1
|
Amini J, Sanchooli N, Milajerdi MH, Baeeri M, Haddadi M, Sanadgol N. The interplay between tauopathy and aging through interruption of UPR/Nrf2/autophagy crosstalk in the Alzheimer's disease transgenic experimental models. Int J Neurosci 2024; 134:1049-1067. [PMID: 37132251 DOI: 10.1080/00207454.2023.2210409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/14/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Alzheimer's disease (AD) is the most common form of tauopathy that usually occursduring aging and unfolded protein response (UPR), oxidative stress and autophagy play a crucialrole in tauopathy-induced neurotoxicity. The aim of this study was to investigate the effects oftauopathy on normal brain aging in a Drosophila model of AD. METHOD We investigated the interplay between aging (10, 20, 30, and 40 days) and human tauR406W (htau)-induced cell stress in transgenic fruit flies. RESULTS Tauopathy caused significant defects in eye morphology, a decrease in motor function and olfactory memory performance (after 20 days), and an increase in ethanol sensitivity (after 30 days). Our results showed a significant increase in UPR (GRP78 and ATF4), redox signalling (p-Nrf2, total GSH, total SH, lipid peroxidation, and antioxidant activity), and regulatory associated protein of mTOR complex 1 (p-Raptor) activity in the control group after 40 days, while the tauopathy model flies showed an advanced increase in the above markers at 20 days of age. Interestingly, only the control flies showed reduced autophagy by a significant decrease in the autophagosome formation protein (dATG1)/p-Raptor ratio at 40 days of age. Our results were also confirmed by bioinformatic analysis of microarray data from tauPS19 transgenic mice (3, 6, 9, and 12 months), in which tauopathy increased expression of heme oxygenase 1, and glutamate-cysteine ligase catalytic subunit and promote aging in transgenic animals. CONCLUSIONS Overall, we suggest that the neuropathological effects of tau aggregates may be accelerated brain aging, where redox signaling and autophagy efficacy play an important role.
Collapse
Affiliation(s)
- Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Naser Sanchooli
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | | | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
2
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|
3
|
Catterson JH, Minkley L, Aspe S, Judd-Mole S, Moura S, Dyson MC, Rajasingam A, Woodling NS, Atilano ML, Ahmad M, Durrant CS, Spires-Jones TL, Partridge L. Protein retention in the endoplasmic reticulum rescues Aβ toxicity in Drosophila. Neurobiol Aging 2023; 132:154-174. [PMID: 37837732 PMCID: PMC10940166 DOI: 10.1016/j.neurobiolaging.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Amyloid β (Aβ) accumulation is a hallmark of Alzheimer's disease. In adult Drosophila brains, human Aβ overexpression harms climbing and lifespan. It's uncertain whether Aβ is intrinsically toxic or activates downstream neurodegeneration pathways. Our study uncovers a novel protective role against Aβ toxicity: intra-endoplasmic reticulum (ER) protein accumulation with a focus on laminin and collagen subunits. Despite high Aβ, laminin B1 (LanB1) overexpression robustly counters toxicity, suggesting a potential Aβ resistance mechanism. Other laminin subunits and collagen IV also alleviate Aβ toxicity; combining them with LanB1 augments the effect. Imaging reveals ER retention of LanB1 without altering Aβ secretion. LanB1's rescue function operates independently of the IRE1α/XBP1 ER stress response. ER-targeted GFP overexpression also mitigates Aβ toxicity, highlighting broader ER protein retention advantages. Proof-of-principle tests in murine hippocampal slices using mouse Lamb1 demonstrate ER retention in transduced cells, indicating a conserved mechanism. Though ER protein retention generally harms, it could paradoxically counter neuronal Aβ toxicity, offering a new therapeutic avenue for Alzheimer's disease.
Collapse
Affiliation(s)
- James H Catterson
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Lucy Minkley
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Salomé Aspe
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Sebastian Judd-Mole
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Sofia Moura
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Miranda C Dyson
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Arjunan Rajasingam
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Nathaniel S Woodling
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Mumtaz Ahmad
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.
| |
Collapse
|
4
|
Sziraki A, Lu Z, Lee J, Banyai G, Anderson S, Abdulraouf A, Metzner E, Liao A, Banfelder J, Epstein A, Schaefer C, Xu Z, Zhang Z, Gan L, Nelson PT, Zhou W, Cao J. A global view of aging and Alzheimer's pathogenesis-associated cell population dynamics and molecular signatures in human and mouse brains. Nat Genet 2023; 55:2104-2116. [PMID: 38036784 PMCID: PMC10703679 DOI: 10.1038/s41588-023-01572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Conventional methods fall short in unraveling the dynamics of rare cell types related to aging and diseases. Here we introduce EasySci, an advanced single-cell combinatorial indexing strategy for exploring age-dependent cellular dynamics in the mammalian brain. Profiling approximately 1.5 million single-cell transcriptomes and 400,000 chromatin accessibility profiles across diverse mouse brains, we identified over 300 cell subtypes, uncovering their molecular characteristics and spatial locations. This comprehensive view elucidates rare cell types expanded or depleted upon aging. We also investigated cell-type-specific responses to genetic alterations linked to Alzheimer's disease, identifying associated rare cell types. Additionally, by profiling 118,240 human brain single-cell transcriptomes, we discerned cell- and region-specific transcriptomic changes tied to Alzheimer's pathogenesis. In conclusion, this research offers a valuable resource for probing cell-type-specific dynamics in both normal and pathological aging.
Collapse
Affiliation(s)
- Andras Sziraki
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Ziyu Lu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Jasper Lee
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Gabor Banyai
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Sonya Anderson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Abdulraouf Abdulraouf
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Eli Metzner
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Andrew Liao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Jason Banfelder
- High Performance Computing Resource Center, The Rockefeller University, New York, NY, USA
| | - Alexander Epstein
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Chloe Schaefer
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
| | - Zihan Xu
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Zehao Zhang
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Peter T Nelson
- Department of Pathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Wei Zhou
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| | - Junyue Cao
- Laboratory of Single Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Saha D, Paul S, Gaharwar U, Priya A, Neog A, Singh A, Bk B. Cdk5-Mediated Brain Unfolded Protein Response Upregulation Associated with Cognitive Impairments in Type 2 Diabetes and Ameliorative Action of NAC. ACS Chem Neurosci 2023; 14:2761-2774. [PMID: 37468304 DOI: 10.1021/acschemneuro.3c00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The role of cyclin-dependent kinase 5 (Cdk5) in the normal functioning of the central nervous system and synaptic plasticity is well established. However, dysregulated kinase activity can have a significant impact on neurodegeneration and cognitive impairment. Cdk5 hyperactivation is linked to diabetes-associated neurodegeneration, but the underlying mechanism is not fully understood. Our study reveals that oxidative stress can lead to Cdk5 hyperactivity, which in turn is linked to neurodegeneration and cognitive impairment. Specifically, our experiments with N2A cells overexpressing Cdk5 and its activators p35 and p25 show ER stress, resulting in activation of the unfolded protein response (UPR) pathway. We identified Cdk5 as the epicenter of this regulatory process, leading to the activation of the CDK5-IRE1-XBP1 arm of UPR. Moreover, our study demonstrated that Cdk5 hyperactivation can lead to ER stress and activation of the UPR pathway, which may contribute to cognitive impairments associated with diabetes. Our findings also suggest that antioxidants such as NAC and GSH can decrease deregulated Cdk5 kinase activity and rescue cells from UPR-mediated ER stress. The accumulation of phosphorylated Tau protein in AD brain protein has been widely described earlier. Notably, we observed that oral treatment with NAC decreased Cdk5 kinase activity in the hippocampus, attenuated high levels of phospho-tau (ser396), and ameliorated memory and learning impairments in a type 2 diabetic (T2D) mouse model. Additionally, the high-fat-induced T2D model exhibits elevated phospho-tau levels, which are rescued by the NAC treatment. Taken together, these results suggest that targeting Cdk5 may be a promising therapeutic strategy for treating diabetes-associated cognitive impairments.
Collapse
Affiliation(s)
- Debarpita Saha
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utkarsh Gaharwar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Anshu Priya
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anindita Neog
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Archana Singh
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Binukumar Bk
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Principal Scientist, CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi 110025, India
| |
Collapse
|
6
|
Wang J, Cheng Q, Zhang Y, Hong C, Liu J, Liu X, Chang J. PARP16-Mediated Stabilization of Amyloid Precursor Protein mRNA Exacerbates Alzheimer's Disease Pathogenesis. Aging Dis 2023:AD.2023.0119. [PMID: 37163422 PMCID: PMC10389827 DOI: 10.14336/ad.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/19/2023] [Indexed: 05/12/2023] Open
Abstract
The accumulation and deposition of beta-amyloid (Aβ) are key neuropathological hallmarks of Alzheimer's disease (AD). PARP16, a Poly(ADP-ribose) polymerase, is a known tail-anchored endoplasmic reticulum (ER) transmembrane protein that transduces ER stress during pathological processes. Here, we found that PARP16 was significantly increased in the hippocampi and cortices of APPswe/PS1dE9 (APP/PS1) mice and hippocampal neuronal HT22 cells exposed to Aβ, suggesting a positive correlation between the progression of AD pathology and the overexpression of PARP16. To define the effect of PARP16 on AD progression, adeno-associated virus mediated-PARP16 knockdown was used in APP/PS1 mice to investigate the role of PARP16 in spatial memory, amyloid burden, and neuroinflammation. Knockdown of PARP16 partly attenuated impaired spatial memory, as indicated by the Morris water maze test, and decreased amyloid deposition, neuronal apoptosis, and the production of inflammatory cytokines in the brains of APP/PS1 mice. In vitro experiments demonstrated that the knockdown of PARP16 expression rescued neuronal damage and ER stress triggered by Aβ. Furthermore, we discovered that intracellular PARP16 acts as an RNA-binding protein that regulates the mRNA stability of amyloid precursor protein (APP) and protects targeted APP from degradation, thereby increasing APP levels and AD pathology. Our findings revealed an unanticipated role of PARP16 in the pathogenesis of AD, and at least in part, its association with increased APP mRNA stability.
Collapse
Affiliation(s)
- Jinghuan Wang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Qianwen Cheng
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Yuyu Zhang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Chen Hong
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Jiayao Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Jun Chang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
7
|
The Effect of 40-Hz White LED Therapy on Structure-Function of Brain Mitochondrial ATP-Sensitive Ca-Activated Large-Conductance Potassium Channel in Amyloid Beta Toxicity. Neurotox Res 2022; 40:1380-1392. [PMID: 36057039 DOI: 10.1007/s12640-022-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aβ neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aβ1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-β2 subunit expression was determined using western blot analysis in Aβ-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aβ-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-β2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-β2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aβ-induced neurotoxicity rat model, an effect that can be linked to increased expression of β2 subunit.
Collapse
|
8
|
Askari S, Javadpour P, Rashidi FS, Dargahi L, Kashfi K, Ghasemi R. Behavioral and Molecular Effects of Thapsigargin-Induced Brain ER- Stress: Encompassing Inflammation, MAPK, and Insulin Signaling Pathway. Life (Basel) 2022; 12:life12091374. [PMID: 36143409 PMCID: PMC9500646 DOI: 10.3390/life12091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulation of misfolded proteins, known as endoplasmic reticulum (ER) stress, is known to participate in Alzheimer’s disease (AD). AD is also correlated with impaired central insulin signaling. However, few studies have probed the relationship between memory, central ER stress, inflammation, hippocampal mitogen-activated protein kinase (MAPK) activity and insulin resistance. The present study aimed to investigate the causative role and underlying mechanisms of brain ER stress in memory impairment and develop a reliable animal model for ER-mediated memory loss. Thapsigargin (TG), a known ER stress activator, was centrally administered. The cognitive function of animals was evaluated by the Morris Water Maze (MWM). To verify the induction of central ER stress, we investigated the mRNA expression of UPR markers in the hippocampus. In addition, the activation of ER stress markers, including Bip, CHOP, and some related apoptosis and pro-inflammatory proteins, such as caspase-3, Bax, Bcl-2, TNF-α, MAPK, and insulin signaling markers, were assessed by Western-blots. The results demonstrated that TG impairs spatial cognition and hippocampal insulin signaling. Meanwhile, molecular results showed a concurrent increment of hippocampal UPR markers, apoptosis, P38 activity, and TNF-α. This study introduced TG-induced ER stress as a pharmacological model for memory impairment in rats and revealed some underlying mechanisms.
Collapse
Affiliation(s)
- Sahar Askari
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Correspondence: ; Tel.: +98-21-22439971
| |
Collapse
|
9
|
Sundararajan V, Burk UC, Bajdak-Rusinek K. Revisiting the miR-200 Family: A Clan of Five Siblings with Essential Roles in Development and Disease. Biomolecules 2022; 12:biom12060781. [PMID: 35740906 PMCID: PMC9221129 DOI: 10.3390/biom12060781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Over two decades of studies on small noncoding RNA molecules illustrate the significance of microRNAs (miRNAs/miRs) in controlling multiple physiological and pathological functions through post-transcriptional and spatiotemporal gene expression. Among the plethora of miRs that are essential during animal embryonic development, in this review, we elaborate the indispensable role of the miR-200 family (comprising miR-200a, -200b, 200c, -141, and -429) in governing the cellular functions associated with epithelial homeostasis, such as epithelial differentiation and neurogenesis. Additionally, in pathological contexts, miR-200 family members are primarily involved in tumor-suppressive roles, including the reversal of the cancer-associated epithelial–mesenchymal transition dedifferentiation process, and are dysregulated during organ fibrosis. Moreover, recent eminent studies have elucidated the crucial roles of miR-200s in the pathophysiology of multiple neurodegenerative diseases and tissue fibrosis. Lastly, we summarize the key studies that have recognized the potential use of miR-200 members as biomarkers for the diagnosis and prognosis of cancers, elaborating the application of these small biomolecules in aiding early cancer detection and intervention.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Ulrike C. Burk
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
10
|
Mittal A, Sharma R, Sardana S, Goyal PK, Piplani M, Pandey A. A Systematic Review of updated mechanistic insights towards Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-123335. [PMID: 35538829 DOI: 10.2174/1871527321666220510144127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND PURPOSE Alzheimer's disease (AD) is a degenerative neurological disorder that impairs memory, cognitive abilities, and the ability to do even most everyday activities. This neurodegenerative disease is growing increasingly common as the world's population ages. Here we reviewed some of the key findings that have shown the function of Aβ peptide, oxidative stress, free radical damage Triggering Receptors Expressed on Myeloid Cells 2 (TREM2), Nitric Oxide (NO), and gut microbiota in the aetiology of AD. METHODOLOGY The potentially relevant online medical databases, namely, PubMed, Scopus, Google Scholar, Cochrane Library, and JSTOR were exhaustively researched. In addition, the data reported in the present study were primarily intervened on the basis of the timeline selected from 1 January 2000 to 31 October 2021. The whole framework was designed substantially based on key terms and studies selected by virtue of their relevance to our investigations. RESULTS Findings suggested that channels of free radicals, such as transition metal accumulation, and genetic factors are mainly accountable for the redox imbalance that assist to understand better the pathogenesis of AD and incorporate new therapeutic approaches. Moreover, TREM2 might elicit a protective function for microglia in AD. NO causes an increase in oxidative stress and mitochondrial damage, compromising cellular integrity and viability. The study also explored that the gut and CNS communicate with one another and that regulating gut commensal flora might be a viable therapeutic for neurodegenerative illnesses like AD. CONCLUSION There are presently no viable therapies for Alzheimer's disease, but recent breakthroughs in our knowledge of the disease's pathophysiology may aid in the discovery of prospective therapeutic targets.
Collapse
Affiliation(s)
- Arun Mittal
- Amity University Haryana, Manesar, Gurgaon, Haryana
| | | | | | | | - Mona Piplani
- Maharaja Agarsen University, Solan, Himachal Pardesh
| | - Anima Pandey
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand
| |
Collapse
|
11
|
Bukhari SNA. Dietary Polyphenols as Therapeutic Intervention for Alzheimer’s Disease: A Mechanistic Insight. Antioxidants (Basel) 2022; 11:antiox11030554. [PMID: 35326204 PMCID: PMC8945272 DOI: 10.3390/antiox11030554] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Dietary polyphenols encompass a diverse range of secondary metabolites found in nature, such as fruits, vegetables, herbal teas, wine, and cocoa products, etc. Structurally, they are either derivatives or isomers of phenol acid, isoflavonoids and possess hidden health promoting characteristics, such as antioxidative, anti-aging, anti-cancerous and many more. The use of such polyphenols in combating the neuropathological war raging in this generation is currently a hotly debated topic. Lately, Alzheimer’s disease (AD) is emerging as the most common neuropathological disease, destroying the livelihoods of millions in one way or another. Any therapeutic intervention to curtail its advancement in the generation to come has been in vain to date. Using dietary polyphenols to construct the barricade around it is going to be an effective strategy, taking into account their hidden potential to counter multifactorial events taking place under such pathology. Besides their strong antioxidant properties, naturally occurring polyphenols are reported to have neuroprotective effects by modulating the Aβ biogenesis pathway in Alzheimer’s disease. Thus, in this review, I am focusing on unlocking the hidden secrets of dietary polyphenols and their mechanistic advantages to fight the war with AD and related pathology.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 2014, Saudi Arabia
| |
Collapse
|
12
|
Nazari M, Vajed-Samiei T, Torabi N, Fahanik-Babaei J, Saghiri R, Khodagholi F, Eliassi A. The 40-Hz White Light-Emitting Diode (LED) Improves the Structure-Function of the Brain Mitochondrial KATP Channel and Respiratory Chain Activities in Amyloid Beta Toxicity. Mol Neurobiol 2022; 59:2424-2440. [PMID: 35083663 DOI: 10.1007/s12035-021-02681-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022]
Abstract
It has been described that using noninvasive exposure to 40-Hz white light LED reduces amyloid-beta, a peptide thought to initiate neurotoxic events in Alzheimer's disease (AD). However, the mechanisms remain to be identified. Since AD impairs mitochondrial potassium channels and respiratory chain activity, the objectives of the current study were to determine the effect of 40-Hz white light LED on structure-function of mitoKATP channel and brain mitochondrial respiratory chain activity, production of reactive oxygen species (ROS), and ΔΨm in AD. Single mitoKATP channel was considered using a channel incorporated into the bilayer lipid membrane and expression of mitoKATP-Kir6.1 subunit as a pore-forming subunit of the channel was determined using a western blot analysis in Aβ1-42 toxicity and light-treated rats. Our results indicated a severe decrease in mito-KATP channel permeation and Kir6.1 subunit expression coming from the Aβ1-42-induced neurotoxicity. Furthermore, we found that Aβ1-42-induced neurotoxicity decreased activities of complexes I and IV and increased ROS production and ΔΨm. Surprisingly, light therapy increased channel permeation and mitoKATP-Kir6.1 subunit expression. Noninvasive 40-Hz white light LED treatment also increased activities of complexes I and IV and decreased ROS production and ΔΨm up to ~ 70%. Here, we report that brain mito-KATP channel and respiratory chain are, at least in part, novel targets of 40-Hz white light LED therapy in AD.
Collapse
Affiliation(s)
- Maryam Nazari
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, 1985717443, Evin, Tehran, Iran
| | - Taha Vajed-Samiei
- School of Electrical and Computer Engineering, Tehran University, Tehran, Iran
| | - Nihad Torabi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, 1985717443, Evin, Tehran, Iran.
| |
Collapse
|
13
|
Liu Y, Ding R, Xu Z, Xue Y, Zhang D, Zhang Y, Li W, Li X. Roles and Mechanisms of the Protein Quality Control System in Alzheimer's Disease. Int J Mol Sci 2021; 23:345. [PMID: 35008771 PMCID: PMC8745298 DOI: 10.3390/ijms23010345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of senile plaques (SPs) and the formation of neurofibrillary tangles (NTFs), as well as neuronal dysfunctions in the brain, but in fact, patients have shown a sustained disease progression for at least 10 to 15 years before these pathologic biomarkers can be detected. Consequently, as the most common chronic neurological disease in the elderly, the challenge of AD treatment is that it is short of effective biomarkers for early diagnosis. The protein quality control system is a collection of cellular pathways that can recognize damaged proteins and thereby modulate their turnover. Abundant evidence indicates that the accumulation of abnormal proteins in AD is closely related to the dysfunction of the protein quality control system. In particular, it is the synthesis, degradation, and removal of essential biological components that have already changed in the early stage of AD, which further encourages us to pay more attention to the protein quality control system. The review mainly focuses on the endoplasmic reticulum system (ERS), autophagy-lysosome system (ALS) and the ubiquitin-proteasome system (UPS), and deeply discusses the relationship between the protein quality control system and the abnormal proteins of AD, which can not only help us to understand how and why the complex regulatory system becomes malfunctional during AD progression, but also provide more novel therapeutic strategies to prevent the development of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (R.D.); (Z.X.); (Y.X.); (D.Z.); (Y.Z.); (W.L.)
| |
Collapse
|
14
|
Good SC, Dewison KM, Radford SE, van Oosten-Hawle P. Global Proteotoxicity Caused by Human β 2 Microglobulin Variants Impairs the Unfolded Protein Response in C. elegans. Int J Mol Sci 2021; 22:10752. [PMID: 34639093 PMCID: PMC8509642 DOI: 10.3390/ijms221910752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Aggregation of β2 microglobulin (β2m) into amyloid fibrils is associated with systemic amyloidosis, caused by the deposition of amyloid fibrils containing the wild-type protein and its truncated variant, ΔN6 β2m, in haemo-dialysed patients. A second form of familial systemic amyloidosis caused by the β2m variant, D76N, results in amyloid deposits in the viscera, without renal dysfunction. Although the folding and misfolding mechanisms of β2 microglobulin have been widely studied in vitro and in vivo, we lack a comparable understanding of the molecular mechanisms underlying toxicity in a cellular and organismal environment. Here, we established transgenic C. elegans lines expressing wild-type (WT) human β2m, or the two highly amyloidogenic naturally occurring variants, D76N β2m and ΔN6 β2m, in the C. elegans bodywall muscle. Nematodes expressing the D76N β2m and ΔN6 β2m variants exhibit increased age-dependent and cell nonautonomous proteotoxicity associated with reduced motility, delayed development and shortened lifespan. Both β2m variants cause widespread endogenous protein aggregation contributing to the increased toxicity in aged animals. We show that expression of β2m reduces the capacity of C. elegans to cope with heat and endoplasmic reticulum (ER) stress, correlating with a deficiency to upregulate BiP/hsp-4 transcripts in response to ER stress in young adult animals. Interestingly, protein secretion in all β2m variants is reduced, despite the presence of the natural signal sequence, suggesting a possible link between organismal β2m toxicity and a disrupted ER secretory metabolism.
Collapse
Affiliation(s)
| | | | | | - Patricija van Oosten-Hawle
- Faculty of Biological Sciences, School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (S.C.G.); (K.M.D.); (S.E.R.)
| |
Collapse
|
15
|
Choi HI, Kim K, Lee J, Chang Y, Rhee HY, Park S, Lee WI, Choe W, Ryu CW, Jahng GH. Relationship between Brain Tissue Changes and Blood Biomarkers of Cyclophilin A, Heme Oxygenase-1, and Inositol-Requiring Enzyme 1 in Patients with Alzheimer's Disease. Diagnostics (Basel) 2021; 11:740. [PMID: 33919311 PMCID: PMC8143350 DOI: 10.3390/diagnostics11050740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Cyclophilin A (CypA), heme oxygenase-1 (HO-1), and inositol-requiring enzyme 1 (IRE1) are believed to be associated with Alzheimer's disease (AD). In this study, we investigated the association between gray matter volume (GMV) changes and blood levels of CypA, HO-1, and IRE1 in cognitively normal (CN) subjects and those with amnestic mild cognitive impairment (aMCI) and AD. Forty-five elderly CN, 34 aMCI, and 39 AD subjects were enrolled in this study. The results of voxel-based multiple regression analysis showed that blood levels of CypA, HO-1, and IRE1 were correlated with GMV on brain magnetic resonance imaging (MRI) in the entire population (p = 0.0005). The three serum protein levels were correlated with GMV of signature AD regions in the population as a whole. CypA values increased with increasing GMV in the occipital gyrus (r = 0.387, p < 0.0001) and posterior cingulate (r = 0.196, p = 0.034). HO-1 values increased with increasing GMV at the uncus (r = 0.307, p = 0.0008), lateral globus pallidus and putamen (r = 0.287, p = 0.002), and hippocampus (r = 0.197, p = 0.034). IRE1 values decreased with increasing GMV at the uncus (r = -0.239, p = 0.010) and lateral globus pallidus and putamen (r = -0.335, p = 0.0002). Associations between the three serum protein levels and regional GMV indicate that the blood levels of these biomarkers may reflect the pathological mechanism of AD in the brain.
Collapse
Affiliation(s)
- Hyon-Il Choi
- Department of Radiology, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-Gu, Seoul 05278, Korea; (H.-I.C.); (S.P.)
| | - Kiyoon Kim
- Department of Biochemistry and Molecular Biology, Graduate School, Kyung Hee University, 26 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Jiyoon Lee
- Department of Biomedical Engineering, Undergraduate School, College of Electronics and Information, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Seoul 17104, Korea; (J.L.); (Y.C.)
| | - Yunjung Chang
- Department of Biomedical Engineering, Undergraduate School, College of Electronics and Information, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Seoul 17104, Korea; (J.L.); (Y.C.)
| | - Hak Young Rhee
- Department of Medicine, College of Medicine, Kyung Hee University, 26 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.Y.R.); (W.-I.L.)
- Department of Neurology, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Korea
| | - Soonchan Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-Gu, Seoul 05278, Korea; (H.-I.C.); (S.P.)
- Department of Medicine, College of Medicine, Kyung Hee University, 26 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.Y.R.); (W.-I.L.)
| | - Woo-In Lee
- Department of Medicine, College of Medicine, Kyung Hee University, 26 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.Y.R.); (W.-I.L.)
- Department of Laboratory Medicine, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 26 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-Gu, Seoul 05278, Korea; (H.-I.C.); (S.P.)
- Department of Medicine, College of Medicine, Kyung Hee University, 26 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.Y.R.); (W.-I.L.)
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-Gu, Seoul 05278, Korea; (H.-I.C.); (S.P.)
- Department of Medicine, College of Medicine, Kyung Hee University, 26 Kyung Hee Dae-ro, Dongdaemun-gu, Seoul 02447, Korea; (H.Y.R.); (W.-I.L.)
| |
Collapse
|
16
|
Alternative Targets to Fight Alzheimer's Disease: Focus on Astrocytes. Biomolecules 2021; 11:biom11040600. [PMID: 33921556 PMCID: PMC8073475 DOI: 10.3390/biom11040600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The available treatments for patients affected by Alzheimer’s disease (AD) are not curative. Numerous clinical trials have failed during the past decades. Therefore, scientists need to explore new avenues to tackle this disease. In the present review, we briefly summarize the pathological mechanisms of AD known so far, based on which different therapeutic tools have been designed. Then, we focus on a specific approach that is targeting astrocytes. Indeed, these non-neuronal brain cells respond to any insult, injury, or disease of the brain, including AD. The study of astrocytes is complicated by the fact that they exert a plethora of homeostatic functions, and their disease-induced changes could be context-, time-, and disease specific. However, this complex but fervent area of research has produced a large amount of data targeting different astrocytic functions using pharmacological approaches. Here, we review the most recent literature findings that have been published in the last five years to stimulate new hypotheses and ideas to work on, highlighting the peculiar ability of palmitoylethanolamide to modulate astrocytes according to their morpho-functional state, which ultimately suggests a possible potential disease-modifying therapeutic approach for AD.
Collapse
|
17
|
Koopman MB, Rüdiger SGD. Alzheimer Cells on Their Way to Derailment Show Selective Changes in Protein Quality Control Network. Front Mol Biosci 2020; 7:214. [PMID: 33330614 PMCID: PMC7715003 DOI: 10.3389/fmolb.2020.00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's Disease is driven by protein aggregation and is characterized by accumulation of Tau protein into neurofibrillary tangles. In healthy neurons the cellular protein quality control is successfully in charge of protein folding, which raises the question to which extent this control is disturbed in disease. Here, we describe that brain cells in Alzheimer's Disease show very specific derailment of the protein quality control network. We performed a meta-analysis on the Alzheimer's Disease Proteome database, which provides a quantitative assessment of disease-related proteome changes in six brain regions in comparison to age-matched controls. We noted that levels of all paralogs of the conserved Hsp90 chaperone family are reduced, while most other chaperones - or their regulatory co-chaperones - do not change in disease. The notable exception is a select group consisting of the stress inducible HSP70, its nucleotide exchange factor BAG3 - which links the Hsp70 system to autophagy - and neuronal small heat shock proteins, which are upregulated in disease. They are all members of a cascade controlled in the stress response, channeling proteins towards a pathway of chaperone assisted selective autophagy. Together, our analysis reveals that in an Alzheimer's brain, with exception of Hsp90, the players of the protein quality control are still present in full strength, even in brain regions most severely affected in disease. The specific upregulation of small heat shock proteins and HSP70:BAG3, ubiquitous in all brain areas analyzed, may represent a last, unsuccessful attempt to advert cell death.
Collapse
Affiliation(s)
- Margreet B. Koopman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Chen X, Zhang T, Zhang Y. Endoplasmic reticulum stress and autophagy in HIV-1-associated neurocognitive disorders. J Neurovirol 2020; 26:824-833. [PMID: 32918163 DOI: 10.1007/s13365-020-00906-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Although antiretroviral therapy (ART) affects virologic suppression and prolongs life expectancies among HIV-positive patients; HIV-1-associated neurocognitive disorders (HAND) continue to be diagnosed in patients with HIV-1 undergoing treatment. The extensive clinical manifestations of HAND include behavioral, cognitive, and motor dysfunctions that severely affect the patients' quality of life. The pathogenesis of HAND has received increasing attention as a potential avenue by which to improve the treatment of the condition. Many studies have shown that endoplasmic reticulum (ER) stress, autophagy, and their interaction play important roles in the onset and development of neurodegenerative diseases. While the accumulation of misfolded proteins can induce ER stress, autophagy can effectively remove accumulated toxic proteins, reduce ER stress, and thus inhibit the development of neuropathy. Through the in-depth study of ER stress and autophagy, both have been recognized as promising targets for pharmacotherapeutic intervention in the treatment of HAND. This review will highlight the effects of ER stress, autophagy, and their interaction in the context of HAND, thereby helping to inform the future development of targeted treatments for patients with HAND.
Collapse
Affiliation(s)
- Xue Chen
- Department of Infectious Diseases, Beijing You An Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Tong Zhang
- Department of Infectious Diseases, Beijing You An Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Infectious Diseases, Beijing You An Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
19
|
Murray HC, Dieriks BV, Swanson MEV, Anekal PV, Turner C, Faull RLM, Belluscio L, Koretsky A, Curtis MA. The unfolded protein response is activated in the olfactory system in Alzheimer's disease. Acta Neuropathol Commun 2020; 8:109. [PMID: 32665027 PMCID: PMC7362534 DOI: 10.1186/s40478-020-00986-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023] Open
Abstract
Olfactory dysfunction is an early and prevalent symptom of Alzheimer’s disease (AD) and the olfactory bulb is a nexus of beta-amyloid plaque and tau neurofibrillary tangle (NFT) pathology during early AD progression. To mitigate the accumulation of misfolded proteins, an endoplasmic reticulum stress response called the unfolded protein response (UPR) occurs in the AD hippocampus. However, chronic UPR activation can lead to apoptosis and the upregulation of beta-amyloid and tau production. Therefore, UPR activation in the olfactory system could be one of the first changes in AD. In this study, we investigated whether two proteins that signal UPR activation are expressed in the olfactory system of AD cases with low or high amounts of aggregate pathology. We used immunohistochemistry to label two markers of UPR activation (p-PERK and p-eIF2α) concomitantly with neuronal markers (NeuN and PGP9.5) and pathology markers (beta-amyloid and tau) in the olfactory bulb, piriform cortex, entorhinal cortex and the CA1 region of the hippocampus in AD and normal cases. We show that UPR activation, as indicated by p-PERK and p-eIF2α expression, is significantly increased throughout the olfactory system in AD cases with low (Braak stage III-IV) and high-level (Braak stage V-VI) pathology. We further show that UPR activation occurs in the mitral cells and in the anterior olfactory nucleus of the olfactory bulb where tau and amyloid pathology is abundant. However, UPR activation is not present in neurons when they contain NFTs and only rarely occurs in neurons containing diffuse tau aggregates. We conclude that UPR activation is prevalent in all regions of the olfactory system and support previous findings suggesting that UPR activation likely precedes NFT formation. Our data indicate that chronic UPR activation in the olfactory system might contribute to the olfactory dysfunction that occurs early in the pathogenesis of AD.
Collapse
|
20
|
Abstract
Astrocytes contribute to the pathogenesis of neurodegenerative proteinopathies as influencing neuronal degeneration or neuroprotection, and also act as potential mediators of the propagation or elimination of disease-associated proteins. Protein astrogliopathies can be observed in different forms of neurodegenerative conditions. Morphological characterization of astrogliopathy is used only for the classification of tauopathies. Currently, at least six types of astrocytic tau pathologies are distinguished. Astrocytic plaques (AP), tufted astrocytes (TAs), ramified astrocytes (RA), and globular astroglial inclusions are seen predominantly in primary tauopathies, while thorn-shaped astrocytes (TSA) and granular/fuzzy astrocytes (GFA) are evaluated in aging-related tau astrogliopathy (ARTAG). ARTAG can be seen in the white and gray matter and subpial, subependymal, and perivascular locations. Some of these overlap with the features of tau pathology seen in Chronic traumatic encephalopathy (CTE). Furthermore, gray matter ARTAG shares features with primary tauopathy-related astrocytic tau pathology. Sequential distribution patterns have been described for tau astrogliopathies. Importantly, astrocytic tau pathology in primary tauopathies can be observed in brain areas without neuronal tau deposition. The various morphologies of tau astrogliopathy might reflect a role in the propagation of pathological tau protein, an early response to a yet unidentified neurodegeneration-inducing event, or, particularly for ARTAG, a response to a repeated or prolonged pathogenic process such as blood-brain barrier dysfunction or local mechanical impact. The concept of tau astrogliopathies and ARTAG facilitated communication among research disciplines and triggered the investigation of the significance of astrocytic lesions in neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
21
|
Rozpędek-Kamińska W, Siwecka N, Wawrzynkiewicz A, Wojtczak R, Pytel D, Diehl JA, Majsterek I. The PERK-Dependent Molecular Mechanisms as a Novel Therapeutic Target for Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E2108. [PMID: 32204380 PMCID: PMC7139310 DOI: 10.3390/ijms21062108] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
Higher prevalence of neurodegenerative diseases is strictly connected with progressive aging of the world population. Interestingly, a broad range of age-related, neurodegenerative diseases is characterized by a common pathological mechanism-accumulation of misfolded and unfolded proteins within the cells. Under certain circumstances, such protein aggregates may evoke endoplasmic reticulum (ER) stress conditions and subsequent activation of the unfolded protein response (UPR) signaling pathways via the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent manner. Under mild to moderate ER stress, UPR has a pro-adaptive role. However, severe or long-termed ER stress conditions directly evoke shift of the UPR toward its pro-apoptotic branch, which is considered to be a possible cause of neurodegeneration. To this day, there is no effective cure for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), or prion disease. Currently available treatment approaches for these diseases are only symptomatic and cannot affect the disease progression. Treatment strategies, currently under detailed research, include inhibition of the PERK-dependent UPR signaling branches. The newest data have reported that the use of small-molecule inhibitors of the PERK-mediated signaling branches may contribute to the development of a novel, ground-breaking therapeutic approach for neurodegeneration. In this review, we critically describe all the aspects associated with such targeted therapy against neurodegenerative proteopathies.
Collapse
Affiliation(s)
- Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Adam Wawrzynkiewicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Radosław Wojtczak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| | - Dariusz Pytel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; (D.P.); (J.A.D.)
| | - J. Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; (D.P.); (J.A.D.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (N.S.); (A.W.); (R.W.)
| |
Collapse
|
22
|
Andreone BJ, Larhammar M, Lewcock JW. Cell Death and Neurodegeneration. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036434. [PMID: 31451511 DOI: 10.1101/cshperspect.a036434] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurodegenerative disease is characterized by the progressive deterioration of neuronal function caused by the degeneration of synapses, axons, and ultimately the death of nerve cells. An increased understanding of the mechanisms underlying altered cellular homeostasis and neurodegeneration is critical to the development of effective treatments for disease. Here, we review what is known about neuronal cell death and how it relates to our understanding of neurodegenerative disease pathology. First, we discuss prominent molecular signaling pathways that drive neuronal loss, and highlight the upstream cell biology underlying their activation. We then address how neuronal death may occur during disease in response to neuron intrinsic and extrinsic stressors. An improved understanding of the molecular mechanisms underlying neuronal dysfunction and cell death will open up avenues for clinical intervention in a field lacking disease-modifying treatments.
Collapse
|
23
|
Richter M, Vidovic N, Biber K, Dolga A, Culmsee C, Dodel R. The neuroprotective role of microglial cells against amyloid beta-mediated toxicity in organotypic hippocampal slice cultures. Brain Pathol 2020; 30:589-602. [PMID: 31769564 PMCID: PMC8018096 DOI: 10.1111/bpa.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 02/02/2023] Open
Abstract
During Alzheimer's disease (AD) progression, microglial cells play complex roles and have potentially detrimental as well as beneficial effects. The use of appropriate model systems is essential for characterizing and understanding the roles of microglia in AD pathology. Here, we used organotypic hippocampal slice cultures (OHSCs) to investigate the impact of microglia on amyloid beta (Aβ)-mediated toxicity. Neurons in OHSCs containing microglia were not vulnerable to cell death after 7 days of repeated treatment with Aβ1-42 oligomer-enriched preparations. However, when clodronate was used to remove microglia, treatment with Aβ1-42 resulted in significant neuronal death. Further investigations indicated signs of endoplasmic reticulum stress and caspase activation after Aβ1-42 challenge only when microglia were absent. Interestingly, microglia provided protection without displaying any classic signs of activation, such as an amoeboid morphology or the release of pro-inflammatory mediators (e.g., IL-6, TNF-α, NO). Furthermore, depleting microglia or inhibiting microglial uptake mechanisms resulted in significant more Aβ deposition compared to that observed in OHSCs containing functional microglia, suggesting that microglia efficiently cleared Aβ. Because inhibiting microglial uptake increased neuronal cell death, the ability of microglia to engulf Aβ is thought to contribute to its protective properties. Our study argues for a beneficial role of functional ramified microglia whereby they act against the accumulation of neurotoxic forms of Aβ and support neuronal resilience in an in situ model of AD pathology.
Collapse
Affiliation(s)
- Maren Richter
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Natascha Vidovic
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
| | - Knut Biber
- Molecular Psychiatry, Psychiatric Hospital, University of Freiburg, Freiburg, Germany.,Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Amalia Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - Richard Dodel
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,Chair of Geriatric Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Constitutive XBP-1s-mediated activation of the endoplasmic reticulum unfolded protein response protects against pathological tau. Nat Commun 2019; 10:4443. [PMID: 31570707 PMCID: PMC6768869 DOI: 10.1038/s41467-019-12070-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
To endure over the organismal lifespan, neurons utilize multiple strategies to achieve protein homeostasis (proteostasis). Some homeostatic mechanisms act in a subcellular compartment-specific manner, but others exhibit trans-compartmental mechanisms of proteostasis. To identify pathways protecting neurons from pathological tau protein, we employed a transgenic Caenorhabditis elegans model of human tauopathy exhibiting proteostatic disruption. We show normal functioning of the endoplasmic reticulum unfolded protein response (UPRER) promotes clearance of pathological tau, and loss of the three UPRER branches differentially affects tauopathy phenotypes. Loss of function of xbp-1 and atf-6 genes, the two main UPRER transcription factors, exacerbates tau toxicity. Furthermore, constitutive activation of master transcription factor XBP-1 ameliorates tauopathy phenotypes. However, both ATF6 and PERK branches of the UPRER participate in amelioration of tauopathy by constitutively active XBP-1, possibly through endoplasmic reticulum-associated protein degradation (ERAD). Understanding how the UPRER modulates pathological tau accumulation will inform neurodegenerative disease mechanisms.
Collapse
|
25
|
Zheng Z, Shang Y, Tao J, Zhang J, Sha B. Endoplasmic Reticulum Stress Signaling Pathways: Activation and Diseases. Curr Protein Pept Sci 2019; 20:935-943. [PMID: 31223084 DOI: 10.2174/1389203720666190621103145] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
Secretory and membrane proteins are folded in the endoplasmic reticulum (ER) prior to their exit. When ER function is disturbed by exogenous and endogenous factors, such as heat shock, ultraviolet radiation, hypoxia, or hypoglycemia, the misfolded proteins may accumulate, promoting ER stress. To rescue this unfavorable situation, the unfolded protein response is activated to reduce misfolded proteins within the ER. Upon ER stress, the ER transmembrane sensor molecules inositol-requiring enzyme 1 (IRE1), RNA-dependent protein kinase (PKR)-like ER kinase (PERK), and activating transcription factor 6, are activated. Here, we discuss the mechanisms of PERK and IRE1 activation and describe two working models for ER stress initiation: the BiP-dependent model and the ligand-driven model. ER stress activation has been linked to multiple diseases, including cancers, Alzheimer's disease, and diabetes. Thus, the regulation of ER stress may provide potential therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, United States.,Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, China
| | - Yuxi Shang
- Department of Hematology, Fuxing Hospital, Eighth Clinical Medical College, Capital Medical University, Beijing 100038, China
| | - Jiahui Tao
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, China
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
26
|
Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol 2019; 72:725-735. [PMID: 31395625 DOI: 10.1136/jclinpath-2019-205952] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterised by selective dysfunction and progressive loss of synapses and neurons associated with pathologically altered proteins that deposit primarily in the human brain and spinal cord. Recent discoveries have identified a spectrum of distinct immunohistochemically and biochemically detectable proteins, which serve as a basis for protein-based disease classification. Diagnostic criteria have been updated and disease staging procedures have been proposed. These are based on novel concepts which recognise that (1) most of these proteins follow a sequential distribution pattern in the brain suggesting a seeding mechanism and cell-to-cell propagation; (2) some of the neurodegeneration-associated proteins can be detected in peripheral organs; and (3) concomitant presence of neurodegeneration-associated proteins is more the rule than the exception. These concepts, together with the fact that the clinical symptoms do not unequivocally reflect the molecular pathological background, place the neuropathological examination at the centre of requirements for an accurate diagnosis. The need for quality control in biomarker development, clinical and neuroimaging studies, and evaluation of therapy trials, as well as an increasing demand for the general public to better understand human brain disorders, underlines the importance for a renaissance of postmortem neuropathological studies at this time. This review summarises recent advances in neuropathological diagnosis and reports novel aspects of relevance for general pathological practice.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Ettcheto M, Cano A, Busquets O, Manzine PR, Sánchez-López E, Castro-Torres RD, Beas-Zarate C, Verdaguer E, García ML, Olloquequi J, Auladell C, Folch J, Camins A. A metabolic perspective of late onset Alzheimer's disease. Pharmacol Res 2019; 145:104255. [PMID: 31075308 DOI: 10.1016/j.phrs.2019.104255] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
After decades of research, the molecular neuropathology of Alzheimer's disease (AD) is still one of the hot topics in biomedical sciences. Some studies suggest that soluble amyloid β (Aβ) oligomers act as causative agents in the development of AD and could be initiators of its complex neurodegenerative cascade. On the other hand, there is also evidence pointing to Aβ oligomers as mere aggravators, with an arguable role in the origin of the disease. In this line of research, the relative contribution of soluble Aβ oligomers to neuronal damage associated with metabolic disorders such as Type 2 Diabetes Mellitus (T2DM) and obesity is being actively investigated. Some authors have proposed the endoplasmic reticulum (ER) stress and the induction of the unfolded protein response (UPR) as important mechanisms leading to an increase in Aβ production and the activation of neuroinflammatory processes. Following this line of thought, these mechanisms could also cause cognitive impairment. The present review summarizes the current understanding on the neuropathological role of Aβ associated with metabolic alterations induced by an obesogenic high fat diet (HFD) intake. It is believed that the combination of these two elements has a synergic effect, leading to the impairement of ER and mitochondrial functions, glial reactivity status alteration and inhibition of insulin receptor (IR) signalling. All these metabolic alterations would favour neuronal malfunction and, eventually, neuronal death by apoptosis, hence causing cognitive impairment and laying the foundations for late-onset AD (LOAD). Moreover, since drugs enhancing the activation of cerebral insulin pathway can constitute a suitable strategy for the prevention of AD, we also discuss the scope of therapeutic approaches such as intranasal administration of insulin in clinical trials with AD patients.
Collapse
Affiliation(s)
- Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Oriol Busquets
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Patricia Regina Manzine
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Rubén D Castro-Torres
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Mexico
| | - Carlos Beas-Zarate
- Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, Mexico
| | - Ester Verdaguer
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - María Luisa García
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Carme Auladell
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Folch
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antoni Camins
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
28
|
Hafycz JM, Naidoo NN. Sleep, Aging, and Cellular Health: Aged-Related Changes in Sleep and Protein Homeostasis Converge in Neurodegenerative Diseases. Front Aging Neurosci 2019; 11:140. [PMID: 31244649 PMCID: PMC6579877 DOI: 10.3389/fnagi.2019.00140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/23/2019] [Indexed: 01/17/2023] Open
Abstract
Many neurodegenerative diseases manifest in an overall aged population, the pathology of which is hallmarked by abnormal protein aggregation. It is known that across aging, sleep quality becomes less efficient and protein homeostatic regulatory mechanisms deteriorate. There is a known relationship between extended wakefulness and poorly consolidated sleep and an increase in cellular stress. In an aged population, when sleep is chronically poor, and proteostatic regulatory mechanisms are less efficient, the cell is inundated with misfolded proteins and suffers a collapse in homeostasis. In this review article, we explore the interplay between aging, sleep quality, and proteostasis and how these processes are implicated in the development and progression of neurodegenerative diseases like Alzheimer's disease (AD). We also present data suggesting that reducing cellular stress and improving proteostasis and sleep quality could serve as potential therapeutic solutions for the prevention or delay in the progression of these diseases.
Collapse
Affiliation(s)
- Jennifer M Hafycz
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, United States
| | - Nirinjini N Naidoo
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, United States
| |
Collapse
|
29
|
Xu S, Di Z, He Y, Wang R, Ma Y, Sun R, Li J, Wang T, Shen Y, Fang S, Feng L, Shen Y. Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects against Aβ toxicity via attenuating Aβ-induced endoplasmic reticulum stress. J Neuroinflammation 2019; 16:35. [PMID: 30760285 PMCID: PMC6373169 DOI: 10.1186/s12974-019-1429-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/03/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Extracellular accumulation of amyloid β-peptide (Aβ) is one of pathological hallmarks of Alzheimer's disease (AD) and contributes to the neuronal loss. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) stress-inducible neurotrophic factor. Many groups, including ours, have proved that MANF rescues neuronal loss in several neurological disorders, such as Parkinson's disease and cerebral ischemia. However, whether MANF exerts its protective effect against Aβ neurotoxicity in AD remains unknown. METHODS In the present study, the characteristic expressions of MANF in Aβ1-42-treated neuronal cells as well as in the brains of APP/PS1 transgenic mice were analyzed by immunofluorescence staining, qPCR, and Western blot. The effects of MANF overexpression, MANF knockdown, or recombination human MANF protein (rhMANF) on neuron viability, apoptosis, and the expression of ER stress-related proteins following Aβ1-42 exposure were also investigated. RESULTS The results showed the increased expressions of MANF, as well as ER stress markers immunoglobulin-binding protein (BiP) and C/EBP homologous protein (CHOP), in the brains of the APP/PS1 transgenic mice and Aβ1-42-treated neuronal cells. MANF overexpression or rhMANF treatment partially protected against Aβ1-42-induced neuronal cell death, associated with marked decrease of cleaved caspase-3, whereas MANF knockdown with siRNA aggravated Aβ1-42 cytotoxicity including caspase-3 activation. Further study demonstrated that the expressions of BiP, ATF6, phosphorylated-IRE1, XBP1s, phosphorylated-eIF2α, ATF4, and CHOP were significantly downregulated by MANF overexpression or rhMANF treatment in neuronal cells following Aβ1-42 exposure, whereas knockdown of MANF has the opposite effect. CONCLUSIONS These findings demonstrate that MANF may exert neuroprotective effects against Aβ-induced neurotoxicity through attenuating ER stress, suggesting that an applicability of MANF as a therapeutic candidate for AD.
Collapse
Affiliation(s)
- Shengchun Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zemin Di
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China.,Institute of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yufeng He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China.,Institute of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Runjie Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China.,Institute of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yuyang Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China.,Institute of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Rui Sun
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Jing Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Tao Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China.,Institute of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shengyun Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China.,Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD, USA
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China. .,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China. .,Institute of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China. .,Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China. .,Institute of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
30
|
Link between the unfolded protein response and dysregulation of mitochondrial bioenergetics in Alzheimer's disease. Cell Mol Life Sci 2019; 76:1419-1431. [PMID: 30683981 PMCID: PMC6420888 DOI: 10.1007/s00018-019-03009-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting more than 47.5 million people worldwide. Metabolic impairments are common hallmarks of AD, and amyloid-β (Aβ) peptide and hyperphosphorylated tau protein—the two foremost histopathological signs of AD—have been implicated in mitochondrial dysfunction. Many neurodegenerative disorders, including AD, show excessive amounts of mis-/unfolded proteins leading to an activation of the unfolded protein response (UPR). In the present study, we aimed to characterize the link between ER stress and bioenergetics defects under normal condition (human SH-SY5Y neuroblastoma cells: control cells) or under pathological AD condition [SH-SY5Y cells overexpressing either the human amyloid precursor protein (APP) or mutant tau (P301L)]. More specifically, we measured UPR gene expression, cell viability, and bioenergetics parameters, such as ATP production and mitochondrial membrane potential (MMP) in basal condition and after an induced ER stress by thapsigargin. We detected highly activated UPR and dysregulated bioenergetics in basal condition in both AD cellular models. Strikingly, acute-induced ER stress increased the activity of the UPR in both AD cellular models, leading to up-regulation of apoptotic pathways, and further dysregulated mitochondrial function.
Collapse
|
31
|
Jin W, Qazi TJ, Quan Z, Li N, Qing H. Dysregulation of Transcription Factors: A Key Culprit Behind Neurodegenerative Disorders. Neuroscientist 2018; 25:548-565. [PMID: 30484370 DOI: 10.1177/1073858418811787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) are considered heterogeneous disorders characterized by progressive pathological changes in neuronal systems. Transcription factors are protein molecules that are important in regulating the expression of genes. Although the clinical manifestations of NDs vary, the pathological processes appear similar with regard to neuroinflammation, oxidative stress, and proteostasis, to which, as numerous studies have discovered, transcription factors are closely linked. In this review, we summarized and reviewed the roles of transcription factors in NDs, and then we elucidated their functions during pathological processes, and finally we discussed their therapeutic values in NDs.
Collapse
Affiliation(s)
- Wei Jin
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Talal Jamil Qazi
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhenzhen Quan
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Nuomin Li
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Hong Qing
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| |
Collapse
|
32
|
Proteostasis and Mitochondrial Role on Psychiatric and Neurodegenerative Disorders: Current Perspectives. Neural Plast 2018; 2018:6798712. [PMID: 30050571 PMCID: PMC6040257 DOI: 10.1155/2018/6798712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
Proteostasis involves processes that are fundamental for neural viability. Thus, protein misfolding and the formation of toxic aggregates at neural level, secondary to dysregulation of the conservative mechanisms of proteostasis, are associated with several neuropsychiatric conditions. It has been observed that impaired mitochondrial function due to a dysregulated proteostasis control system, that is, ubiquitin-proteasome system and chaperones, could also have effects on neurodegenerative disorders. We aimed to critically analyze the available findings regarding the neurobiological implications of proteostasis on the development of neurodegenerative and psychiatric diseases, considering the mitochondrial role. Proteostasis alterations in the prefrontal cortex implicate proteome instability and accumulation of misfolded proteins. Altered mitochondrial dynamics, especially in proteostasis processes, could impede the normal compensatory mechanisms against cell damage. Thereby, altered mitochondrial functions on regulatory modulation of dendritic development, neuroinflammation, and respiratory function may underlie the development of some psychiatric conditions, such as schizophrenia, being influenced by a genetic background. It is expected that with the increasing evidence about proteostasis in neuropsychiatric disorders, new therapeutic alternatives will emerge.
Collapse
|
33
|
Dheer Y, Chitranshi N, Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL, Gupta V. Bexarotene Modulates Retinoid-X-Receptor Expression and Is Protective Against Neurotoxic Endoplasmic Reticulum Stress Response and Apoptotic Pathway Activation. Mol Neurobiol 2018; 55:9043-9056. [PMID: 29637440 DOI: 10.1007/s12035-018-1041-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
Retinoid X-receptors (RXRs) are members of the ligand-dependent transcription factor family of nuclear receptors that have gained recent research focus as potential targets for neurodegenerative disorders. Bexarotene is an RXR pharmacological agonist that is shown to be neuroprotective through its effects in promoting amyloid beta (Aβ) uptake by the glial cells in the brain. This study aimed to evaluate the dose-dependent effects of bexarotene on RXR expression in SH-SY5Y neuroblastoma cells and validate the drug effects in the brain in vivo. The protein expression studies were carried out using a combination of various drug treatment paradigms followed by expression analysis using Western blotting and immunofluorescence. Our study demonstrated that bexarotene promoted the expression of RXR α, β and γ isoforms at optimal concentrations in the cells and in the mice brain. Interestingly, a decreased RXR expression was identified in Alzheimer's disease mouse model and in the cells that were treated with Aβ. Bexarotene treatment not only rescued the RXR expression loss caused by Aβ treatment (p < 0.05) but also protected the cells against Aβ-induced ER stress (p < 0.05) and pro-apoptotic BAD protein activation (p < 0.05). In contrast, higher concentrations of bexarotene upregulated the ER stress proteins and led to BAD activation. Our study revealed that these downstream neurotoxic effects of high drug concentrations could be prevented by pharmacological targeting of the TrkB receptor. The ER stress and BAD activation induced by high concentrations of bexarotene were rescued by the TrkB agonist, 7,8 dihydroxyflavone (p < 0.05) while TrkB inhibitor CTX-B treatment further exacerbated these effects. Together, these findings suggest a cross-talk of TrkB signalling with downstream effects of bexarotene toxicity and indicate that therapeutic targeting of RXRs could prevent the Aβ-induced molecular neurotoxic effects.
Collapse
Affiliation(s)
- Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Veer Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Roger Chung
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| |
Collapse
|
34
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 690] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
35
|
Abstract
Patients and individuals at risk for Alzheimer's disease show reduced glucose metabolism in the brain. A new study takes advantage of a fly model of Alzheimer's disease to demonstrate that enhancing glucose uptake in neurons has strong neuroprotective effects involving improved proteostasis.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
36
|
Liu XJ, Wei J, Shang YH, Huang HC, Lao FX. Modulation of AβPP and GSK3β by Endoplasmic Reticulum Stress and Involvement in Alzheimer's Disease. J Alzheimers Dis 2018; 57:1157-1170. [PMID: 28339396 DOI: 10.3233/jad-161111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a dementia disease with neuronal loss and synaptic impairment. This impairment is caused, at least partly, by the generation of two main AD hallmarks, namely the hyperphosphorylated tau protein comprising neurofibrillary tangles and senile plaques containing amyloid-β (Aβ) peptides. The amyloid-β protein precursor (AβPP) and glycogen synthase kinase-3β (GSK3β) are two main proteins associated with AD and are closely correlated with these hallmarks. Recently, both of the proteins were reported to be modulated by endoplasmic reticulum stress (ERS) and are involved in the pathogenesis of AD. The mechanism of ERS plus the modulation of AβPP processing and GSK3β activity by ERS in AD are summarized and explored in this review.
Collapse
Affiliation(s)
- Xin-Jun Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Jun Wei
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Ying-Hui Shang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| | - Feng-Xue Lao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, P.R. China.,College of Arts and Science of Beijing Union University, Beijing, P.R. China
| |
Collapse
|
37
|
Rahman S, Archana A, Jan AT, Minakshi R. Dissecting Endoplasmic Reticulum Unfolded Protein Response (UPR ER) in Managing Clandestine Modus Operandi of Alzheimer's Disease. Front Aging Neurosci 2018; 10:30. [PMID: 29467648 PMCID: PMC5808164 DOI: 10.3389/fnagi.2018.00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/24/2018] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is most common cause of dementia witnessed among aged people. The pathophysiology of AD develops as a consequence of neurofibrillary tangle formation which consists of hyperphosphorylated microtubule associated tau protein and senile plaques of amyloid-β (Aβ) peptide in specific brain regions that result in synaptic loss and neuronal death. The feeble buffering capacity of endoplasmic reticulum (ER) proteostasis in AD is evident through alteration in unfolded protein response (UPR), where UPR markers express invariably in AD patient's brain samples. Aging weakens UPRER causing neuropathology and memory loss in AD. This review highlights molecular signatures of UPRER and its key molecular alliance that are affected in aging leading to the development of intriguing neuropathologies in AD. We present a summary of recent studies reporting usage of small molecules as inhibitors or activators of UPRER sensors/effectors in AD that showcase avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| |
Collapse
|
38
|
Hashimoto S, Ishii A, Kamano N, Watamura N, Saito T, Ohshima T, Yokosuka M, Saido TC. Endoplasmic reticulum stress responses in mouse models of Alzheimer's disease: Overexpression paradigm versus knockin paradigm. J Biol Chem 2018; 293:3118-3125. [PMID: 29298895 DOI: 10.1074/jbc.m117.811315] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is believed to play an important role in the etiology of Alzheimer's disease (AD). The accumulation of misfolded proteins and perturbation of intracellular calcium homeostasis are thought to underlie the induction of ER stress, resulting in neuronal dysfunction and cell death. Several reports have shown an increased ER stress response in amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic (Tg) AD mouse models. However, whether the ER stress observed in these mouse models is actually caused by AD pathology remains unclear. APP and PS1 contain one and nine transmembrane domains, respectively, for which it has been postulated that overexpressed membrane proteins can become wedged in a misfolded configuration in ER membranes, thereby inducing nonspecific ER stress. Here, we used an App-knockin (KI) AD mouse model that accumulates amyloid-β (Aβ) peptide without overexpressing APP to investigate whether the ER stress response is heightened because of Aβ pathology. Thorough examinations indicated that no ER stress responses arose in App-KI or single APP-Tg mice. These results suggest that PS1 overexpression or mutation induced a nonspecific ER stress response that was independent of Aβ pathology in the double-Tg mice. Moreover, we observed no ER stress in a mouse model of tauopathy (P301S-Tau-Tg mice) at various ages, suggesting that ER stress is also not essential in tau pathology-induced neurodegeneration. We conclude that the role of ER stress in AD pathogenesis needs to be carefully addressed in future studies.
Collapse
Affiliation(s)
- Shoko Hashimoto
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan,
| | - Ayano Ishii
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan.,Laboratory of Comparative Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-City, Tokyo 180-8602, Japan
| | - Naoko Kamano
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan
| | - Naoto Watamura
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan.,Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan, and
| | - Takashi Saito
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan.,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan, and
| | - Makoto Yokosuka
- Laboratory of Comparative Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-City, Tokyo 180-8602, Japan
| | - Takaomi C Saido
- From the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan,
| |
Collapse
|
39
|
Kovacs GG. Concepts and classification of neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2018; 145:301-307. [PMID: 28987178 DOI: 10.1016/b978-0-12-802395-2.00021-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Neurodegenerative diseases are disorders characterized by progressive loss of neurons associated with deposition of proteins showing altered physicochemical properties in the brain and in peripheral organs. Molecular classification of neurodegenerative disease is protein-based. This emphasizes the role of protein-processing systems in the pathogenesis. The most frequent proteins involved in the pathogenesis of neurodegenerative diseases are amyloid-β, prion protein, tau, α-synuclein, TAR-DNA-binding protein 43kDa, and fused-in sarcoma protein. There are further proteins associated mostly with hereditary disorders such as proteins encoded by genes linked to trinucleotide repeat disorders, neuroserpin, ferritin, and familial cerebral amyloidoses. The clinical presentations are defined by the distinct involvement of functional systems and do not necessarily indicate the molecular pathologic background. Seeding of pathologic proteins and hierarchic involvement of anatomic regions is commonly seen in neurodegenerative diseases. Overlap of neurodegenerative diseases and combinations of different disorders is frequent. Translation of neuropathologic categories of neurodegenerative diseases into in vivo detectable biomarkers is only partly achieved but intensive research is performed to reach this goal.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Chitranshi N, Dheer Y, Abbasi M, You Y, Graham SL, Gupta V. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol 2018; 16:1018-1035. [PMID: 29676228 PMCID: PMC6120108 DOI: 10.2174/1570159x16666180419121247] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) degeneration is a major feature of glaucoma pathology. Neuroprotective approaches that delay or halt the progression of RGC loss are needed to prevent vision loss which can occur even after conventional medical or surgical treatments to lower intraocular pressure. OBJECTIVE The aim of this review was to examine the progress in genetics and cellular mechanisms associated with endoplasmic reticulum (ER) stress, RGC dysfunction and cell death pathways in glaucoma. MATERIALS AND METHODS Here, we review the involvement of neurotrophins like brain derived neurotrophic factor (BDNF) and its high affinity receptor tropomyosin receptor kinase (TrkB) in glaucoma. The role of ER stress markers in human and animal retinas in health and disease conditions is also discussed. Further, we analysed the literature highlighting genetic linkage in the context of primary open angle glaucoma and suggested mechanistic insights into potential therapeutic options relevant to glaucoma management. RESULTS The literature review of the neurobiology underlying neurotrophin pathways, ER stress and gene associations provide critical insights into association of RGCs death in glaucoma. Alteration in signalling pathway is associated with increased risk of misfolded protein aggregation in ER promoting RGC apoptosis. Several genes that are linked with neurotrophin signalling pathways have been reported to be associated with glaucoma pathology. CONCLUSION Understanding genetic heterogeneity and involvement of neurotrophin biology in glaucoma could help to understand the complex pathophysiology of glaucoma. Identification of novel molecular targets will be critical for drug development and provide neuroprotection to the RGCs and optic nerve.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Address correspondence to this author at the Faculty of Medicine and Health Sciences, 75, Talavera Road, Macquarie University, Sydney, NSW 2109, Australia; Tel: +61-298502760; E-mail:
| | | | | | | | | | | |
Collapse
|
41
|
Amyloid-β42 clearance and neuroprotection mediated by X-box binding protein 1 signaling decline with aging in the Drosophila brain. Neurobiol Aging 2017; 60:57-70. [DOI: 10.1016/j.neurobiolaging.2017.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 07/28/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023]
|
42
|
Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol 2017; 158:45-68. [DOI: 10.1016/j.pneurobio.2017.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
43
|
Gerakis Y, Hetz C. A decay of the adaptive capacity of the unfolded protein response exacerbates Alzheimer's disease. Neurobiol Aging 2017; 63:162-164. [PMID: 29042130 DOI: 10.1016/j.neurobiolaging.2017.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
Alterations in the buffering capacity of the proteostasis network are a salient feature of Alzheimer's disease, associated with the occurrence of chronic endoplasmic reticulum (ER) stress. To cope with ER stress, cells activate the unfolded protein response (UPR), a signal transduction pathway that enforces adaptive programs through the induction of transcription factors such as X-box binding protein 1 (XBP1). A new study by Marcora et al used a fly model to study amyloid β pathogenesis in the secretory pathway of neurons. Through genetic manipulation, authors identified a new role of XBP1s in the clearance of amyloid β and the improvement of neuronal function. However, although the activation of the UPR signaling was sustained over time, the transcriptional upregulation of XBP1-target genes was attenuated during aging. This study suggests that aging has a negative impact in the ability of the UPR to manage proteostasis alterations in Alzheimer's disease.
Collapse
Affiliation(s)
- Yannis Gerakis
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, USA.
| |
Collapse
|
44
|
Duran-Aniotz C, Cornejo VH, Espinoza S, Ardiles ÁO, Medinas DB, Salazar C, Foley A, Gajardo I, Thielen P, Iwawaki T, Scheper W, Soto C, Palacios AG, Hoozemans JJM, Hetz C. IRE1 signaling exacerbates Alzheimer's disease pathogenesis. Acta Neuropathol 2017; 134:489-506. [PMID: 28341998 DOI: 10.1007/s00401-017-1694-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/19/2022]
Abstract
Altered proteostasis is a salient feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress and abnormal protein aggregation. ER stress triggers the activation of the unfolded protein response (UPR), a signaling pathway that enforces adaptive programs to sustain proteostasis or eliminate terminally damaged cells. IRE1 is an ER-located kinase and endoribonuclease that operates as a major stress transducer, mediating both adaptive and proapoptotic programs under ER stress. IRE1 signaling controls the expression of the transcription factor XBP1, in addition to degrade several RNAs. Importantly, a polymorphism in the XBP1 promoter was suggested as a risk factor to develop AD. Here, we demonstrate a positive correlation between the progression of AD histopathology and the activation of IRE1 in human brain tissue. To define the significance of the UPR to AD, we targeted IRE1 expression in a transgenic mouse model of AD. Despite initial expectations that IRE1 signaling may protect against AD, genetic ablation of the RNase domain of IRE1 in the nervous system significantly reduced amyloid deposition, the content of amyloid β oligomers, and astrocyte activation. IRE1 deficiency fully restored the learning and memory capacity of AD mice, associated with improved synaptic function and improved long-term potentiation (LTP). At the molecular level, IRE1 deletion reduced the expression of amyloid precursor protein (APP) in cortical and hippocampal areas of AD mice. In vitro experiments demonstrated that inhibition of IRE1 downstream signaling reduces APP steady-state levels, associated with its retention at the ER followed by proteasome-mediated degradation. Our findings uncovered an unanticipated role of IRE1 in the pathogenesis of AD, offering a novel target for disease intervention.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (Sector B, second floor), University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile
| | - Victor Hugo Cornejo
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (Sector B, second floor), University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile
| | - Sandra Espinoza
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (Sector B, second floor), University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| | - Danilo B Medinas
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (Sector B, second floor), University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile
| | - Claudia Salazar
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| | - Andrew Foley
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (Sector B, second floor), University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile
| | - Ivana Gajardo
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| | - Peter Thielen
- Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, MA, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa, 920-0293, Japan
| | - Wiep Scheper
- Department of Clinical Genetics and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer's disease and Related Brain Disorders, The University of Texas Houston Medical School at Houston, Houston, TX, 77030, USA
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| | - Jeroen J M Hoozemans
- Department of Pathology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (Sector B, second floor), University of Chile, Independencia 1027, P.O.BOX 70086, Santiago, Chile.
- Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, MA, USA.
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| |
Collapse
|
45
|
Abstract
The clinical manifestation of neurodegenerative diseases is initiated by the selective alteration in the functionality of distinct neuronal populations. The pathology of many neurodegenerative diseases includes accumulation of misfolded proteins in the brain. In physiological conditions, the proteostasis network maintains normal protein folding, trafficking and degradation; alterations in this network - particularly disturbances to the function of endoplasmic reticulum (ER) - are thought to contribute to abnormal protein aggregation. ER stress triggers a signalling reaction known as the unfolded protein response (UPR), which induces adaptive programmes that improve protein folding and promote quality control mechanisms and degradative pathways or can activate apoptosis when damage is irreversible. In this Review, we discuss the latest advances in defining the functional contribution of ER stress to brain diseases, including novel evidence that relates the UPR to synaptic function, which has implications for cognition and memory. A complex concept is emerging wherein the consequences of ER stress can differ drastically depending on the disease context and the UPR signalling pathway that is altered. Strategies to target specific components of the UPR using small molecules and gene therapy are in development, and promise interesting avenues for future interventions to delay or stop neurodegeneration.
Collapse
|
46
|
Wang CY, Zou W, Liang XY, Jiang ZS, Li X, Wei HJ, Tang YY, Zhang P, Tang XQ. Hydrogen sulfide prevents homocysteine‑induced endoplasmic reticulum stress in PC12 cells by upregulating SIRT‑1. Mol Med Rep 2017; 16:3587-3593. [PMID: 28713986 DOI: 10.3892/mmr.2017.7004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/15/2017] [Indexed: 11/06/2022] Open
Abstract
It was previously confirmed that hydrogen sulfide (H2S) has a neuroprotective effect, preventing homocysteine‑induced neurotoxicity. However, the exact molecular mechanisms underlying this protective effect remain to be fully elucidated. Endoplasmic reticulum (ER) stress contributes to homocysteine‑induced neurotoxicity. Silent mating type information regulator 2 homolog 1 (SIRT‑1) can attenuate ER stress, exerting its neuroprotective effect. Therefore, the present study aimed to investigate whether H2S protects PC12 cells against homocysteine‑induced ER stress and whether SIRT‑1 mediates this protective effect of H2S. Western blotting was used to detect the expression of SIRT‑1, glucose‑regulated protein 78 (GRP78), and cleaved caspase‑12 in PC12 cells. It was observed that sodium hydrosulfide (NaHS), an exogenous H2S donor, significantly attenuated the homocysteine‑induced ER stress responses, including increases in the protein expression levels of GRP78 and cleaved caspase‑12. Simultaneously, NaHS upregulated the expression of SIRT‑1 and reversed the homocysteine‑induced downregulation of SIRT‑1 in PC12 cells. Sirtinol, a specific inhibitor of SIRT‑1, eliminated the protective effects of H2S in homocysteine‑induced ER stress. These data indicated that H2S prevented homocysteine‑induced ER stress via enhancing the expression of SIRT‑1. These findings offer novel insight into the protective mechanisms of H2S against homocysteine‑induced neurotoxicity.
Collapse
Affiliation(s)
- Chun-Yan Wang
- The Institute of Cardiovascular Disease, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei Zou
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Yu Liang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Sheng Jiang
- The Institute of Cardiovascular Disease, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiang Li
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hai-Jun Wei
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yi-Yun Tang
- Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ping Zhang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Qing Tang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
47
|
Lindholm D, Korhonen L, Eriksson O, Kõks S. Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. Front Cell Dev Biol 2017; 5:48. [PMID: 28540288 PMCID: PMC5423914 DOI: 10.3389/fcell.2017.00048] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Unfolded stress response (UPR) is a conserved cellular pathway involved in protein quality control to maintain homeostasis under different conditions and disease states characterized by cell stress. Although three general schemes of and genes induced by UPR are rather well-established, open questions remain including the precise role of UPR in human diseases and the interactions between different sensor systems during cell stress signaling. Particularly, the issue how the normally adaptive and pro-survival UPR pathway turns into a deleterious process causing sustained endoplasmic reticulum (ER) stress and cell death requires more studies. UPR is also named a friend with multiple personalities that we need to understand better to fully recognize its role in normal physiology and in disease pathology. UPR interacts with other organelles including mitochondria, and with cell stress signals and degradation pathways such as autophagy and the ubiquitin proteasome system. Here we review current concepts and mechanisms of UPR as studied in different cells and model systems and highlight the relevance of UPR and related stress signals in various human diseases.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland.,Minerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Laura Korhonen
- Minerva Foundation Institute for Medical ResearchHelsinki, Finland.,Division of Child Psychiatry, Helsinki University Central HospitalHelsinki, Finland
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Sulev Kõks
- Department of Pathophysiology, University of TartuTartu, Estonia.,Department of Reproductive Biology, Estonian University of Life SciencesTartu, Estonia
| |
Collapse
|
48
|
Cabral-Miranda F, Hetz C. ER stress in neurodegenerative disease: from disease mechanisms to therapeutic interventions. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2017. [DOI: 10.1515/ersc-2017-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe conception that protein aggregates composed by misfolded proteins underlies the occurrence of several neurodegenerative diseases suggests that this phenomenon may have a common origin, ultimately driven by disruption of proteostasis control. The unfolded protein response (UPR) embodies a major element of the proteostasis network, which is engaged by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as a possible mechanism of neurodegeneration, contributing to synaptic alterations, neuroinflammation and neuronal loss. In this review we discuss most recent findings relating ER stress and the development of distinct neurodegenerative diseases, and the possible strategies for disease intervention.
Collapse
|
49
|
Jang JK, Park KJ, Lee JH, Ko KY, Kang S, Kim IY. Selenoprotein S is required for clearance of C99 through endoplasmic reticulum-associated degradation. Biochem Biophys Res Commun 2017; 486:444-450. [PMID: 28315680 DOI: 10.1016/j.bbrc.2017.03.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
Abstract
Amyloid beta precursor protein (APP) is normally cleaved by α-secretase, but can also be cleaved by β-secretase (BACE1) to produce C99 fragments in the endoplasmic reticulum (ER) membrane. C99 is subsequently cleaved to amyloid β (Aβ), the aggregation of which is known to cause Alzheimer's disease. Therefore, C99 removing is for preventing the disease. Selenoprotein S (SelS) is an ER membrane protein participating in endoplasmic reticulum-associated degradation (ERAD), one of the stages in resolving ER stress of misfolded proteins accumulated in the ER. ERAD has been postulated as one of the processes to degrade C99; however, it remains unclear if the degradation depends on SelS. In this study, we investigated the effect of SelS on C99 degradation. We observed that both SelS and C99 were colocalized in the membrane fraction of mouse neuroblastoma Neuro2a (N2a) cells. While the level of SelS was increased by ER stress, the level of C99 was decreased. However, despite the induction of ER stress, there was no change in the amount of C99 in SelS knock-down cells. The interaction of C99 with p97(VCP), an essential component of the ERAD complex, did not occur in SelS knock-down cells. The ubiquitination of C99 was decreased in SelS knock-down cells. We also found that the extracellular amount of Aβ1-42 was relatively higher in SelS knock-down cells than in control cells. These results suggest that SelS is required for C99 degradation through ERAD, resulting in inhibition of Aβ production.
Collapse
Affiliation(s)
- Jun Ki Jang
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea
| | - Ki Jun Park
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea
| | - Jea Hwang Lee
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea
| | - Kwan Young Ko
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea
| | - Ick Young Kim
- Division of Life Sciences, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-Ku, Seoul 02841, Republic of Korea.
| |
Collapse
|
50
|
Tungkum W, Jumnongprakhon P, Tocharus C, Govitrapong P, Tocharus J. Melatonin suppresses methamphetamine-triggered endoplasmic reticulum stress in C6 cells glioma cell lines. J Toxicol Sci 2017; 42:63-71. [DOI: 10.2131/jts.42.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Wanida Tungkum
- Department of Biochemistry, Faculty of Medical Science Naresuan University, Thailand
| | | | | | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Thailand
- Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand
| |
Collapse
|