
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University - Hadassah School of Medicine
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University - Hadassah School of Medicine
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University - Hadassah School of Medicine
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University - Hadassah School of Medicine
| |
Collapse
|
18
|
Pastushkova LH, Rusanov VB, Goncharova AG, Brzhozovskiy AG, Kononikhin AS, Chernikova AG, Kashirina DN, Nosovsky AM, Baevsky RM, Nikolaev EN, Larina IM. Urine proteome changes associated with autonomic regulation of heart rate in cosmonauts. BMC SYSTEMS BIOLOGY 2019; 13:17. [PMID: 30836973 PMCID: PMC6399814 DOI: 10.1186/s12918-019-0688-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background The strategy of adaptation of the human body in microgravity is largely associated with the plasticity of cardiovascular system regulatory mechanisms. During long-term space flights the changes in the stroke volume of the heart are observed, the heart rate decreases, the phase structure of cardiac cycle is readjusted The purpose of this work was to clarify urine proteome changes associated with the initial condition of the heart rate autonomic regulation mechanisms in cosmonauts who have participated in long space missions. Urine proteome of each cosmonaut was analyzed before and after space flight, depending on the initial parameters characterizing the regulatory mechanisms of the cardiovascular system. Results The proteins cadherin-13, mucin-1, alpha-1 of collagen subunit type VI (COL6A1), hemisentin-1, semenogelin-2, SH3 domain-binding protein, transthyretin and serine proteases inhibitors realize a homeostatic role in individuals with different initial type of the cardiovascular system regulation. The role of significantly changed urine proteins in the cardiovascular homeostasis maintenance is associated with complex processes of atherogenesis, neoangiogenesis, activation of calcium channels, changes in cell adhesion and transmembrane properties, changes in extracellular matrix, participation in protection from oxidative stress and leveling the effects of hypoxia. Therefore, the concentrations of these proteins significantly differ between groups with dominant parasympathetic and sympathetic influences. Conclusion The space flight induced urine proteome changes are significantly different in the groups identified by heart rate autonomic regulation peculiarities before space flight. All these proteins regulate the associated biological processes which affect the stiffness of the vascular wall, blood pressure level, the severity of atherosclerotic changes, the rate and degree of age-related involution of elastin and fibulin, age-related increase in collagen stiffness, genetically determined features of elastin fibers. The increased vascular rigidity (including the aorta) and of myocardium may be regarded as a universal response to various extreme factors. Significant differences in the semi-quantitative analysis of signal proteins between groups with different types of autonomic regulation are explained by a common goal: to ensure optimal adaptation regardless of age and of the genetically determined type of responses to the extreme environmental factors effects. Electronic supplementary material The online version of this article (10.1186/s12918-019-0688-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lyudmila H Pastushkova
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Vasily B Rusanov
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Anna G Goncharova
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Alexander G Brzhozovskiy
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kononikhin
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia.,V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia
| | - Anna G Chernikova
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Daria N Kashirina
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Andrey M Nosovsky
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Roman M Baevsky
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| | - Evgeny N Nikolaev
- V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia. .,Skolkovo Institute of Science and Technology, Skolkovo, Moscow region, Russia.
| | - Irina M Larina
- Institute for Biomedical Problems - Russian Federation State Scientific Research Center Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Szatmári-Tóth M, Ilmarinen T, Mikhailova A, Skottman H, Kauppinen A, Kaarniranta K, Kristóf E, Lytvynchuk L, Veréb Z, Fésüs L, Petrovski G. Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium-Role in Dead Cell Clearance and Inflammation. Int J Mol Sci 2019; 20:ijms20040926. [PMID: 30791639 PMCID: PMC6412543 DOI: 10.3390/ijms20040926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Inefficient removal of dying retinal pigment epithelial (RPE) cells by professional phagocytes can result in debris formation and development of age-related macular degeneration (AMD). Chronic oxidative stress and inflammation play an important role in AMD pathogenesis. Only a few well-established in vitro phagocytosis assay models exist. We propose human embryonic stem cell-derived-RPE cells as a new model for studying RPE cell removal by professional phagocytes. The characteristics of human embryonic stem cells-derived RPE (hESC-RPE) are similar to native RPEs based on their gene and protein expression profile, integrity, and barrier properties or regarding drug transport. However, no data exist about RPE death modalities and how efficiently dying hESC-RPEs are taken upby macrophages, and whether this process triggers an inflammatory responses. This study demonstrates hESC-RPEs can be induced to undergo anoikis or autophagy-associated cell death due to extracellular matrix detachment or serum deprivation and hydrogen-peroxide co-treatment, respectively, similar to primary human RPEs. Dying hESC-RPEs are efficiently engulfed by macrophages which results in high amounts of IL-6 and IL-8 cytokine release. These findings suggest that the clearance of anoikic and autophagy-associated dying hESC-RPEs can be used as a new model for investigating AMD pathogenesis or for testing the in vivo potential of these cells in stem cell therapy.
Collapse
Affiliation(s)
- Mária Szatmári-Tóth
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
| | - Tanja Ilmarinen
- Tampere University, Faculty of Medicine and Health Technology, 33014 Tampere, Finland.
| | - Alexandra Mikhailova
- Tampere University, Faculty of Medicine and Health Technology, 33014 Tampere, Finland.
| | - Heli Skottman
- Tampere University, Faculty of Medicine and Health Technology, 33014 Tampere, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, 70029 Kuopio, Finland.
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus-Liebig-University Giessen, Eye Clinic, University Hospital Giessen and Marburg GmbH, Campus Giessen, 35390 Giessen, Germany.
| | - Zoltán Veréb
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
| | - Goran Petrovski
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, 4032 Debrecen, Hungary.
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.
| |
Collapse
|
20
|
Leclaire MD, Nettels-Hackert G, König J, Höhn A, Grune T, Uhlig CE, Hansen U, Eter N, Heiduschka P. Lipofuscin-dependent stimulation of microglial cells. Graefes Arch Clin Exp Ophthalmol 2019; 257:931-952. [PMID: 30693383 DOI: 10.1007/s00417-019-04253-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To examine the reaction of microglial cells (MG) when incubated with lipofuscin (LP) in vitro with emphasis on the immunological reaction of the MG toward LP and the suppression of this reaction by immunomodulatory agents. MG are involved in the pathogenesis of degenerative eye disorders such as age-related macular degeneration (AMD). LP is a heterogeneous waste material that accumulates in the retinal pigment epithelium (RPE) cells with advancing age. LP is known to have toxic effects on RPE cells and therefore an elevated LP-derived fundus autofluorescence is a risk factor for AMD development. MG in the subretinal space have been reported in eyes affected by AMD. Moreover, in senescent mice, subretinal MG were found, which display an autofluorescence that may be derived from LP uptake. METHODS In this study, we incubated MG (BV-2 cell line and primary cells from murine brain) in vitro with LP isolated from the human RPE. We observed phagocytosis, studied cell morphologies, and analyzed the cell culture supernatants. We also investigated the effect of the immunomodulatory agents hydrocortisone (HC), minocycline, and the tripeptide TKP. RESULTS The MG phagocytosed the LP quickly and completely. We detected highly elevated levels of pro-inflammatory cytokines (especially of IL-6, IL-23p19, TNF-α, KC, RANTES, and IL-1α) in the cell culture supernatants. Furthermore, levels of vascular endothelial growth factor (VEGF) were raised in BV-2 cells. Anti-inflammatory agents added to the cell cultures inhibited the inflammatory reaction, in particular hydrocortisone (HC). Minocycline and TKP had less impact on the cytokine release. CONCLUSION The interaction of MG and LP could play a role in the development of retinal degeneration by triggering an inflammatory reaction and angiogenesis.
Collapse
Affiliation(s)
- Martin Dominik Leclaire
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany
| | - Gerburg Nettels-Hackert
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany
| | - Jeannette König
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Annika Höhn
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Tilman Grune
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Constantin E Uhlig
- Cornea Bank Münster, Department of Ophthalmology, University Medical Center, Münster, Germany
| | - Uwe Hansen
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty, University of Münster, Münster, Germany
| | - Nicole Eter
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany
| | - Peter Heiduschka
- Research Laboratory, Department of Ophthalmology, University Medical Center, Domagkstr. 15, D-48149, Münster, Germany.
| |
Collapse
|
21
|
Chen M, Chan CC, Xu H. Cholesterol homeostasis, macrophage malfunction and age-related macular degeneration. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S55. [PMID: 30613630 DOI: 10.21037/atm.2018.10.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, Centre for Experimental Medicine, Queen's University Belfast, UK
| | - Chi-Chao Chan
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, Centre for Experimental Medicine, Queen's University Belfast, UK.,Aier Eye Institute, Aier Eye Hospital Group, Aier School of Ophthalmology, Central South University, Changsha 410015, China
| |
Collapse
|
22
|
ten Berge JCEM, van Dijk EHC, Schreurs MWJ, Vermeer J, Boon CJF, Rothova A. Antiretinal antibodies in central serous chorioretinopathy: prevalence and clinical implications. Acta Ophthalmol 2018; 96:56-62. [PMID: 28444929 DOI: 10.1111/aos.13445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/23/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate the possible role of autoimmune reactions directed against retinal tissue in central serous chorioretinopathy (CSC), by analysing the presence of serum antiretinal antibodies (ARAs) and establishing their clinical relevance. METHODS Sixty-three patients with CSC were included, and clinical characteristics were collected. Serum samples of all patients with CSC, 101 uveitis patients and 60 healthy donors were analysed for the presence of ARAs by indirect immunofluorescence. Furthermore, all CSC serum samples were analysed on Western blot. Correlations between laboratory findings and clinical features of CSC were determined by logistic regression. RESULTS Antiretinal antibodies (ARAs) were present in 54% of the patients with CSC, in 46% of uveitis patients (p = 0.153) and in 17% of healthy controls (p < 0.001). The majority of ARAs in CSC were directed against photoreceptors (27%), which occurred significantly more often compared to uveitis patients (15%, p = 0.039) and to healthy controls (5%, p = 0.003). No associations between clinical CSC characteristics and the presence of ARAs were found. CONCLUSION Serum ARAs are present in more than half of the patients with CSC, and especially, ARAs directed against photoreceptors were detected more frequently compared to both healthy controls and uveitis patients. Further research is warranted to unravel the role of ARAs in the pathogenesis of CSC.
Collapse
Affiliation(s)
| | - Elon H. C. van Dijk
- Department of Ophthalmology; Leiden University Medical Center; Leiden the Netherlands
| | - Marco W. J. Schreurs
- Department of Immunology; Erasmus University Medical Center; Rotterdam the Netherlands
| | - Jacolien Vermeer
- Department of Immunology; Erasmus University Medical Center; Rotterdam the Netherlands
| | - Camiel J. F. Boon
- Department of Ophthalmology; Leiden University Medical Center; Leiden the Netherlands
- Department of Ophthalmology; Academic Medical Center; University of Amsterdam; Amsterdam the Netherlands
| | - Aniki Rothova
- Department of Ophthalmology; Erasmus University Medical Center; Rotterdam the Netherlands
| |
Collapse
|
23
|
Ma W, Zhang Y, Gao C, Fariss RN, Tam J, Wong WT. Monocyte infiltration and proliferation reestablish myeloid cell homeostasis in the mouse retina following retinal pigment epithelial cell injury. Sci Rep 2017; 7:8433. [PMID: 28814744 PMCID: PMC5559448 DOI: 10.1038/s41598-017-08702-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading contributor of vision loss, currently lacks comprehensive treatment. While AMD histopathology involves retinal pigment epithelium (RPE) injury associated with immune cell infiltration, the nature of immune cell responses to RPE injury remains undefined. We induced RPE injury pharmacologically and genetically in transgenic mouse models in which microglia and systemic monocytes were separately tagged, enabling a spatial and temporal dissection of the relative contributions of microglia vs. monocytes to post-injury changes. We found that myeloid cell responses to RPE injury occur in stages: (1) an early mobilization of endogenous microglia from the inner retina to the RPE layer, followed by (2) subsequent monocyte infiltration from the retinal vasculature into the inner retina that replenishes the local myeloid cell population in a CCR2-regulated manner. These altered distributions of myeloid cells post-injury were long-lived, with recruited monocytes acquiring the distribution, markers, and morphologies of neighboring endogenous microglia in a durable manner. These findings indicate the role played by infiltrating monocytes in maintaining myeloid cell homeostasis in the retina following AMD-relevant RPE injury and provide a foundation for understanding and therapeutically modulating immune aspects in retinal disease.
Collapse
Affiliation(s)
- Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yikui Zhang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chun Gao
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Johnny Tam
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Checkpoint inhibitors have been increasingly considered as new targets for cancer therapies. Patients receiving checkpoint inhibitors develop many immune-related adverse events (IRAEs). However, ophthalmic IRAEs are rare and have been reported in less than 1% of patients. To date, few case reports evaluating the ophthalmological side-effects of checkpoint inhibitors have been published. In this review, we plan to report the different ocular and orbital side-effects of the checkpoint inhibitors, and to help guide ophthalmologists and oncologists in their management. RECENT FINDINGS Ocular side-effects of checkpoint inhibitors include peripheral ulcerative keratitis, uveitis, Vogt-Koyanagi-Harada syndrome, choroidal neovascularization and melanoma-associated retinopathy. Both thyroid-associated orbitopathy and idiopathic orbital inflammation have also been reported in association with checkpoint inhibitors. Mild IRAE can be treated with topical steroids, whereas systemic corticosteroids and discontinuation of checkpoint inhibitors are indicated in more severe ocular and orbital inflammation. SUMMARY Physicians involved in the care of oncologic patients should be aware of the ocular and orbital IRAEs that may develop with checkpoint inhibitors. A strong cooperation between oncologists and ophthalmologists is required in the diagnosis and prompt management of these IRAEs.
Collapse
|
25
|
Zhao Z, Liang Y, Liu Y, Xu P, Flamme-Wiese MJ, Sun D, Sun J, Mullins RF, Chen Y, Cai J. Choroidal γδ T cells in protection against retinal pigment epithelium and retinal injury. FASEB J 2017; 31:4903-4916. [PMID: 28729290 DOI: 10.1096/fj.201700533r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
γδ T cells located near the epithelial barrier are integral components of local inflammatory and innate immune responses. We have previously reported the presence of choroidal γδ T cells in a model of chronic degeneration of the retinal pigment epithelium (RPE). The goals of the current study were to further define the functions of choroidal γδ T cells and to explore the underlying mechanisms of their action. Our data demonstrate that choroidal γδ T cells are activated by RPE injury in response to NaIO3 treatment, and that they express genes that encode immunosuppressive cytokines, such as IL-4 and IL-10. γδ-T-cell-deficient mice developed profound RPE and retinal damage at doses that caused minimal effects in wild-type mice, and adoptive transfer of γδ T cells prevented sensitization. Intravitreal injection of IL-4 and IL-10 ameliorated RPE toxicity that was induced by NaIO3Ex vivo coculture of γδ T cells with RPE explants activated the production of anti-inflammatory cytokines via an aryl hydrocarbon receptor (AhR)-dependent mechanism. AhR deficiency abolished the protective effects of γδ T cells after adoptive transfer. Collectively, these findings define important roles for choroid γδ T cells in maintaining tissue homeostasis in the outer retina.-Zhao, Z., Liang, Y., Liu, Y., Xu, P., Flamme-Wiese, M. J., Sun, D., Sun, J., Mullins, R. F., Chen, Y., Cai, J. Choroidal γδ T cells in protection against retinal pigment epithelium and retinal injury.
Collapse
Affiliation(s)
- Zhenyang Zhao
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pei Xu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Miles J Flamme-Wiese
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
| | - Deming Sun
- Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, Iowa, USA
| | - Yan Chen
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA;
| |
Collapse
|
26
|
Du Z, Wu X, Song M, Li P, Wang L. Oxidative damage induces MCP-1 secretion and macrophage aggregation in age-related macular degeneration (AMD). Graefes Arch Clin Exp Ophthalmol 2016; 254:2469-2476. [PMID: 27812755 DOI: 10.1007/s00417-016-3508-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/26/2016] [Accepted: 10/03/2016] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) is a major cause of progressive and degenerative visual impairment. Although the exact pathogenic mechanism of AMD is still unknown, clinical observations such as the high accumulation of oxidative products and macrophages in retina suggest the importance of oxidative stress and inflammation in AMD. METHODS Mouse photoreceptor-derived 661 W cells and human ARPE-19 cells were treated with oxidized phospholipids (Ox-PC) or H2O2 to mimic oxidative damage. The effect of monocyte chemoattractant protein 1 (MCP-1) secreted by retina cells on the migration of monocyte macrophage RAW 264.7 cells was determined using transwell chambers and antibody neutralization assay. MCP-1, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and vascular endothelial growth factor (VEGF) that secreted into supernatant were measured by ELISA and their intracellular expression was detected by qRT-PCR and western blot. Intracellular Ox-PC level was detected by competitive ELISA. The amount of migrated RAW 264.7 cells was counted by flow cytometry. RESULTS Oxidative damage by both H2O2 and Ox-PC induced the secretion of MCP-1 in human ARPE-19 and mouse 661 W cells. MCP-1 induced by oxidative damage enhanced the migration ability of macrophage RAW 264.7 cells and the secretion of TNF-α, IL-1β and VEGF, which could be reduced by anti-MCP-1 neutralizing antibodies. CONCLUSION The results indicated that oxidative damage increases intracellular Ox-PC and the secretion of MCP-1 in retina cells. The increased MCP-1 induced by oxidative damage attracts macrophages to retinas, and macrophages release pro-inflammatory factor and promote the process of AMD.
Collapse
Affiliation(s)
- Zhaojiang Du
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Xuemei Wu
- Department of Ophthalmology, Chinese Medicine Research Institute, Xi'an, 710003, Shannxi Province, China
| | - Meixia Song
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Department of Ophthalmology, 153rd Central Hospital of PLA, Zhengzhou, 450007, Henan Province, China
| | - Peng Li
- Department of Ophthalmology, No.451 Hospital of PLA, Xi'an, 710054, China
| | - Li Wang
- Department of Optometry, Xi'an Medical College, Xi'an, 710021, China
| |
Collapse
|
27
|
Kim HJ, Ahn SJ, Woo SJ, Hong HK, Suh EJ, Ahn J, Park JH, Ryoo NK, Lee JE, Kim KW, Park KH, Lee C. Proteomics-based identification and validation of novel plasma biomarkers phospholipid transfer protein and mannan-binding lectin serine protease-1 in age-related macular degeneration. Sci Rep 2016; 6:32548. [PMID: 27605007 PMCID: PMC5015054 DOI: 10.1038/srep32548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of severe, progressive visual loss among the elderly. There are currently no established serological markers for the diagnosis of AMD. In this study, we carried out a large-scale quantitative proteomics analysis to identify plasma proteins that could serve as potential AMD biomarkers. We found that the plasma levels of phospholipid transfer protein (PLTP) and mannan-binding lectin serine protease (MASP)-1 were increased in AMD patients relative to controls. The receiver operating characteristic curve based on data from an independent set of AMD patients and healthy controls had an area under the curve of 0.936 for PLTP and 0.716 for MASP-1, revealing excellent discrimination between the two groups. A proteogenomic combination model that incorporated PLTP and MASP-1 along with two known risk genotypes of age-related maculopathy susceptibility 2 and complement factor H genes further enhanced discriminatory power. Additionally, PLTP and MASP-1 mRNA and protein expression levels were upregulated in retinal pigment epithelial cells upon exposure to oxidative stress in vitro. These results indicate that PLTP and MASP-1 can serve as plasma biomarkers for the early diagnosis and treatment of AMD, which is critical for preventing AMD-related blindness.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Seong Joon Ahn
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Ophthalmology, Hanyang University College of Medicine, Hanyang University Hospital, Seoul, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Kyoung Hong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eui Jin Suh
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ji Hyun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Na-Kyung Ryoo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Eun Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea.,Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| |
Collapse
|
28
|
Clearance of autophagy-associated dying retinal pigment epithelial cells - a possible source for inflammation in age-related macular degeneration. Cell Death Dis 2016; 7:e2367. [PMID: 27607582 PMCID: PMC5059849 DOI: 10.1038/cddis.2016.133] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022]
Abstract
Retinal pigment epithelial (RPE) cells can undergo different forms of cell death, including autophagy-associated cell death during age-related macular degeneration (AMD). Failure of macrophages or dendritic cells (DCs) to engulf the different dying cells in the retina may result in the accumulation of debris and progression of AMD. ARPE-19 and primary human RPE cells undergo autophagy-associated cell death upon serum depletion and oxidative stress induced by hydrogen peroxide (H2O2). Autophagy was revealed by elevated light-chain-3 II (LC3-II) expression and electron microscopy, while autophagic flux was confirmed by blocking the autophago-lysosomal fusion using chloroquine (CQ) in these cells. The autophagy-associated dying RPE cells were engulfed by human macrophages, DCs and living RPE cells in an increasing and time-dependent manner. Inhibition of autophagy by 3-methyladenine (3-MA) decreased the engulfment of the autophagy-associated dying cells by macrophages, whereas sorting out the GFP-LC3-positive/autophagic cell population or treatment by the glucocorticoid triamcinolone (TC) enhanced it. Increased amounts of IL-6 and IL-8 were released when autophagy-associated dying RPEs were engulfed by macrophages. Our data suggest that cells undergoing autophagy-associated cell death engage in clearance mechanisms guided by professional and non-professional phagocytes, which is accompanied by inflammation as part of an in vitro modeling of AMD pathogenesis.
Collapse
|
29
|
Masuzzo A, Dinet V, Cavanagh C, Mascarelli F, Krantic S. Amyloidosis in Retinal Neurodegenerative Diseases. Front Neurol 2016; 7:127. [PMID: 27551275 PMCID: PMC4976396 DOI: 10.3389/fneur.2016.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023] Open
Abstract
As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer's disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer's patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer's patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a "window" to the brain.
Collapse
Affiliation(s)
- Ambra Masuzzo
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| | - Virginie Dinet
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| | - Chelsea Cavanagh
- Department of Neuroscience, Douglas Hospital Research Center , Montreal, QC , Canada
| | - Frederic Mascarelli
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| | - Slavica Krantic
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| |
Collapse
|
30
|
Macrophage polarization in experimental and clinical choroidal neovascularization. Sci Rep 2016; 6:30933. [PMID: 27489096 PMCID: PMC4973249 DOI: 10.1038/srep30933] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
Macrophages play an important role in the development of age-related macular degeneration (AMD). In this study, the spatial and temporal changes and the polarization of macrophages in murine laser-induced choroidal neovascularization (CNV) were investigated, and the polarized M1 and M2 biomarkers in the aqueous humors of neovascular AMD (nAMD) patients were studied. Macrophages, the main infiltrating inflammatory cells in CNV lesions, were evidenced by a significant increase in F4/80 mRNA expression and by the infiltration of F4/80+ cells in the lesions and the vicinity of laser-induced CNV. The mRNA expressions of M1-related markers were dramatically upregulated in the early stage, while the M2-related markers were slightly upregulated in the middle stage and sustained until the late stage. The results of immunostaining showed a similar early-but-transient M1 pattern and a delayed-but-sustained M2 pattern in laser-induced CNV. In addition, a higher M2/M1 ratio was found in both the murine models (Arg-1/iNOS and CCL22/CXCL10) and the aqueous humors of nAMD patients (CCL22/CXCL10) than in the controls. Our results suggested that the dynamic patterns of M1 and M2 were different in both the experimental and clinical CNV. The M2 macrophages were predominant and may play a more important role in the development of CNV.
Collapse
|
31
|
Myeloid-Specific Blockade of Notch Signaling Attenuates Choroidal Neovascularization through Compromised Macrophage Infiltration and Polarization in Mice. Sci Rep 2016; 6:28617. [PMID: 27339903 PMCID: PMC4919651 DOI: 10.1038/srep28617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
Macrophages have been recognized as an important inflammatory component in choroidal neovascularization (CNV). However, it is unclear how these cells are activated and polarized, how they affect angiogenesis and what the underlining mechanisms are during CNV. Notch signaling has been implicated in macrophage activation. Previously we have shown that inducible disruption of RBP-J, the critical transcription factor of Notch signaling, in adult mice results in enhanced CNV, but it is unclear what is the role of macrophage-specific Notch signaling in the development of CNV. In the current study, by using the myeloid specific RBP-J knockout mouse model combined with the laser-induced CNV model, we show that disruption of Notch signaling in macrophages displayed attenuated CNV growth, reduced macrophage infiltration and activation, and alleviated angiogenic response after laser induction. The inhibition of CNV occurred with reduced expression of VEGF and TNF-α in infiltrating inflammatory macrophages in myeloid specific RBP-J knockout mice. These changes might result in direct inhibition of EC lumen formation, as shown in an in vitro study. Therefore, clinical intervention of Notch signaling in CNV needs to pinpoint myeloid lineage to avoid the counteractive effects of global inhibition.
Collapse
|
32
|
Dardik R, Livnat T, Halpert G, Jawad S, Nisgav Y, Azar-Avivi S, Liu B, Nussenblatt RB, Weinberger D, Sredni B. The small tellurium-based compound SAS suppresses inflammation in human retinal pigment epithelium. Mol Vis 2016; 22:548-62. [PMID: 27293373 PMCID: PMC4889158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/26/2016] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Pathological angiogenesis and chronic inflammation greatly contribute to the development of choroidal neovascularization (CNV) in chorioretinal diseases involving abnormal contact between retinal pigment epithelial (RPE) and endothelial cells (ECs), associated with Bruch's membrane rupture. We explored the ability of the small organotellurium compound octa-O-bis-(R,R)-tartarate ditellurane (SAS) to mitigate inflammatory processes in human RPE cells. METHODS Cell adhesion assays and analyses of gene and protein expression were used to examine the effect of SAS on ARPE-19 cells or primary human RPE cells that were grown alone or in an RPE-EC co-culture. RESULTS Adhesion assays showed that SAS inhibited αv integrins expressed on RPE cells. Co-cultures of RPE cells with ECs significantly reduced the gene expression of PEDF, as compared to RPE cells cultured alone. Both SAS and the anti-αvβ3 antibody LM609 significantly enhanced the production of PEDF at both mRNA and protein levels in RPE cells. RPE cells co-cultured with EC exhibited increased gene expression of CXCL5, COX1, MMP2, IGF1, and IL8, all of which are involved in both angiogenesis and inflammation. The enhanced expression of these genes was greatly suppressed by SAS, but interestingly, remained unaffected by LM609. Zymography assay showed that SAS reduced the level of MMP-2 activity in RPE cells. We also found that SAS significantly suppressed IL-1β-induced IL-6 expression and secretion from RPE cells by reducing the protein levels of phospho-IkappaBalpha (pIκBα). CONCLUSIONS Our results suggest that SAS is a promising anti-inflammatory agent in RPE cells, and may be an effective therapeutic approach for controlling chorioretinal diseases.
Collapse
Affiliation(s)
- Rima Dardik
- Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, Israel,Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Tami Livnat
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Gilad Halpert
- C.A.I.R. Institute, The Safdié AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shayma Jawad
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Yael Nisgav
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Shirley Azar-Avivi
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Baoying Liu
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Robert B. Nussenblatt
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Dov Weinberger
- Laboratory of Eye Research, Felsenstein Medical Research Center, Petach Tikva, Israel,Department of Ophthalmology, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Sredni
- C.A.I.R. Institute, The Safdié AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
33
|
Role of Chemokines in Shaping Macrophage Activity in AMD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:11-6. [PMID: 26427387 DOI: 10.1007/978-3-319-17121-0_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Age-related macular degeneration (AMD) is a multifactorial disorder that affects millions of individuals worldwide. While the advent of anti-VEGF therapy has allowed for effective treatment of neovascular 'wet' AMD, no treatments are available to mitigate the more prevalent 'dry' forms of the disease. A role for inflammatory processes in the progression of AMD has emerged over a period of many years, particularly the characterisation of leukocyte infiltrates in AMD-affected eyes, as well as in animal models. This review focuses on the burgeoning understanding of chemokines in the retina, and their potential role in shaping the recruitment and activation of macrophages in AMD. Understanding the mechanisms which promote macrophage activity in the degenerating retina may be key to controlling the potentially devastating consequences of inflammation in diseases such as AMD.
Collapse
|
34
|
Hytti M, Tokarz P, Määttä E, Piippo N, Korhonen E, Suuronen T, Honkakoski P, Kaarniranta K, Lahtela-Kakkonen M, Kauppinen A. Inhibition of BET bromodomains alleviates inflammation in human RPE cells. Biochem Pharmacol 2016; 110-111:71-9. [PMID: 27106081 DOI: 10.1016/j.bcp.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
Abstract
Bromodomain-containing proteins are vital for controlling the expression of many pro-inflammatory genes. Consequently, compounds capable of inhibiting specific bromodomain-facilitated protein-protein interactions would be predicted to alleviate inflammation, making them valuable agents in the treatment of diseases caused by dysregulated inflammation, such as age-related macular degeneration. Here, we assessed the ability of known inhibitors JQ-1, PFI-1, and IBET-151 to protect from the inflammation and cell death caused by etoposide exposure in the human retinal pigment epithelial cell line, ARPE-19. The potential anti-inflammatory effects of the bromodomain inhibitors were assessed by ELISA (enzyme-linked immunosorbent assay) profiling. The involvement of NF-κB and SIRT1 in inflammatory signaling was monitored by ELISA and western blotting. Furthermore, SIRT1 was knocked down using a specific siRNA or inhibited by EX-527 to elucidate its role in the inflammatory reaction. The bromodomain inhibitors effectively decreased etoposide-induced release of IL-6 and IL-8. This anti-inflammatory effect was not related to SIRT1 activity, although all bromodomain inhibitors decreased the extent of acetylation of p53 at the SIRT1 deacetylation site. Overall, since bromodomain inhibitors display anti-inflammatory properties in human retinal pigment epithelial cells, these compounds may represent a new way of alleviating the inflammation underlying the onset of age-related macular degeneration.
Collapse
Affiliation(s)
- M Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - P Tokarz
- Department of Molecular Genetics, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - E Määttä
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - N Piippo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - E Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - T Suuronen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - P Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - K Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - M Lahtela-Kakkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - A Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland.
| |
Collapse
|
35
|
Fernando N, Natoli R, Valter K, Provis J, Rutar M. The broad-spectrum chemokine inhibitor NR58-3.14.3 modulates macrophage-mediated inflammation in the diseased retina. J Neuroinflammation 2016; 13:47. [PMID: 26911327 PMCID: PMC4765229 DOI: 10.1186/s12974-016-0514-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Background The activity of macrophages is implicated in the progression of retinal pathologies such as atrophic age-related macular degeneration (AMD), where they accumulate among the photoreceptor layer and subretinal space. This process is aided by the local expression of chemokines, which furnish these cells with directional cues that augment their migration to areas of retinal injury. While these qualities make chemokines a potential therapeutic target in curtailing damaging retinal inflammation, their wide variety and signalling redundancy pose challenges in broadly modulating their activity. Here, we examine the efficacy of the broad-spectrum chemokine inhibitor NR58-3.14.3—a suppressor of Ccl- and Cxcl- chemokine pathways—in suppressing macrophage activity and photoreceptor death, using a light-induced model of outer retinal atrophy and inflammation. Methods Photo-oxidative damage was induced in SD rats via exposure to 1000 lux of light for 24 h, after which animals were euthanized at 0- or 7-day post-exposure time points. Prior to damage, NR58-3.14.3 was injected intravitreally. Retinas were harvested and evaluated for the effect of NR58-3.14.3 on subretinal macrophage accumulation and cytokine expression profile, as well as photoreceptor degeneration. Results We report that intravitreal administration of NR58-3.14.3 reduces the accumulation of macrophages in the outer retina following exposure to light damage, at both 0- and 7-day post-exposure time points. Injection of NR58-3.14.3 also reduced the up-regulation of inflammatory markers including of Il6, Ccl3, and Ccl4 in infiltrating macrophages, which are promoters of their pathogenic activity in the retina. Finally, NR58-3.14.3-injected retinas displayed markedly reduced photoreceptor death following light damage, at both 0 and 7 days post-exposure. Conclusions Our findings indicate that NR58-3.14.3 is effective in inhibiting subretinal macrophage accumulation in light-induced retinal degeneration and illustrate the potential of broad-spectrum chemokine inhibitors as novel therapeutic agents in thwarting retinal inflammation. Although broad-spectrum chemokine inhibitors may not be appropriate for all retinal inflammatory conditions, our results suggest that they may be beneficial for retinal dystrophies in which chemokine expression and subretinal macrophage accumulation are implicated, such as advanced AMD.
Collapse
Affiliation(s)
- Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia.,ANU Medical School, The Australian National University, Canberra, Australia
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia.,ANU Medical School, The Australian National University, Canberra, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia.,ANU Medical School, The Australian National University, Canberra, Australia
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University, Building 131, Garran Rd, Canberra, ACT, 2601, Australia.
| |
Collapse
|
36
|
Choudhary M, Malek G. A Brief Discussion on Lipid Activated Nuclear Receptors and their Potential Role in Regulating Microglia in Age-Related Macular Degeneration (AMD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:45-51. [PMID: 26427392 DOI: 10.1007/978-3-319-17121-0_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of legal blindness and visual impairment in individuals over 60 years of age in the Western World. A common morphological denominator in all forms of AMD is the accumulation of microglia within the sub-retinal space, which is believed to be a contributing factor to AMD progression. However, the signaling pathway and molecular players regulating microglial recruitment have not been completely identified. Multiple in-vitro and in-vivo studies, to date, have highlighted the contributions of nuclear receptor ligands in the treatment of inflammation related disorders such as atherosclerosis and Alzheimer's disease. Given that inflammation and the immune response play a vital role in the initiation and progression of AMD, in this brief review we will highlight some of these studies with a particular focus on the lipid activated "adopted orphan" nuclear receptors, the liver x receptors (LXRs) and the peroxisome proliferator-activated receptors (PPARs). The results of these studies strongly support the rationale that treatment with LXR and PPAR ligands may ameliorate microglial activation in the sub-retinal space and ultimately slow down or reverse the progression of AMD.
Collapse
Affiliation(s)
- Mayur Choudhary
- Departments of Ophthalmology and Pathology, Albert Eye Research Institute, Duke University, 2351 Erwin Road, AERI Room 4000, 27710, Durham, NC, USA.
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, 2351 Erwin Road, AERI Room 4006, 27710, Durham, NC, USA.
| |
Collapse
|
37
|
Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Exp Eye Res 2016; 142:19-25. [PMID: 25773985 PMCID: PMC4568171 DOI: 10.1016/j.exer.2015.03.009] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022]
Abstract
Subretinal fibrosis is a result of a wound healing response that follows choroidal neovascularization in neovascular age-related macular degeneration (nAMD). Although anti-vascular endothelial growth factor therapy has become a standard treatment that improves visual acuity in many nAMD patients, unsuccessful treatment outcomes have often been attributed to the progression of subretinal fibrosis. In this review, we summarize the cellular and extracellular components of subretinal fibrous membranes and also discuss the possible molecular mechanisms including the functional involvement of growth factors and the inflammatory response in the process. Moreover, we present an murine animal model of subretinal fibrosis that might facilitate greater understanding of the pathophysiology and the development of novel therapeutic strategies for the inhibition of subretinal fibrosis in nAMD.
Collapse
Affiliation(s)
- Keijiro Ishikawa
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, USA
| | - David R Hinton
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Iannaccone A, Giorgianni F, New DD, Hollingsworth TJ, Umfress A, Alhatem AH, Neeli I, Lenchik NI, Jennings BJ, Calzada JI, Satterfield S, Mathews D, Diaz RI, Harris T, Johnson KC, Charles S, Kritchevsky SB, Gerling IC, Beranova-Giorgianni S, Radic MZ. Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis. PLoS One 2015; 10:e0145323. [PMID: 26717306 PMCID: PMC4696815 DOI: 10.1371/journal.pone.0145323] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We investigated sera from elderly subjects with and without age-related macular degeneration (AMD) for presence of autoantibodies (AAbs) against human macular antigens and characterized their identity. METHODS Sera were collected from participants in the Age-Related Maculopathy Ancillary (ARMA) Study, a cross-sectional investigation ancillary to the Health ABC Study, enriched with participants from the general population. The resulting sample (mean age: 79.2±3.9 years old) included subjects with early to advanced AMD (n = 131) and controls (n = 231). Sera were tested by Western blots for immunoreactive bands against human donor macular tissue homogenates. Immunoreactive bands were identified and graded, and odds ratios (OR) calculated. Based on these findings, sera were immunoprecipitated, and subjected to 2D gel electrophoresis (GE). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify the targets recognized by circulating AAbs seen on 2D-GE, followed by ELISAs with recombinant proteins to confirm LC-MS/MS results, and quantify autoreactivities. RESULTS In AMD, 11 immunoreactive bands were significantly more frequent and 13 were significantly stronger than in controls. Nine of the more frequent bands also showed stronger reactivity. OR estimates ranged between 4.06 and 1.93, and all clearly excluded the null value. Following immunoprecipitation, 2D-GE and LC-MS/MS, five of the possible autoreactivity targets were conclusively identified: two members of the heat shock protein 70 (HSP70) family, HSPA8 and HSPA9; another member of the HSP family, HSPB4, also known as alpha-crystallin A chain (CRYAA); Annexin A5 (ANXA5); and Protein S100-A9, also known as calgranulin B that, when complexed with S100A8, forms calprotectin. ELISA testing with recombinant proteins confirmed, on average, significantly higher reactivities against all targets in AMD samples compared to controls. CONCLUSIONS Consistent with other evidence supporting the role of inflammation and the immune system in AMD pathogenesis, AAbs were identified in AMD sera, including early-stage disease. Identified targets may be mechanistically linked to AMD pathogenesis because the identified proteins are implicated in autophagy, immunomodulation, and protection from oxidative stress and apoptosis. In particular, a role in autophagy activation is shared by all five autoantigens, raising the possibility that the detected AAbs may play a role in AMD via autophagy compromise and downstream activation of the inflammasome. Thus, we propose that the detected AAbs provide further insight into AMD pathogenesis and have the potential to contribute to disease biogenesis and progression.
Collapse
Affiliation(s)
- Alessandro Iannaccone
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| | - Francesco Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - David D. New
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - T. J. Hollingsworth
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Allison Umfress
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Albert H. Alhatem
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Indira Neeli
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Nataliya I. Lenchik
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Department of Internal Medicine/Endocrinology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Barbara J. Jennings
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Jorge I. Calzada
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Dennis Mathews
- Eye Specialty Group, Memphis, TN, United States of America
- Southern College of Optometry, Memphis, TN, United States of America
| | - Rocio I. Diaz
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Tamara Harris
- National Institute on Aging, NIH, Bethesda, MD, United States of America
| | - Karen C. Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Steve Charles
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Charles Retina Institute, Memphis, TN, United States of America
| | - Stephen B. Kritchevsky
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
- Sticht Center on Aging, Wake Forest University, Winston-Salem, NC, United States of America
| | - Ivan C. Gerling
- Department of Internal Medicine/Endocrinology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sarka Beranova-Giorgianni
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Marko Z. Radic
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | | |
Collapse
|
39
|
Dib B, Lin H, Maidana DE, Tian B, Miller JB, Bouzika P, Miller JW, Vavvas DG. Mitochondrial DNA has a pro-inflammatory role in AMD. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2897-906. [PMID: 26305120 PMCID: PMC5330253 DOI: 10.1016/j.bbamcr.2015.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly of industrialized nations, and there is increasing evidence to support a role for chronic inflammation in its pathogenesis. Mitochondrial DNA (mtDNA) has been recently reported to be pro-inflammatory in various diseases such as Alzheimer's and heart failure. Here, we report that intracellular mtDNA induces ARPE-19 cells to secrete inflammatory cytokines IL-6 and IL-8, which have been consistently associated with AMD onset and progression. The induction was dependent on the size of mtDNA, but not on specific sequence. Oxidative stress plays a major role in the development of AMD, and our findings indicate that mtDNA induces IL-6 and IL-8 more potently when oxidized. Cytokine induction was mediated by STING (Stimulator of Interferon Genes) and NF-κB as evidenced by abrogation of the cytokine response with the use of specific inhibitors (siRNA and BAY 11-7082, respectively). Finally, mtDNA primed the NLRP3 inflammasome. This study contributes to our understanding of the potential pro-inflammatory role of mtDNA in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Bernard Dib
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Daniel E Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - John B Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Peggy Bouzika
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Joan W Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
40
|
Complement pathway biomarkers and age-related macular degeneration. Eye (Lond) 2015; 30:1-14. [PMID: 26493033 DOI: 10.1038/eye.2015.203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023] Open
Abstract
In the age-related macular degeneration (AMD) 'inflammation model', local inflammation plus complement activation contributes to the pathogenesis and progression of the disease. Multiple genetic associations have now been established correlating the risk of development or progression of AMD. Stratifying patients by their AMD genetic profile may facilitate future AMD therapeutic trials resulting in meaningful clinical trial end points with smaller sample sizes and study duration.
Collapse
|
41
|
Hytti M, Piippo N, Salminen A, Honkakoski P, Kaarniranta K, Kauppinen A. Quercetin alleviates 4-hydroxynonenal-induced cytotoxicity and inflammation in ARPE-19 cells. Exp Eye Res 2015; 132:208-15. [PMID: 25662315 DOI: 10.1016/j.exer.2015.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/09/2015] [Accepted: 02/03/2015] [Indexed: 02/01/2023]
Abstract
Retinal pigment epithelium (RPE) plays the principal role in age-related macular degeneration (AMD), a progressive eye disease with no cure and limited therapeutical options. In the pathogenesis of AMD, degeneration of RPE cells by multiple factors including increased oxidative stress and chronic inflammation precedes the irreversible loss of photoreceptors and central vision. Here, we report that the plant-derived polyphenol, quercetin, increases viability and decreases inflammation in stressed human ARPE-19 cells after exposure to the lipid peroxidation end product 4-hydroxynonenal (HNE). Several previous studies have been conducted using the direct oxidant H2O2 but we preferred HNE since natural characteristics predispose RPE cells to the type of oxidative damage evoked by lipid peroxidation. Quercetin improved cell membrane integrity and mitochondrial function as assessed in LDH and MTT tests. Decreased production of proinflammatory mediators IL-6, IL-8, and MCP-1 were indicated at the RNA level by qPCR and at the protein level by the ELISA technique. In addition, we probed the signaling behind the effects and observed that p38 and ERK MAPK pathways, and CREB signaling are regulated by quercetin in ARPE-19 cells. In conclusion, our present data suggests that HNE is highly toxic to serum-starved ARPE-19 cells but quercetin is able to reverse these adverse effects even when administered after an oxidative insult.
Collapse
Affiliation(s)
- Maria Hytti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland.
| | - Niina Piippo
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland.
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O.B. 100, FI-70029 KYS, Finland.
| | - Paavo Honkakoski
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, P.O.B. 1627, FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, FI-70029 KYS, Finland.
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O.B. 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, FI-70029 KYS, Finland.
| |
Collapse
|
42
|
Genome-wide association studies: getting to pathogenesis, the role of inflammation/complement in age-related macular degeneration. Cold Spring Harb Perspect Med 2014; 4:a017186. [PMID: 25213188 DOI: 10.1101/cshperspect.a017186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Age-related macular degeneration (AMD) is a chronic, degenerative, and significant cause of visual impairment and blindness in the elderly. Genetic and epidemiological studies have confirmed that AMD has a strong genetic component, which has encouraged the application of increasingly sophisticated genetic techniques to uncover the important underlying genetic variants. Although various genes and pathways have been implicated in the risk for AMD, complement activation has been emphasized repeatedly throughout the literature as having a major role both physiologically and genetically in susceptibility to and pathogenesis of this disease. This article explores the research efforts that brought about the discovery and characterization of the role of inflammatory and immune processes (specifically complement) in AMD. The focus herein is on the genetic evidence for the role of complement in AMD as supported specifically by genome-wide association (GWA) studies, which interrogate hundreds of thousands of variants across the genome in a hypothesis-free approach, and other genetic interrogation methods.
Collapse
|
43
|
Fang IM, Yang CH, Yang CM. Docosahexaenoic acid reduces linoleic acid induced monocyte chemoattractant protein-1 expression via PPARγ and nuclear factor-κB pathway in retinal pigment epithelial cells. Mol Nutr Food Res 2014; 58:2053-65. [DOI: 10.1002/mnfr.201400196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/02/2014] [Accepted: 06/13/2014] [Indexed: 12/31/2022]
Affiliation(s)
- I-Mo Fang
- Department of Ophthalmology; Taipei City Hospital; Zhongxiao Branch; Taipei Taiwan
- Department of Ophthalmology; National Taiwan University Hospital; Taipei Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology; National Taiwan University Hospital; Taipei Taiwan
| | - Chung-May Yang
- Department of Ophthalmology; National Taiwan University Hospital; Taipei Taiwan
| |
Collapse
|
44
|
Age-related macular degeneration in the aspect of chronic low-grade inflammation (pathophysiological parainflammation). Mediators Inflamm 2014; 2014:930671. [PMID: 25214719 PMCID: PMC4152952 DOI: 10.1155/2014/930671] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/21/2014] [Accepted: 08/03/2014] [Indexed: 12/12/2022] Open
Abstract
The products of oxidative stress trigger chronic low-grade inflammation (pathophysiological parainflammation) process in AMD patients. In early AMD, soft drusen contain many mediators of chronic low-grade inflammation such as C-reactive protein, adducts of the carboxyethylpyrrole protein, immunoglobulins, and acute phase molecules, as well as the complement-related proteins C3a, C5a, C5, C5b-9, CFH, CD35, and CD46. The complement system, mainly alternative pathway, mediates chronic autologous pathophysiological parainflammation in dry and exudative AMD, especially in the Y402H gene polymorphism, which causes hypofunction/lack of the protective complement factor H (CFH) and facilitates chronic inflammation mediated by C-reactive protein (CRP). Microglial activation induces photoreceptor cells injury and leads to the development of dry AMD. Many autoantibodies (antibodies against alpha beta crystallin, alpha-actinin, amyloid, C1q, chondroitin, collagen I, collagen III, collagen IV, elastin, fibronectin, heparan sulfate, histone H2A, histone H2B, hyaluronic acid, laminin, proteoglycan, vimentin, vitronectin, and aldolase C and pyruvate kinase M2) and overexpression of Fcc receptors play role in immune-mediated inflammation in AMD patients and in animal model. Macrophages infiltration of retinal/choroidal interface acts as protective factor in early AMD (M2 phenotype macrophages); however it acts as proinflammatory and proangiogenic factor in advanced AMD (M1 and M2 phenotype macrophages).
Collapse
|
45
|
Chen X, Jhanji V, Chen C, Chen H. Serological association of Chlamydia pneumoniae infection with age-related macular degeneration: a systematic review and meta-analysis. PLoS One 2014; 9:e103466. [PMID: 25062085 PMCID: PMC4111616 DOI: 10.1371/journal.pone.0103466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 07/03/2014] [Indexed: 11/22/2022] Open
Abstract
Background We investigated the serological association of Chlamydia pneumoniae infection with age-related macular degeneration (AMD). Methods A systematic review and meta-analysis was performed. PubMed, Embase, Web of Science and the Association of Research in Vision and Ophthalmology abstracts were searched to identify studies investigating the serological association of Chlamydia pneumoniae infection with age-related macular degeneration. The quality of original studies was assessed using the Newcastle-Ottawa scale. Heterogeneity was explored with meta-regression. The odds ratios (ORs) and standardized mean differences (SMD) of Chlamydia pneumoniae infection between AMD patients and controls were pooled. Results In total, 9 studies met the inclusion criteria using the Newcastle-Ottawa scale scores ranging from 4 to 9. There was heterogeneity among studies due to a difference in the study designs and measurement of exposure to Chlamydia pneumoniae infection. The overall OR of Chlamydia pneumoniae infection with AMD was 1.11 (95% confidence interval: 0.78–1.57, P = 0.56). The overall SMD of antibody titer between AMD and control was 0.43 (95% confidence interval: −0.12 to 0.99, P = 0.13). Conclusions Evidence from the current published literature suggested no statistically significant association between Chlamydia pneumoniae infection and AMD.
Collapse
Affiliation(s)
- Xueyu Chen
- Department of Emergency Medicine, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University Shantou, Shantou, China
| | - Vishal Jhanji
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Chupeng Chen
- Department of Emergency Medicine, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University Shantou, Shantou, China
- * E-mail: (HC); (CC)
| | - Haoyu Chen
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, China
- * E-mail: (HC); (CC)
| |
Collapse
|
46
|
The impact of the human genome project on complex disease. Genes (Basel) 2014; 5:518-35. [PMID: 25032678 PMCID: PMC4198915 DOI: 10.3390/genes5030518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/03/2014] [Accepted: 06/24/2014] [Indexed: 02/06/2023] Open
Abstract
In the decade that has passed since the initial release of the Human Genome, numerous advancements in science and technology within and beyond genetics and genomics have been encouraged and enhanced by the availability of this vast and remarkable data resource. Progress in understanding three common, complex diseases: age-related macular degeneration (AMD), Alzheimer's disease (AD), and multiple sclerosis (MS), are three exemplars of the incredible impact on the elucidation of the genetic architecture of disease. The approaches used in these diseases have been successfully applied to numerous other complex diseases. For example, the heritability of AMD was confirmed upon the release of the first genome-wide association study (GWAS) along with confirmatory reports that supported the findings of that state-of-the art method, thus setting the foundation for future GWAS in other heritable diseases. Following this seminal discovery and applying it to other diseases including AD and MS, the genetic knowledge of AD expanded far beyond the well-known APOE locus and now includes more than 20 loci. MS genetics saw a similar increase beyond the HLA loci and now has more than 100 known risk loci. Ongoing and future efforts will seek to define the remaining heritability of these diseases; the next decade could very well hold the key to attaining this goal.
Collapse
|
47
|
Hu Y, Lin H, Dib B, Atik A, Bouzika P, Lin C, Yan Y, Tang S, Miller JW, Vavvas DG. Cholesterol crystals induce inflammatory cytokines expression in a human retinal pigment epithelium cell line by activating the NF-κB pathway. DISCOVERY MEDICINE 2014; 18:7-14. [PMID: 25091484 PMCID: PMC5330255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE To investigate the expression of inflammatory cytokines in ARPE-19 cells after stimulation with cholesterol crystals. METHODS APRE-19 cells were cultured, primed with IL-1α, and treated with cholesterol crystals under different concentrations. Inflammatory cytokines (mature-IL-1β, IL-6, and IL-8) in supernatant and inflammatory cytokines (pro-IL-1β, IL-18) in cell lysate were detected by western blot. The NF-κB pathway inhibitor BAY 11-7082 was used to determine the pathway of cytokine expression. RESULTS Cholesterol crystals did not induce the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome, but did increase pro-IL-1β expression in ARPE-19 cells. Cholesterol crystals increased pro-IL-1β expression by activating the NF-κB pathway. Cholesterol crystal activation of the NF-κB pathway also leads to increased IL-6 and IL-8 expression. CONCLUSION Cholesterol crystals can induce inflammatory cytokine expression in ARPE-19 cells by activating the NF-κB pathway.
Collapse
Affiliation(s)
- Yijun Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China and Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Haijiang Lin
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Bernard Dib
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Alp Atik
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Peggy Bouzika
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Lin
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Yueran Yan
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, 410015, China
| | - Joan W Miller
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
48
|
Malik D, Hsu T, Falatoonzadeh P, Cáceres-del-Carpio J, Tarek M, Chwa M, Atilano SR, Ramirez C, Nesburn AB, Boyer DS, Kuppermann BD, Jazwinski SM, Miceli MV, Wallace DC, Udar N, Kenney MC. Human retinal transmitochondrial cybrids with J or H mtDNA haplogroups respond differently to ultraviolet radiation: implications for retinal diseases. PLoS One 2014; 9:e99003. [PMID: 24919117 PMCID: PMC4053329 DOI: 10.1371/journal.pone.0099003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/08/2014] [Indexed: 01/04/2023] Open
Abstract
Background It has been recognized that cells do not respond equally to ultraviolet (UV) radiation but it is not clear whether this is due to genetic, biochemical or structural differences of the cells. We have a novel cybrid (cytoplasmic hybrids) model that allows us to analyze the contribution of mitochondrial DNA (mtDNA) to cellular response after exposure to sub-lethal dose of UV. mtDNA can be classified into haplogroups as defined by accumulations of specific single nucleotide polymorphisms (SNPs). Recent studies have shown that J haplogroup is high risk for age-related macular degeneration while the H haplogroup is protective. This study investigates gene expression responses in J cybrids versus H cybrids after exposure to sub-lethal doses of UV-radiation. Methodology/Principal Findings Cybrids were created by fusing platelets isolated from subjects with either H (n = 3) or J (n = 3) haplogroups with mitochondria-free (Rho0) ARPE-19 cells. The H and J cybrids were cultured for 24 hours, treated with 10 mJ of UV-radiation and cultured for an additional 120 hours. Untreated and treated cybrids were analyzed for growth rates and gene expression profiles. The UV-treated and untreated J cybrids had higher growth rates compared to H cybrids. Before treatment, J cybrids showed lower expression levels for CFH, CD55, IL-33, TGF-A, EFEMP-1, RARA, BCL2L13 and BBC3. At 120 hours after UV-treatment, the J cybrids had decreased CFH, RARA and BBC3 levels but increased CD55, IL-33 and EFEMP-1 compared to UV-treated H cybrids. Conclusion/Significance In cells with identical nuclei, the cellular response to sub-lethal UV-radiation is mediated in part by the mtDNA haplogroup. This supports the hypothesis that differences in growth rates and expression levels of complement, inflammation and apoptosis genes may result from population-specific, hereditary SNP variations in mtDNA. Therefore, when analyzing UV-induced damage in tissues, the mtDNA haplogroup background may be important to consider.
Collapse
Affiliation(s)
- Deepika Malik
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Tiffany Hsu
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Payam Falatoonzadeh
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Javier Cáceres-del-Carpio
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Mohamed Tarek
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
- Department of Ophthalmology, El-Minya University, El-Minya, Egypt
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Shari R. Atilano
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Claudio Ramirez
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Anthony B. Nesburn
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - David S. Boyer
- Retina-Vitreous Associates Medical Group; Beverly Hills, California, United States of America
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University, New Orleans, Louisiana, United States of America
| | - Michael V. Miceli
- Tulane Center for Aging, Tulane University, New Orleans, Louisiana, United States of America
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nitin Udar
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
- Department of Pathology and Laboratory Medicine, University California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Rutar M, Valter K, Natoli R, Provis JM. Synthesis and propagation of complement C3 by microglia/monocytes in the aging retina. PLoS One 2014; 9:e93343. [PMID: 24705166 PMCID: PMC3976274 DOI: 10.1371/journal.pone.0093343] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/05/2014] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and localization of C3, a crucial component of the complement system, in the retina during the course of aging. METHODS SD rats were born and reared in low-light conditions, and euthanized at post-natal (P) days 100, 450, or 750. Expression of C3, IBA1, and Ccl- and Cxcl- chemokines was assessed by qPCR, and in situ hybridization. Thickness of the ONL was assessed in retinal sections as a measure of photoreceptor loss, and counts were made of C3-expressing monocytes. RESULTS C3 expression increased significantly at P750, and correlated with thinning of the ONL, at P750, and up-regulation of GFAP. In situ hybridization showed that C3 was expressed by microglia/monocytes, mainly from within the retinal vasculature, and occasionally the ONL. The number of C3-expressing microglia increased significantly by P750, and coincided spatiotemporally with thinning of the ONL, and up-regulation of Ccl- and Cxcl- chemokines. CONCLUSIONS Our data suggest that recruited microglia/monocytes contribute to activation of complement in the aging retina, through local expression of C3 mRNA. C3 expression coincides with age-related thinning of the ONL at P750, although it is unclear whether the C3-expressing monocytes are a cause or consequence. These findings provide evidence of activation of complement during natural aging, and may have relevance to cellular events underling the pathogenesis of age-related retinal diseases.
Collapse
Affiliation(s)
- Matt Rutar
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
- * E-mail:
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
- ANU Medical School, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
- ANU Medical School, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Jan M. Provis
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
- ANU Medical School, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| |
Collapse
|
50
|
Intravitreal injection of 99Tc-MDP inhibits the development of laser-induced choroidal neovascularization in rhesus monkeys. Graefes Arch Clin Exp Ophthalmol 2014; 252:1049-57. [DOI: 10.1007/s00417-013-2559-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022] Open
|