1
|
Putro E, Carnevale A, Marangio C, Fulci V, Paolini R, Molfetta R. New Insight into Intestinal Mast Cells Revealed by Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:5594. [PMID: 38891782 PMCID: PMC11171657 DOI: 10.3390/ijms25115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array of receptors, MCs act as tissue sentinels, able to detect the presence of bacteria and parasites and to respond to different environmental stimuli. MCs originate from bone marrow (BM) progenitors that enter the circulation and mature in peripheral organs under the influence of microenvironment factors, thus differentiating into heterogeneous tissue-specific subsets. Even though MC activation has been traditionally linked to IgE-mediated allergic reactions, a role for these cells in other pathological conditions including tumor progression has recently emerged. However, several aspects of MC biology remain to be clarified. The advent of single-cell RNA sequencing platforms has provided the opportunity to understand MCs' origin and differentiation as well as their phenotype and functions within different tissues, including the gut. This review recapitulates how single-cell transcriptomic studies provided insight into MC development as well as into the functional role of intestinal MC subsets in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Rossella Paolini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (A.C.); (C.M.); (V.F.); (R.M.)
| | | |
Collapse
|
2
|
Miyake K, Ito J, Karasuyama H. Novel insights into the ontogeny of basophils. FRONTIERS IN ALLERGY 2024; 5:1402841. [PMID: 38803659 PMCID: PMC11128600 DOI: 10.3389/falgy.2024.1402841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Basophils are the least common granulocytes, accounting for <1% of peripheral blood leukocytes. In the last 20 years, analytical tools for mouse basophils have been developed, and we now recognize that basophils play critical roles in various immune reactions, including the development of allergic inflammation and protective immunity against parasites. Moreover, the combined use of flow cytometric analyses and knockout mice has uncovered several progenitor cells committed to basophils in mice. Recently, advancements in single-cell RNA sequencing (scRNA-seq) technologies have challenged the classical view of the differentiation of various hematopoietic cell lineages. This is also true for basophil differentiation, and studies using scRNA-seq analysis have provided novel insights into basophil differentiation, including the association of basophil differentiation with that of erythrocyte/megakaryocyte and the discovery of novel basophil progenitor cells in the mouse bone marrow. In this review, we summarize the recent findings of basophil ontogeny in both mice and humans, mainly focusing on studies using scRNA-seq analyses.
Collapse
Affiliation(s)
- Kensuke Miyake
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | | |
Collapse
|
3
|
Pavlyuchenkova AN, Smirnov MS, Chernyak BV, Chelombitko MA. The Role Played by Autophagy in FcεRI-Dependent Activation of Mast Cells. Cells 2024; 13:690. [PMID: 38667305 PMCID: PMC11049365 DOI: 10.3390/cells13080690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
The significant role of mast cells in the development of allergic and inflammatory diseases is well-established. Among the various mechanisms of mast cell activation, the interaction of antigens/allergens with IgE and the subsequent binding of this complex to the high-affinity IgE receptor FcεRI stand out as the most studied and fundamental pathways. This activation process leads to the rapid exocytosis of granules containing preformed mediators, followed by the production of newly synthesized mediators, including a diverse array of cytokines, chemokines, arachidonic acid metabolites, and more. While conventional approaches to allergy control primarily focus on allergen avoidance and the use of antihistamines (despite their associated side effects), there is increasing interest in exploring novel methods to modulate mast cell activity in modern medicine. Recent evidence suggests a role for autophagy in mast cell activation, offering potential avenues for utilizing low-molecular-weight autophagy regulators in the treatment of allergic diseases. More specifically, mitochondria, which play an important role in the regulation of autophagy as well as mast cell activation, emerge as promising targets for drug development. This review examines the existing literature regarding the involvement of the molecular machinery associated with autophagy in FcεRI-dependent mast cell activation.
Collapse
Affiliation(s)
- Anastasia N. Pavlyuchenkova
- Belozersky Institute of Physicochemical Biology, Moscow State University, Moscow 119992, Russia; (A.N.P.)
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia
| | - Maxim S. Smirnov
- Belozersky Institute of Physicochemical Biology, Moscow State University, Moscow 119992, Russia; (A.N.P.)
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physicochemical Biology, Moscow State University, Moscow 119992, Russia; (A.N.P.)
| | - Maria A. Chelombitko
- Belozersky Institute of Physicochemical Biology, Moscow State University, Moscow 119992, Russia; (A.N.P.)
| |
Collapse
|
4
|
Park J, Kang SJ. The ontogenesis and heterogeneity of basophils. DISCOVERY IMMUNOLOGY 2024; 3:kyae003. [PMID: 38567293 PMCID: PMC10941320 DOI: 10.1093/discim/kyae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/02/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Basophils are the rarest leukocytes, but they have essential roles in protection against helminths, allergic disorders, autoimmune diseases, and some cancers. For years, the clinical significance of basophils has been neglected because of the lack of proper experimental tools to study them. The development of basophil-specific antibodies and animal models, along with genomic advances like single-cell transcriptomics, has greatly enhanced our understanding of basophil biology. Recent discoveries regarding basophils prompted us to write this review, emphasizing the basophil developmental pathway. In it, we chronologically examine the steps of basophil development in various species, which reveals the apparent advent of basophils predating IgE and basophil's IgE-independent regulatory role in primitive vertebrates. Then, we cover studies of basophil development in adult bone marrow, and compare those of murine and human basophils, introducing newly identified basophil progenitors and mature basophil subsets, as well as the transcription factors that regulate the transitions between them. Last, we discuss the heterogeneity of tissue-resident basophils, which may develop through extramedullary hematopoiesis. We expect that this review will contribute to a deeper understanding of basophil biology from the intricate aspects of basophil development and differentiation, offering valuable insights for both researchers and clinicians.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| |
Collapse
|
5
|
Poto R, Loffredo S, Marone G, Di Salvatore A, de Paulis A, Schroeder JT, Varricchi G. Basophils beyond allergic and parasitic diseases. Front Immunol 2023; 14:1190034. [PMID: 37205111 PMCID: PMC10185837 DOI: 10.3389/fimmu.2023.1190034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Basophils bind IgE via FcεRI-αβγ2, which they uniquely share only with mast cells. In doing so, they can rapidly release mediators that are hallmark of allergic disease. This fundamental similarity, along with some morphological features shared by the two cell types, has long brought into question the biological significance that basophils mediate beyond that of mast cells. Unlike mast cells, which mature and reside in tissues, basophils are released into circulation from the bone marrow (constituting 1% of leukocytes), only to infiltrate tissues under specific inflammatory conditions. Evidence is emerging that basophils mediate non-redundant roles in allergic disease and, unsuspectingly, are implicated in a variety of other pathologies [e.g., myocardial infarction, autoimmunity, chronic obstructive pulmonary disease, fibrosis, cancer, etc.]. Recent findings strengthen the notion that these cells mediate protection from parasitic infections, whereas related studies implicate basophils promoting wound healing. Central to these functions is the substantial evidence that human and mouse basophils are increasingly implicated as important sources of IL-4 and IL-13. Nonetheless, much remains unclear regarding the role of basophils in pathology vs. homeostasis. In this review, we discuss the dichotomous (protective and/or harmful) roles of basophils in a wide spectrum of non-allergic disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - John T. Schroeder
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), Naples, Italy
| |
Collapse
|
6
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
7
|
Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu Rev Immunol 2021; 38:49-77. [PMID: 32340580 DOI: 10.1146/annurev-immunol-071719-094903] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), INSERM UMR 1056, Université de Toulouse, 31 059 Toulouse CEDEX 9, France;
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| |
Collapse
|
8
|
Li F, Zheng Z, Li H, Fu R, Xu L, Yang F. Crayfish hemocytes develop along the granular cell lineage. Sci Rep 2021; 11:13099. [PMID: 34162929 PMCID: PMC8222279 DOI: 10.1038/s41598-021-92473-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/09/2021] [Indexed: 01/21/2023] Open
Abstract
Despite the central role of hemocytes in crustacean immunity, the process of hemocyte differentiation and maturation remains unclear. In some decapods, it has been proposed that the two main types of hemocytes, granular cells (GCs) and semigranular cells (SGCs), differentiate along separate lineages. However, our current findings challenge this model. By tracking newly produced hemocytes and transplanted cells, we demonstrate that almost all the circulating hemocytes of crayfish belong to the GC lineage. SGCs and GCs may represent hemocytes of different developmental stages rather than two types of fully differentiated cells. Hemocyte precursors produced by progenitor cells differentiate in the hematopoietic tissue (HPT) for 3 ~ 4 days. Immature hemocytes are released from HPT in the form of SGCs and take 1 ~ 3 months to mature in the circulation. GCs represent the terminal stage of development. They can survive for as long as 2 months. The changes in the expression pattern of marker genes during GC differentiation support our conclusions. Further analysis of hemocyte phagocytosis indicates the existence of functionally different subpopulations. These findings may reshape our understanding of crustacean hematopoiesis and may lead to reconsideration of the roles and relationship of circulating hemocytes.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China. .,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.
| | - Zaichao Zheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China
| | - Hongyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China
| | - Rongrong Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China.,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184# Daxue Road, Xiamen, 361005, China. .,Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.
| |
Collapse
|
9
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
10
|
Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy 2021; 76:1693-1706. [PMID: 33205439 DOI: 10.1111/all.14662] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Basophils are the rarest granulocytes which represent <1% of peripheral blood leukocytes. Basophils bear several phenotypic similarities to tissue-resident mast cells and therefore had been erroneously considered as blood-circulating mast cells. However, recent researches have revealed that basophils play nonredundant roles in allergic inflammation, protective immunity against parasitic infections and regulation of innate and acquired immunity. Basophils are recruited to inflamed tissues and activated in an IgE-dependent or IgE-independent manner to release a variety of effector molecules. Such molecules, including IL-4, act on various types of cells and play versatile roles, including the induction and termination of allergic inflammation and the regulation of immune responses. Recent development of novel therapeutic agents has enabled us to gain further insights into basophil biology in human disorders. In this review, we highlight the recent advances in the field of basophil biology with a particular focus on the role of basophils in allergic inflammation. Further studies on basophils and their effector molecules will help us identify novel therapeutic targets for treating allergic disorders.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sho Shibata
- Department of Respiratory Medicine Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
11
|
Shah H, Eisenbarth S, Tormey CA, Siddon AJ. Behind the scenes with basophils: an emerging therapeutic target. IMMUNOTHERAPY ADVANCES 2021; 1:ltab008. [PMID: 35919744 PMCID: PMC9327101 DOI: 10.1093/immadv/ltab008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Summary
Though basophils were originally viewed as redundant blood ‘mast cells’, the implementation of flow cytometry has established basophils as unique leukocytes with critical immunomodulatory functions. Basophils play an active role in allergic inflammation, autoimmunity, and hematological malignancies. They are distinguishable from other leukocytes by their characteristic metachromatic deep-purple cytoplasmic, round granules. Mature basophils are phenotypically characterized by surface expression of IL-3Rα (CD123); IL-3 drives basophil differentiation, degranulation, and synthesis of inflammatory mediators including type 2 cytokines. Basophil degranulation is the predominant source of histamine in peripheral blood, promoting allergic responses. Basophils serve as a bridge between innate and adaptive immunity by secreting IL-4 which supports eosinophil migration, monocyte differentiation into macrophages, B-cell activation, and CD4 T-cell differentiation into Th2 cells. Further, basophilia is a key phenomenon in myeloid neoplasms, especially chronic myeloid leukemia (CML) for which it is a diagnostic criterion. Increased circulating basophils, often with aberrant immunophenotype, have been detected in patients with CML and other myeloproliferative neoplasms (MPNs). The significance of basophils’ immunoregulatory functions in malignant and non-malignant diseases is an active area of research. Ongoing and future research can inform the development of immunotherapies that target basophils to impact allergic, autoimmune, and malignant disease states. This review article aims to provide an overview of basophil biology, identification strategies, and roles and dysregulation in diseases.
Collapse
Affiliation(s)
- Hemali Shah
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Eisenbarth
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunology, Yale School of Medicine, New Haven, CT, USA
| | | | - Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, Zager MA, Aldinger KA, Blecher-Gonen R, Zhang F, Spielmann M, Palis J, Doherty D, Steemers FJ, Glass IA, Trapnell C, Shendure J. A human cell atlas of fetal gene expression. Science 2020; 370:370/6518/eaba7721. [PMID: 33184181 DOI: 10.1126/science.aba7721] [Citation(s) in RCA: 364] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration with mouse developmental atlases (such as conserved specification of blood cells). These data represent a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.
Collapse
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Paul D Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Mei Deng
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael A Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ronnie Blecher-Gonen
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Malte Spielmann
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. .,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA. .,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.,Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
13
|
Akula S, Paivandy A, Fu Z, Thorpe M, Pejler G, Hellman L. How Relevant Are Bone Marrow-Derived Mast Cells (BMMCs) as Models for Tissue Mast Cells? A Comparative Transcriptome Analysis of BMMCs and Peritoneal Mast Cells. Cells 2020; 9:cells9092118. [PMID: 32957735 PMCID: PMC7564378 DOI: 10.3390/cells9092118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
Abstract
Bone marrow-derived mast cells (BMMCs) are often used as a model system for studies of the role of MCs in health and disease. These cells are relatively easy to obtain from total bone marrow cells by culturing under the influence of IL-3 or stem cell factor (SCF). After 3 to 4 weeks in culture, a nearly homogenous cell population of toluidine blue-positive cells are often obtained. However, the question is how relevant equivalents these cells are to normal tissue MCs. By comparing the total transcriptome of purified peritoneal MCs with BMMCs, here we obtained a comparative view of these cells. We found several important transcripts that were expressed at very high levels in peritoneal MCs, but were almost totally absent from the BMMCs, including the major chymotryptic granule protease Mcpt4, the neurotrophin receptor Gfra2, the substance P receptor Mrgprb2, the metalloprotease Adamts9 and the complement factor 2 (C2). In addition, there were a number of other molecules that were expressed at much higher levels in peritoneal MCs than in BMMCs, including the transcription factors Myb and Meis2, the MilR1 (Allergin), Hdc (Histidine decarboxylase), Tarm1 and the IL-3 receptor alpha chain. We also found many transcripts that were highly expressed in BMMCs but were absent or expressed at low levels in the peritoneal MCs. However, there were also numerous MC-related transcripts that were expressed at similar levels in the two populations of cells, but almost absent in peritoneal macrophages and B cells. These results reveal that the transcriptome of BMMCs shows many similarities, but also many differences to that of tissue MCs. BMMCs can thereby serve as suitable models in many settings concerning the biology of MCs, but our findings also emphasize that great care should be taken when extrapolating findings from BMMCs to the in vivo function of tissue-resident MCs.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; (A.P.); (G.P.)
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; (A.P.); (G.P.)
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
14
|
Lundregan SL, Niskanen AK, Muff S, Holand H, Kvalnes T, Ringsby T, Husby A, Jensen H. Resistance to gapeworm parasite has both additive and dominant genetic components in house sparrows, with evolutionary consequences for ability to respond to parasite challenge. Mol Ecol 2020; 29:3812-3829. [DOI: 10.1111/mec.15491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sarah L. Lundregan
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Alina K. Niskanen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Stefanie Muff
- Centre for Biodiversity Dynamics Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim Norway
| | - Håkon Holand
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Thor‐Harald Ringsby
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Arild Husby
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Evolutionary Biology Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Henrik Jensen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
15
|
Wang Y, Ma H, Tao X, Luo Y, Wang H, He J, Fang Q, Guo S, Song C. SCF promotes the production of IL-13 via the MEK-ERK-CREB signaling pathway in mast cells. Exp Ther Med 2019; 18:2491-2496. [PMID: 31555361 PMCID: PMC6755428 DOI: 10.3892/etm.2019.7866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/12/2018] [Indexed: 12/26/2022] Open
Abstract
Mast cells serve a key role in the occurrence and development of allergy. As an important growth factor of mast cells, stem cell factor (SCF) has an effect on the apoptosis, chemotaxis, adhesion, degranulation and other biological characteristics of mast cells. However, there are few studies regarding the effect of SCF signal on the production of cytokines from mast cells, particularly Th2 type cytokines. In the present study, the expression and secretion of IL-13 in P815 cells stimulated by SCF were detected by fluorescence quantitative PCR and ELISA, and western blotting and EMSA were used to detect ERK phosphorylation and activation of CREB in stimulated P815 cells. The results demonstrated that the production of IL-13 was significantly increased in P815 cells stimulated by SCF (1–100 ng/ml; P<0.01). There was an obvious phosphorylation of ERK and CREB activation in P815 cells stimulated by SCF (50 ng/ml). Compared with the SCF single stimulation group, the production of IL-13 was significantly reduced in P815 cells stimulated with U0126 (ERK-MEK/pathway inhibitor) or H-89 (CREB inhibitor) combined with SCF stimulation group (P<0.01). However, JSI-124 (JAK/STAT3 pathway inhibitor), Wortmannin (PI3K/Akt pathway inhibitor) and PDTC (NF-κB inhibitor) had no effect on the role of SCF promoting the P815 cells producing IL-13. Therefore, SCF signaling promotes mast cell P815 to produce IL-13, and this effect is associated with the MEK-ERK-CREB signaling pathway.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hua Ma
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiangnan Tao
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yulan Luo
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Helong Wang
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jing He
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shujun Guo
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chuanwang Song
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
16
|
Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, Ginhoux F, Newell EW. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 2018; 37:nbt.4314. [PMID: 30531897 DOI: 10.1038/nbt.4314] [Citation(s) in RCA: 2433] [Impact Index Per Article: 405.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data.
Collapse
Affiliation(s)
- Etienne Becht
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Leland McInnes
- Tutte Institute for Mathematics and Computing, Ottawa, Ontario, Canada
| | - John Healy
- Tutte Institute for Mathematics and Computing, Ottawa, Ontario, Canada
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Immanuel W H Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA
| |
Collapse
|
17
|
Multifaceted roles of basophils in health and disease. J Allergy Clin Immunol 2018; 142:370-380. [DOI: 10.1016/j.jaci.2017.10.042] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/19/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023]
|
18
|
Bahri R, Custovic A, Korosec P, Tsoumani M, Barron M, Wu J, Sayers R, Weimann A, Ruiz-Garcia M, Patel N, Robb A, Shamji MH, Fontanella S, Silar M, Mills ENC, Simpson A, Turner PJ, Bulfone-Paus S. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol 2018. [PMID: 29518421 PMCID: PMC6075471 DOI: 10.1016/j.jaci.2018.01.043] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Food allergy is an increasing public health issue and the most common cause of life-threatening anaphylactic reactions. Conventional allergy tests assess for the presence of allergen-specific IgE, significantly overestimating the rate of true clinical allergy and resulting in overdiagnosis and adverse effect on health-related quality of life. Objective To undertake initial validation and assessment of a novel diagnostic tool, we used the mast cell activation test (MAT). Methods Primary human blood-derived mast cells (MCs) were generated from peripheral blood precursors, sensitized with patients' sera, and then incubated with allergen. MC degranulation was assessed by means of flow cytometry and mediator release. We compared the diagnostic performance of MATs with that of existing diagnostic tools to assess in a cohort of peanut-sensitized subjects undergoing double-blind, placebo-controlled challenge. Results Human blood-derived MCs sensitized with sera from patients with peanut, grass pollen, and Hymenoptera (wasp venom) allergy demonstrated allergen-specific and dose-dependent degranulation, as determined based on both expression of surface activation markers (CD63 and CD107a) and functional assays (prostaglandin D2 and β-hexosaminidase release). In this cohort of peanut-sensitized subjects, the MAT was found to have superior discrimination performance compared with other testing modalities, including component-resolved diagnostics and basophil activation tests. Using functional principle component analysis, we identified 5 clusters or patterns of reactivity in the resulting dose-response curves, which at preliminary analysis corresponded to the reaction phenotypes seen at challenge. Conclusion The MAT is a robust tool that can confer superior diagnostic performance compared with existing allergy diagnostics and might be useful to explore differences in effector cell function between basophils and MCs during allergic reactions.
Collapse
Affiliation(s)
- Rajia Bahri
- Division of Musculoskeletal and Dermatological Sciences & Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Adnan Custovic
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Peter Korosec
- Laboratory for Clinical Immunology & Molecular Genetics, University Hospital for Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Marina Tsoumani
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Martin Barron
- Division of Musculoskeletal and Dermatological Sciences & Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Jiakai Wu
- Division of Musculoskeletal and Dermatological Sciences & Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Rebekah Sayers
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Monica Ruiz-Garcia
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Nandinee Patel
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Abigail Robb
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mohamed H Shamji
- Section of Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sara Fontanella
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Mira Silar
- Laboratory for Clinical Immunology & Molecular Genetics, University Hospital for Respiratory and Allergic Diseases, Golnik, Slovenia
| | - E N Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul J Turner
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom.
| | - Silvia Bulfone-Paus
- Division of Musculoskeletal and Dermatological Sciences & Manchester Collaborative Centre for Inflammation Research (MCCIR), School of Biological Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
19
|
Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Hum Vaccin Immunother 2018; 14:815-831. [PMID: 29257936 DOI: 10.1080/21645515.2017.1417711] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Basophils are circulating cells that are associated quite exclusively with allergy response and hypersensitivity reactions but their role in the immune network might be much more intriguing and complex than previously expected. The feasibility of testing their biology in vitro for allergy research and diagnosis, due fundamentally to their quite easy availability in the peripheral blood, made them the major source for assessing allergy in the laboratory assay, when yet many further cells such as mast cells and eosinophils are much more involved as effector cells in allergy than circulating basophils. Interestingly, basophil numbers change rarely in peripheral blood during an atopic response, while we might yet observe an increase in eosinophils and modification in the biology of mast cells in the tissue during an hypersensitivity response. Furthermore, the fact that basophils are very scanty in numbers suggests that they should mainly serve as regulatory cells in immunity, rather than effector leukocytes, as still believed by the majority of physicians. In this review we will try to describe and elucidate the possible role of these cells, known as "innate IL4-producing cells" in the immune regulation of allergy and their function in allergen immunotherapy.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- a Department of Neurological and Movement Sciences , University of Verona , Verona , Italy
| | - Geir Bjørklund
- b Council for Nutritional and Environmental Medicine (CONEM) , Mo i Rana , Norway
| | - Andrea Sboarina
- c Department of Surgery , Dentistry, Paediatrics and Gynaecology-University of Verona , Verona , Italy
| | - Antonio Vella
- d Unit of Immunology-Azienda Ospedaliera Universitaria Integrata (AOUI) , Verona , Italy
| |
Collapse
|
20
|
Abstract
Basophils are mainly known as pro-inflammatory effector cells associated with allergy and helminth infections. Although they were identified over 130 years ago, their in vivo functions are still poorly understood. New insights into basophil development and function have been gained by the development of various transgenic mouse lines and staining techniques to detect and purify these cells from different organs. Several studies over the past few years have identified unexpected functions for basophils, including immunomodulatory properties and interactions with other immune cells. Here, I summarize and discuss the main findings.
Collapse
Affiliation(s)
- David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
21
|
Basophil tryptase mMCP-11 plays a crucial role in IgE-mediated, delayed-onset allergic inflammation in mice. Blood 2016; 128:2909-2918. [DOI: 10.1182/blood-2016-07-729392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022] Open
Abstract
Key Points
Mice deficient for basophil tryptase mMCP-11 showed ameliorated IgE-mediated allergic inflammation with reduced leukocyte infiltration. This is the first demonstration that the basophil-derived protease plays a crucial role in allergic inflammation.
Collapse
|
22
|
Basophils and mast cells in immunity and inflammation. Semin Immunopathol 2016; 38:535-7. [PMID: 27405865 DOI: 10.1007/s00281-016-0582-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
|