1
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Zhou Y, Luo Y, Liang H, Zhong P, Wu D. Applicability of the low-grade inflammation score in predicting 90-day functional outcomes after acute ischemic stroke. BMC Neurol 2023; 23:320. [PMID: 37679730 PMCID: PMC10483771 DOI: 10.1186/s12883-023-03365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The low-grade inflammation (LGI) score, a novel indicator of chronic LGI, combines C-reactive protein (CRP), leukocyte counts, the neutrophil/lymphocyte ratio (NLR), and the platelet (PLT) count to predict outcomes of patients with various conditions, such as cardiovascular diseases, cancers, and neurodegenerative diseases. However, few studies have examined the role of the LGI score in predicting functional outcomes of patients with ischemic stroke. The present study aimed to evaluate the association between the LGI score and functional outcomes of patients with ischemic stroke. METHODS A total of 1,215 patients were screened in the present study, and 876 patients were finally included in this retrospective observational study based on the inclusion and exclusion criteria. Blood tests were conducted within 24 h of admission. Severity of ischemic stroke was assessed using the NIHSS score with severe stroke denoted by NIHSS > 5. Early neurological deterioration (END) was defined as an increment in the total NIHSS score of ≥ 2 points within 7 days after admission. Patient outcomes were assessed on day 90 after stroke onset using the modified Rankin Scale (mRS). RESULTS The LGI score was positively correlated with baseline and the day 7 NIHSS scores (R2 = 0.119, p < 0.001;R2 = 0.123, p < 0.001). Multivariate regression analysis showed that the LGI score was an independent predictor of stroke severity and END. In the crude model, the LGI score in the fourth quartile was associated with a higher risk of poor outcomes on day 90 compared with the LGI score in the first quartile (OR = 5.02, 95% CI: 3.09-8.14, p for trend < 0.001). After adjusting for potential confounders, the LGI score in the fourth quartile was independently associated with poor outcomes on day 90 (OR = 2.65, 95% CI: 1.47-4.76, p for trend = 0.001). Finally, the ROC curve analysis showed an AUC of 0.682 for poor outcomes on day 90 after stroke onset. CONCLUSION The LGI score is strongly correlated with the severity of acute ischemic stroke and that the LGI score might be a good predictor for poor outcomes on day 90 in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Yang Zhou
- Emergency Department, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Yufan Luo
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Ping Zhong
- Department of Neurology, Shanghai Yangpu District Shidong Hospital, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China.
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
3
|
Lu W, Wen J. H 2S-RhoA/ROCK Pathway and Glial Cells in Axonal Remyelination After Ischemic Stroke. Mol Neurobiol 2023; 60:5493-5504. [PMID: 37322287 DOI: 10.1007/s12035-023-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Ischemic stroke is one of the main reasons of disability and death. Stroke-induced functional deficits are mainly due to the secondary degeneration of the white matter characterized by axonal demyelination and injury of axon-glial integrity. Enhancement of the axonal regeneration and remyelination could promote the neural functional recovery. However, cerebral ischemia-induced activation of RhoA/Rho kinase (ROCK) pathway plays a crucial and harmful role in the process of axonal recovery and regeneration. Inhibition of this pathway could promote the axonal regeneration and remyelination. In addition, hydrogen sulfide (H2S) has the significant neuroprotective role during the recovery of ischemic stroke via inhibiting the inflammatory response and oxidative stress, regulating astrocyte function, promoting the differentiation of endogenous oligodendrocyte precursor cells (OPCs) to mature oligodendrocyte. Among all of these effects, promoting the formation of mature oligodendrocyte is a crucial part of axonal regeneration and remyelination. Furthermore, numerous studies have uncovered the crosstalk between astrocytes and oligodendrocyte, microglial cells and oligodendrocyte in the axonal remyelination following ischemic stroke. The purpose of this review was to discuss the relationship among H2S, RhoA/ROCK pathway, astrocytes, and microglial cells in the axonal remyelination following ischemic stroke to reveal new strategies for preventing and treating this devastating disease.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Wang H, Li X, Wang Q, Ma J, Gao X, Wang M. TREM2, microglial and ischemic stroke. J Neuroimmunol 2023; 381:578108. [PMID: 37302170 DOI: 10.1016/j.jneuroim.2023.578108] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023]
Abstract
Ischemic stroke (IS) is a leading cause of morbidity and mortality worldwide. Immunity and inflammation are key factors in the pathophysiology of IS. The inflammatory response is involved in all stages of stroke, and microglia are the predominant cells involved in the post-stroke inflammatory response. Resident microglia are the main immune cells of the brain and the first line of defense of the nervous system. After IS, activated microglia can be both advantageous and detrimental to surrounding tissue; they can be divided into the harmful M1 types or the neuro-protective M2 type. Currently, with the latest progress of transcriptomics analysis, different and more complex phenotypes of microglia activation have been described, such as disease-related microglia (DAM) associated with Alzheimer's disease (AD), white matter associated microglia (WAMs) in aging, and stroke-related microglia (SAM) etc. The triggering receptor expressed on myeloid cell 2 (TREM2) is an immune-related receptor on the surface of microglia. Its expression increases after IS, which is related to microglial inflammation and phagocytosis, however, its relationship with the microglia phenotype is not clear. This paper reviews the following: 1) the phenotypic changes of microglia in various pathological stages after IS and its relationship with inflammatory factors; 2) the relationship between the expression of the TREM2 receptor and inflammatory factors; 3) the relationship between phenotypic changes of microglia and its surface receptor TREM2; 4) the TREM2-related signalling pathway of microglia after IS and treatment for TREM2 receptor; and finally 5) To clarify the relationship among TREM2, inflammation, and microglia phenotype after IS, as well as the mechanism among them and the some possible treatment of IS targeting TREM2. Moreover, the relationship between the new phenotype of microglia such as SAM and TREM2 has also been systematically summarized, but there are no relevant research reports on the relationship between TREM2 and SAM after IS.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Qi Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Jialiang Ma
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Xiaohong Gao
- Department of Neurology, Wuwei people's Hospital, North side of Xuanwu Street, Liangzhou District, Wuwei, Gansu 733000, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| |
Collapse
|
5
|
Honma R, I T, Seki M, Iwatake M, Ogaeri T, Hasegawa K, Ohba S, Tran SD, Asahina I, Sumita Y. Immunomodulatory Macrophages Enable E-MNC Therapy for Radiation-Induced Salivary Gland Hypofunction. Cells 2023; 12:1417. [PMID: 37408251 DOI: 10.3390/cells12101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
A newly developed therapy using effective-mononuclear cells (E-MNCs) is reportedly effective against radiation-damaged salivary glands (SGs) due to anti-inflammatory and revascularization effects. However, the cellular working mechanism of E-MNC therapy in SGs remains to be elucidated. In this study, E-MNCs were induced from peripheral blood mononuclear cells (PBMNCs) by culture for 5-7 days in medium supplemented with five specific recombinant proteins (5G-culture). We analyzed the anti-inflammatory characteristics of macrophage fraction of E-MNCs using a co-culture model with CD3/CD28-stimulated PBMNCs. To test therapeutic efficacy in vivo, either E-MNCs or E-MNCs depleted of CD11b-positive cells were transplanted intraglandularly into mice with radiation-damaged SGs. Following transplantation, SG function recovery and immunohistochemical analyses of harvested SGs were assessed to determine if CD11b-positive macrophages contributed to tissue regeneration. The results indicated that CD11b/CD206-positive (M2-like) macrophages were specifically induced in E-MNCs during 5G-culture, and Msr1- and galectin3-positive cells (immunomodulatory macrophages) were predominant. CD11b-positive fraction of E-MNCs significantly inhibited the expression of inflammation-related genes in CD3/CD28-stimulated PBMNCs. Transplanted E-MNCs exhibited a therapeutic effect on saliva secretion and reduced tissue fibrosis in radiation-damaged SGs, whereas E-MNCs depleted of CD11b-positive cells and radiated controls did not. Immunohistochemical analyses revealed HMGB1 phagocytosis and IGF1 secretion by CD11b/Msr1-positive macrophages from both transplanted E-MNCs and host M2-macrophages. Thus, the anti-inflammatory and tissue-regenerative effects observed in E-MNC therapy against radiation-damaged SGs can be partly explained by the immunomodulatory effect of M2-dominant macrophage fraction.
Collapse
Affiliation(s)
- Ryo Honma
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takashi I
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | | | - Mayumi Iwatake
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takunori Ogaeri
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Kayo Hasegawa
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Seigo Ohba
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Simon D Tran
- Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Yoshinori Sumita
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
6
|
Shichita T, Ooboshi H, Yoshimura A. Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nat Rev Neurosci 2023; 24:299-312. [PMID: 36973481 DOI: 10.1038/s41583-023-00690-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
The nervous and immune systems control whole-body homeostasis and respond to various types of tissue injury, including stroke, in a coordinated manner. Cerebral ischaemia and subsequent neuronal cell death activate resident or infiltrating immune cells, which trigger neuroinflammation that affects functional prognosis after stroke. Inflammatory immune cells exacerbate ischaemic neuronal injury after the onset of brain ischaemia; however, some of the immune cells thereafter change their function to neural repair. The recovery processes after ischaemic brain injury require additional and close interactions between the nervous and immune systems through various mechanisms. Thus, the brain controls its own inflammation and repair processes after injury via the immune system, which provides a promising therapeutic opportunity for stroke recovery.
Collapse
Affiliation(s)
- Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
- Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Hiroaki Ooboshi
- Section of Internal Medicine, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
7
|
Wang J, Gao S, Lenahan C, Gu Y, Wang X, Fang Y, Xu W, Wu H, Pan Y, Shao A, Zhang J. Melatonin as an Antioxidant Agent in Stroke: An Updated Review. Aging Dis 2022; 13:1823-1844. [PMID: 36465183 PMCID: PMC9662272 DOI: 10.14336/ad.2022.0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 08/22/2023] Open
Abstract
Stroke is a devastating disease associated with high mortality and disability worldwide, and is generally classified as ischemic or hemorrhagic, which share certain similar pathophysiological processes. Oxidative stress is a critical factor involved in stroke-induced injury, which not only directly damages brain tissue, but also enhances a series of pathological signaling cascades, contributing to inflammation, brain edema, and neuronal death. To alleviate these serious secondary brain injuries, neuroprotective agents targeting oxidative stress inhibition may serve as a promising treatment strategy. Melatonin is a hormone secreted by the pineal gland, and has various properties, such as antioxidation, anti-inflammation, circadian rhythm modulation, and promotion of tissue regeneration. Numerous animal experiments studying stroke have confirmed that melatonin exerts considerable neuroprotective effects, partially via anti-oxidative stress. In this review, we introduce the possible role of melatonin as an antioxidant in the treatment of stroke based on the latest published studies of animal experiments and clinical research.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Cameron Lenahan
- Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.
| | - Yichen Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Lin W, Wang Q, Chen Y, Wang N, Ni Q, Qi C, Wang Q, Zhu Y. Identification of a 6-RBP gene signature for a comprehensive analysis of glioma and ischemic stroke: Cognitive impairment and aging-related hypoxic stress. Front Aging Neurosci 2022; 14:951197. [PMID: 36118697 PMCID: PMC9476601 DOI: 10.3389/fnagi.2022.951197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
There is mounting evidence that ischemic cerebral infarction contributes to vascular cognitive impairment and dementia in elderly. Ischemic stroke and glioma are two majorly fatal diseases worldwide, which promote each other's development based on some common underlying mechanisms. As a post-transcriptional regulatory protein, RNA-binding protein is important in the development of a tumor and ischemic stroke (IS). The purpose of this study was to search for a group of RNA-binding protein (RBP) gene markers related to the prognosis of glioma and the occurrence of IS, and elucidate their underlying mechanisms in glioma and IS. First, a 6-RBP (POLR2F, DYNC1H1, SMAD9, TRIM21, BRCA1, and ERI1) gene signature (RBPS) showing an independent overall survival prognostic prediction was identified using the transcriptome data from TCGA-glioma cohort (n = 677); following which, it was independently verified in the CGGA-glioma cohort (n = 970). A nomogram, including RBPS, 1p19q codeletion, radiotherapy, chemotherapy, grade, and age, was established to predict the overall survival of patients with glioma, convenient for further clinical transformation. In addition, an automatic machine learning classification model based on radiomics features from MRI was developed to stratify according to the RBPS risk. The RBPS was associated with immunosuppression, energy metabolism, and tumor growth of gliomas. Subsequently, the six RBP genes from blood samples showed good classification performance for IS diagnosis (AUC = 0.95, 95% CI: 0.902–0.997). The RBPS was associated with hypoxic responses, angiogenesis, and increased coagulation in IS. Upregulation of SMAD9 was associated with dementia, while downregulation of POLR2F was associated with aging-related hypoxic stress. Irf5/Trim21 in microglia and Taf7/Trim21 in pericytes from the mouse cerebral cortex were identified as RBPS-related molecules in each cell type under hypoxic conditions. The RBPS is expected to serve as a novel biomarker for studying the common mechanisms underlying glioma and IS.
Collapse
Affiliation(s)
- Weiwei Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
| | - Qiangwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbin Ni
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Chunhua Qi
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- *Correspondence: Qian Wang
| | - Yongjian Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
- Yongjian Zhu
| |
Collapse
|
9
|
Xue T, Ji J, Sun Y, Huang X, Cai Z, Yang J, Guo W, Guo R, Cheng H, Sun X. Sphingosine-1-phosphate, a novel TREM2 ligand, promotes microglial phagocytosis to protect against ischemic brain injury. Acta Pharm Sin B 2022; 12:1885-1898. [PMID: 35847502 PMCID: PMC9279640 DOI: 10.1016/j.apsb.2021.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Tengfei Xue
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Juan Ji
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Yuqin Sun
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Xinxin Huang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhenyu Cai
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Jin Yang
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Wei Guo
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Ruobing Guo
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
| | - Hong Cheng
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiulan Sun
- Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 211166, China
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China
- Corresponding author.
| |
Collapse
|
10
|
Li S, Chen X, Yang H, Li H, Ren B. Value of IMA, IMAR, the IMA Index, and Other Hematological Features in Predicting AIS Caused by MCA Stenosis/Occlusion. Curr Neurovasc Res 2022; 19:137-149. [PMID: 35578847 DOI: 10.2174/1567202619666220516145120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE In this study, we investigated the relationship between serum ischemic modified albumin (IMA) levels and other hematologic features and middle cerebral artery (MCA) severe stenosis/occlusion in acute ischemic stroke (AIS) patients. METHODS The levels of serum IMA and Albumin (ALB) of 169 AIS patients were measured, and the ratio of IMA to albumin (IMAR) and the albumin-adjusted ischemia-modified albumin index (IMA index) were calculated. Different combinations of other hematologic changes and clinical features of the patients were analyzed. RESULTS The results indicated that the levels of blood IMA and IMAR were significantly higher in the group with severe intracranial stenosis/occlusion than in the group with non-severe stenosis/ occlusion in AIS patients, while the CHE levels were significantly lower than those in the other groups. In the MCA severe stenosis/occlusion group, the levels of blood IMA and IMAR were significantly higher than that in the other vascular severe stenosis/occlusion groups, while the IMA index, ALB, and CHE were significantly lower than that in the other groups. Multiple linear regression analysis showed a significant negative correlation between IMA and albumin. A combined diagnostic ROC curve analysis showed that among AIS patients, the best combination for determining severe stenosis/occlusion of the great intracranial arteries was the admission NIHSS score + CHE (AUC = 0.783). The best combination for determining severe stenosis or occlusion of the MCA in AIS patients was IMAR combined with the admission NIHSS score and CHE (AUC = 0.827). CONCLUSION The combined use of IMA, IMAR, and the IMA index has some diagnostic value in AIS caused by severe stenosis or occlusion of the MCA. IMAR, CHE, and the admission NIHSS scores are the best combinations to determine whether an AIS patient has severe stenosis or occlusion of the MCA.
Collapse
Affiliation(s)
- Sijin Li
- School of Clinical Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Xing Chen
- Department of Blood Transfusion, Loudi Central Hospital, Loudi, Hunan 417000, China
| | - Huan Yang
- School of Clinical Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Huiyang Li
- School of Clinical Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Biqiong Ren
- School of Clinical Medicine, Hunan University of Chinese Medicine, Hunan, China.,Department of Laboratory Medicine, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, China
| |
Collapse
|
11
|
Li Y, Jin X, Yang X, Zhang L, Qi Z. Creatine promotes the repair of peripheral nerve injury by affecting macrophage polarization. Biochem Biophys Res Commun 2022; 604:116-122. [PMID: 35303677 DOI: 10.1016/j.bbrc.2022.03.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
The present study aimed to explore whether creatine promotes the repair of peripheral nerve injury and its possible mechanism. In vitro: RAW264.7 cells were used to investigate the role of proteins related to the JAK2/STAT1 pathway in the polarization of macrophages treated with creatine. In vivo: A sciatic nerve crush model was used. After the injury, IL-4 or creatine was injected. The recovery of motor function was assessed by the rotarod test and sciatic function index at 2, 6, 10, and 16 days after injury. At 16 days after injury, the ultrastructure of the nerve tissue was observed under a transmission electron microscope. Immunostaining were performed at 4 and 16 days to investigate the expression levels of macrophage-related markers as well as the distribution of macrophages after injury. Compared with the IFN-γ group, the group pretreated with creatine showed a significant decrease in p-JAK2 and p-STAT1 in vitro. The motor function of mice in the creatine group (CR1) and creatine 4 days group (CR2) was significantly improved compared to the control group (CON). The improvement in the CR2 group was more significant. Immunostaining showed that infiltrating macrophages mainly comprised M1 macrophages in the CON group and M2 macrophages in the CR group. Our study shows that creatine promotes the repair of peripheral nerve injury by affecting macrophage polarization, possibly through decreasing M1 polarization by inhibiting the JAK2/STAT1 pathway.
Collapse
Affiliation(s)
- Yubo Li
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.33 Badachu Road, Shijingshan District, 100144, Beijing, PR China.
| | - Xiaolei Jin
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.33 Badachu Road, Shijingshan District, 100144, Beijing, PR China.
| | - Xiaonan Yang
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.33 Badachu Road, Shijingshan District, 100144, Beijing, PR China.
| | - Lanxin Zhang
- Center of Clinical Biological Sample Management, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| | - Zuoliang Qi
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.33 Badachu Road, Shijingshan District, 100144, Beijing, PR China.
| |
Collapse
|
12
|
Guo YS, Yuan M, Han Y, Shen XY, Gao ZK, Bi X. Effects of enriched environment on microglia and functional white matter recovery in rats with post stroke cognitive impairment. Neurochem Int 2022; 154:105295. [PMID: 35121010 DOI: 10.1016/j.neuint.2022.105295] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/11/2021] [Accepted: 01/27/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND White matter damage is an important contributor to cognitive impairment after stroke. This study was designed to explore the beneficial effects of enriched environment (EE) on white matter recovery and cognitive dysfunction after stroke, and further explore the potential mechanism of EE on white matter recovery from the perspective of microglia and microglia-mediated neuroinflammation. METHODS Male SD rats underwent middle cerebral artery occlusion(MCAO) or sham surgery. During the MCAO operation, a laser Doppler blood flow meter was used to monitor the blood flow to ensure the success of the model. At 72 hours after the operation, 3 rats were selected for TTC staining to identify the infarct size. One week after surgery, the rats were randomly assigned into four different groups-MCAO+standard environment (SE), MCAO+enriched environment(EE), Sham+SE and Sham+EE for 4 weeks. At four weeks after MCAO surgery, neurological function deficiency condition and cognitive function were assessed using Longa score and Morris Water Maze prior to euthanasia. The loss or regeneration of myelin was stained with LFB, the expression of myelin regeneration-related protein and microglia protein was quantified by western blot and immunofluorescence, and the level of inflammatory factors was measured by ELISA. RESULTS EE treatment remarkably decreased the neurological deficit score, ameliorated the cognitive functional deficit in MCAO rats. Furthermore, EE alleviated white matter lesions and demyelination, increased myelin basic protein expression and decreased the number of activated microglia in the hippocampus of MCAO rats. In addition, ELISA analysis indicated that EE decreased the level of IL-1β, IL-6, which further suggests that EE may reduce the level of pro-inflammatory factors by affecting the expression of microglia marker, IBA1, provide a benefit physiological environment for myelin recovery, and improve post stroke cognitive impairment. CONCLUSIONS Our results suggest that exposure to EE substantially reduced the damage to brain tissue caused by activation of microglia activation, decreased the level of pro-inflammatory cytokins, which may induced by microglia, protected and promote white matter recovery to improve cognitive function after stroke. Our findings also indicate exposure to EE is beneficial for patients with white matter impairment characterised by white matter disease-related inflammation.
Collapse
Affiliation(s)
- Yi-Sha Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Sport, Shanghai, 200438, China
| | - Mei Yuan
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Sport, Shanghai, 200438, China
| | - Yu Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Sport, Shanghai, 200438, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Traditionary Chinese Medicine, Shanghai, 201203, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Traditionary Chinese Medicine, Shanghai, 201203, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China; Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
13
|
Jia J, Yang L, Chen Y, Zheng L, Chen Y, Xu Y, Zhang M. The Role of Microglial Phagocytosis in Ischemic Stroke. Front Immunol 2022; 12:790201. [PMID: 35082781 PMCID: PMC8784388 DOI: 10.3389/fimmu.2021.790201] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system that exert diverse roles in the pathogenesis of ischemic stroke. During the past decades, microglial polarization and chemotactic properties have been well-studied, whereas less attention has been paid to phagocytic phenotypes of microglia in stroke. Generally, whether phagocytosis mediated by microglia plays a beneficial or detrimental role in stroke remains controversial, which calls for further investigations. Most researchers are in favor of the former proposal currently since efficient clearance of tissue debris promotes tissue reconstruction and neuronal network reorganization in part. Other scholars propose that excessively activated microglia engulf live or stressed neuronal cells, which results in neurological deficits and brain atrophy. Upon ischemia challenge, the microglia infiltrate injured brain tissue and engulf live/dead neurons, myelin debris, apoptotic cell debris, endothelial cells, and leukocytes. Cell phagocytosis is provoked by the exposure of "eat-me" signals or the loss of "don't eat-me" signals. We supposed that microglial phagocytosis could be initiated by the specific "eat-me" signal and its corresponding receptor on the specific cell type under pathological circumstances. In this review, we will summarize phagocytic characterizations of microglia after stroke and the potential receptors responsible for this programmed biological progress. Understanding these questions precisely may help to develop appropriate phagocytic regulatory molecules, which are promoting self-limiting inflammation without damaging functional cells.
Collapse
Affiliation(s)
- Junqiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Lixuan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yan Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Lili Zheng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yanting Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Change in the central control of the bladder function of rats with focal cerebral infarction induced by photochemically-induced thrombosis. PLoS One 2021; 16:e0255200. [PMID: 34752461 PMCID: PMC8577768 DOI: 10.1371/journal.pone.0255200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
The photochemically-induced thrombosis (photothrombosis) method can create focal cerebral infarcts anywhere in the relatively superficial layers of the cerebrum; it is easy to implement and minimally invasive. Taking advantage of this versatility, we aimed to establish a new rat model of urinary frequency with focal cerebral infarction, which was characterized by its simplicity, nonlethal nature, and high reproducibility. The prefrontal cortex and the anterior cingulate cortex, which are involved in lower urinary tract control, were targeted for focal cerebral infarction, and urinary parameters were measured by cystometrogram. Cystometric analysis indicated that micturition intervals significantly shortened in photothrombosis-treated rats compared with those in the sham operative group on Days 1 and 7 (P < 0.01), but prolonged after 14 days, with no difference between the two groups. Immunopathological evaluation showed an accumulation of activated microglia, followed by an increase in reactive astrocytes at the peri-infarct zone after photothrombotic stroke. Throughout this study, all postphotothrombosis rats showed cerebral infarction in the prefrontal cortex and anterior cingulate cortex; there were no cases of rats with fatal cerebral infarction. This model corresponded to the clinical presentation, in that the micturition status changed after stroke. In conclusion, this novel model combining nonlethality and high reproducibility may be a suitable model of urinary frequency after focal cerebral infarction.
Collapse
|
15
|
Chen J, Jin J, Zhang X, Yu H, Zhu X, Yu L, Chen Y, Liu P, Dong X, Cao X, Gu Y, Bao X, Xia S, Xu Y. Microglial lnc-U90926 facilitates neutrophil infiltration in ischemic stroke via MDH2/CXCL2 axis. Mol Ther 2021; 29:2873-2885. [PMID: 33895326 DOI: 10.1016/j.ymthe.2021.04.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Dysregulated long non-coding RNAs (lncRNAs) have been shown to contribute to the pathogenesis of ischemic stroke. However, the potential role of lncRNAs in post-stroke microglial activation remains largely unknown. Here, we uncovered that lncRNA-U90926 was significantly increased in microglia exposed to ischemia/reperfusion both in vivo and in vitro. In addition, adenovirus-associated virus (AAV)-mediated microglial U90926 silencing alleviated neurological deficits and reduced infarct volume in experimental stroke mice. Microglial U90926 knockdown could reduce the infiltration of neutrophils into ischemic lesion site, which might be attributed to the downregulation of C-X-C motif ligand 2 (CXCL2). Mechanistically, U90926 directly bound to malate dehydrogenase 2 (MDH2) and competitively inhibited the binding of MDH2 to the CXCL2 3' untranslated region (UTR), thus protecting against MDH2-mediated decay of CXCL2 mRNA. Taken together, our study demonstrated that microglial U90926 aggravated ischemic brain injury via facilitating neutrophil infiltration, suggesting that U90926 might be a potential biomarker and therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Hailong Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yanting Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, P.R. China; Nanjing Neurology Clinic Medical Center, Nanjing, Jiangsu 210008, P.R. China.
| |
Collapse
|
16
|
Abcouwer SF, Shanmugam S, Muthusamy A, Lin CM, Kong D, Hager H, Liu X, Antonetti DA. Inflammatory resolution and vascular barrier restoration after retinal ischemia reperfusion injury. J Neuroinflammation 2021; 18:186. [PMID: 34446062 PMCID: PMC8394696 DOI: 10.1186/s12974-021-02237-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background Several retinal pathologies exhibit both inflammation and breakdown of the inner blood-retinal barrier (iBRB) resulting in vascular permeability, suggesting that treatments that trigger resolution of inflammation may also promote iBRB restoration. Methods Using the mouse retinal ischemia-reperfusion (IR) injury model, we followed the time course of neurodegeneration, inflammation, and iBRB disruption and repair to examine the relationship between resolution of inflammation and iBRB restoration and to determine if minocycline, a tetracycline derivative shown to reverse microglial activation, can hasten these processes. Results A 90-min ischemic insult followed by reperfusion in the retina induced cell apoptosis and inner retina thinning that progressed for approximately 2 weeks. IR increased vascular permeability within hours, which resolved between 3 and 4 weeks after injury. Increased vascular permeability coincided with alteration and loss of endothelial cell tight junction (TJ) protein content and disorganization of TJ protein complexes. Shunting of blood flow away from leaky vessels and dropout of leaky capillaries were eliminated as possible mechanisms for restoring the iBRB. Repletion of TJ protein contents occurred within 2 days after injury, long before restoration of the iBRB. In contrast, the eventual re-organization of TJ complexes at the cell border coincided with restoration of the barrier. A robust inflammatory response was evident a 1 day after IR and progressed to resolution over the 4-week time course. The inflammatory response included a rapid and transient infiltration of granulocytes and Ly6C+ classical inflammatory monocytes, a slow accumulation of Ly6Cneg monocyte/macrophages, and activation, proliferation, and mobilization of resident microglia. Extravasation of the majority of CD45+ leukocytes occurred from the superficial plexus. The presence of monocyte/macrophages and increased numbers of microglia were sustained until the iBRB was eventually restored. Intervention with minocycline to reverse microglial activation at 1 week after injury promoted early restoration of the iBRB coinciding with decreased expression of mRNAs for the microglial M1 markers TNF-α, IL-1β, and Ptgs2 (Cox-2) and increased expression of secreted serine protease inhibitor Serpina3n mRNA. Conclusions These results suggest that iBRB restoration occurs as TJ complexes are reorganized and that resolution of inflammation and restoration of the iBRB following retinal IR injury are functionally linked. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02237-5.
Collapse
Affiliation(s)
- Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | | | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Dejuan Kong
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, Michigan Medicine, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, 48105, USA.,Department of Molecular and Integrative Physiology, Ann Arbor, MI, 48109, USA
| |
Collapse
|
17
|
Weng Y, Zeng T, Huang H, Ren J, Wang J, Yang C, Pan W, Hu J, Sun F, Zhou X, Qiu H, Gao Y, Gao B, Chi L, Chen G. Systemic Immune-Inflammation Index Predicts 3-Month Functional Outcome in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Clin Interv Aging 2021; 16:877-886. [PMID: 34040364 PMCID: PMC8143961 DOI: 10.2147/cia.s311047] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Systemic immune-inflammation index (SII), a novel inflammation index derived from counts of circulating platelets, neutrophils and lymphocytes, has been studied in developing incident cancer. However, the clinical value of SII in acute ischemic stroke (AIS) patients had not been further investigated. Therefore, we aimed to explore the association between SII and severity of stroke as well as 3-month outcome of AIS patients. Methods A total of 216 AIS patients receiving intravenous thrombolysis (IVT) and 875 healthy controls (HCs) were retrospectively recruited. Blood samples were collected within 24h after admission. Severity of stroke was assessed by the National Institute of Health stroke scale (NIHSS) scores on admission and poor 3-month functional outcome was defined as Modified Rankin Scale (mRS) > 2. Results SII levels in AIS patients were higher than in HCs. The cut-off value of SII is 545.14×109/L. Patients with SII > 545.14×109/L had higher NIHSS scores (median: 5 vs 9, p < 0.001), a positive correlation between SII and NIHSS was observed (rs = 0.305, p < 0.001). Multivariate logistic regression analyses showed that high SII was one of the independent risk factors for poor prognosis at 3 months of AIS patients (OR = 3.953, 95% CI = 1.702-9.179, p = 0.001). The addition of SII to the conventional prognostic model improved the reclassification (but not discrimination) of the functional outcome (net reclassification index 39.3%, p = 0.007). Conclusion SII is correlated with stroke severity at admission and can be a novel prognostic biomarker for AIS patients treated with IVT.
Collapse
Affiliation(s)
- Yiyun Weng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tian Zeng
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Honghao Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Junli Ren
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jianing Wang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenguang Yang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wenjing Pan
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jingyu Hu
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Fangyue Sun
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xinbo Zhou
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Haojie Qiu
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yufan Gao
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China.,Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Beibei Gao
- Department of Internal Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lifen Chi
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
18
|
Toll-like receptor 2 and 9 expression on circulating neutrophils is associated with increased mortality in critically ill patients. Shock 2021; 54:35-43. [PMID: 31688663 DOI: 10.1097/shk.0000000000001467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Toll-like receptors (TLRs) play an important role in inflammatory processes in critically ill patients by binding to pathogen-associated molecular patterns and danger-associated molecular patterns (DAMPs). Whether neutrophil or monocyte TLR expression patterns are associated with outcome in critical illness is unknown. OBJECTIVES To answer this question, we conducted a prospective, observational study including 215 consecutive patients admitted to a medical ICU at a tertiary care center. METHODS Blood was drawn at admission and expression of TLR-2, TLR-4, and TLR-9 on neutrophils and monocytes were analyzed by flow cytometry. RESULTS Median Acute Physiology and Chronic Health Evaluation II (APACHE II) score was 19, and 30-day mortality was 26%. TLR-2 expression on neutrophils was associated with APACHE II, Simplified Acute Physiology Score II, and Sepsis-related Organ Failure Assessment score. TLR-2 (P < 0.001) and TLR-9 (P < 0.05) expression on neutrophils was significantly higher in nonsurvivors. In contrast, neutrophil TLR-4 expression and monocyte TLR expression were not associated with survival. Neutrophil TLR-2 (odds ratio 3.8; 95% confidence interval 1.4-10.2; P < 0.05) and TLR-9 (odds ratio 4.0; 95% confidence interval 2.0-8.1; P < 0.001) expression in the third tertile predicted mortality independent from APACHE II, serum lactate, serum creatinine, and procalcitonin, respectively. CONCLUSION We provide evidence for prognostic properties of neutrophil TLR-2 and TLR-9 expression regarding 30-day mortality in unselected critically ill patients, independent from baseline clinical characteristics, and laboratory values. These findings suggest that specific TLR-dependent activation of the innate immune system via neutrophils possibly caused by cell damage and release of otherwise intracellular components may play a significant role in the pathophysiology of critical illness.
Collapse
|
19
|
Li Y, Tang Y, Yang GY. Therapeutic application of exosomes in ischaemic stroke. Stroke Vasc Neurol 2021; 6:483-495. [PMID: 33431513 PMCID: PMC8485240 DOI: 10.1136/svn-2020-000419] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a leading cause of long-term disability in the world, with limited effective treatments. Increasing evidence demonstrates that exosomes are involved in ischaemic pathology and exhibit restorative therapeutic effects by mediating cell–cell communication. The potential of exosome therapy for ischaemic stroke has been actively investigated in the past decade. In this review, we mainly discuss the current knowledge of therapeutic applications of exosomes from different cell types, different exosomal administration routes, and current advances of exosome tracking and targeting in ischaemic stroke. We also briefly summarised the pathology of ischaemic stroke, exosome biogenesis, exosome profile changes after stroke as well as registered clinical trials of exosome-based therapy.
Collapse
Affiliation(s)
- Yongfang Li
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of medcine, Shanghai Jiao Tong University, Shanghai, China .,Neuroscience and Neuroengineering Center, Medx Research Institute, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| |
Collapse
|
20
|
Berchtold D, Priller J, Meisel C, Meisel A. Interaction of microglia with infiltrating immune cells in the different phases of stroke. Brain Pathol 2020; 30:1208-1218. [PMID: 33058417 PMCID: PMC8018083 DOI: 10.1111/bpa.12911] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Stroke, in association with its complications, is one of the leading causes of mortality and morbidity worldwide. Cerebral ischemia triggers an inflammatory response in the brain that is controlled by the activation of resident microglia as well as the infiltration of peripheral myeloid and lymphoid cells into the brain parenchyma. This inflammation has been shown to have both beneficial and detrimental effects on stroke outcome. The focus of this review lies on the functions of myeloid cells and their interaction with infiltrating lymphocytes in different phases of stroke. A detailed and time-specific understanding of the contribution of different immune cell subsets during the course of cerebral ischemia is crucial to specifically promote beneficial and inhibit detrimental effects of inflammation on stroke outcome.
Collapse
Affiliation(s)
- Daniel Berchtold
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and DZNE, Charité - Universitätsmedizin Berlin, Berlin, Germany.,UK DRI, University of Edinburgh, Edinburgh, UK
| | - Christian Meisel
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Neurocure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Zhang F, Zhu T, Li H, He Y, Zhang Y, Huang N, Zhang G, Li Y, Chang D, Li X. Plasma Interleukin-37 is Elevated in Acute Ischemic Stroke Patients and Probably Associated With 3-month Functional Prognosis. Clin Interv Aging 2020; 15:1285-1294. [PMID: 32801675 PMCID: PMC7414924 DOI: 10.2147/cia.s230186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 05/06/2020] [Indexed: 01/22/2023] Open
Abstract
Background Interleukin-37 is a novel cytokine emerging as a natural suppressor of inflammatory responses. Inflammation and the immune response play important roles in acute ischemic stroke. This study aimed at evaluating the plasma levels and the association with 3-month outcomes of interleukin-37 in acute ischemic stroke patients. Patients and Methods In total, 152 consecutive patients with acute ischemic stroke and 45 healthy controls were included. Plasma interleukin-37 levels were determined in the first morning after admission using an enzyme-linked immunesorbent assay. The primary outcome was the 3-month functional outcome (modified Rankin Scale score >2). Logistic regression was used to evaluate the risk and 3-month outcome of stroke according to plasma interleukin-37 level. Results Plasma interleukin-37 levels were significantly higher in the patients with acute ischaemic stroke than in the healthy controls (182.26 versus 97.89 pg/mL, p<0.001). Patients with large-artery atherosclerosis had significantly higher IL-37 levels than those with small-artery occlusion (202.12±35.82 versus 175.67±33.71pg/mL, p<0.001). Plasma interleukin-37 levels were positively correlated with National Institutes of Health Stroke Scale scores (r=0.521, p<0.0001) and lesion volume (r=0.442, p<0.0001). Ninety-four and 58 patients had favourable and unfavourable 3-month outcomes, respectively. Elevated plasma interleukin-37 levels were independently associated with unfavourable 3-month outcomes (adjusted odds ratio=1.033, p=0.001, 95% confidence interval: 1.015–1.056). Conclusion Admission plasma interleukin-37 levels were significantly increased after acute ischemic stroke. Elevated interleukin-37 levels were independently associated with unfavourable 3-month prognoses in acute ischemic stroke patients. Further studies with other populations are needed.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Tianrui Zhu
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Heng Li
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yi He
- Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi, People's Republic of China
| | - Yuanyuan Zhang
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Nana Huang
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Guitao Zhang
- Department of Neurology, Capital Medical University Affiliated Beijing Tiantan Hospital, Beijing, People's Republic of China
| | - Yanshuang Li
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Dujuan Chang
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
22
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
23
|
Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front Immunol 2020; 11:294. [PMID: 32174916 PMCID: PMC7055422 DOI: 10.3389/fimmu.2020.00294] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke, which accounts for 75-80% of all strokes, is the predominant cause of morbidity and mortality worldwide. The post-stroke immune response has recently emerged as a new breakthrough target in the treatment strategy for ischemic stroke. Glial cells, including microglia, astrocytes, and oligodendrocytes, are the primary components of the peri-infarct environment in the central nervous system (CNS) and have been implicated in post-stroke immune regulation. However, increasing evidence suggests that glial cells exert beneficial and detrimental effects during ischemic stroke. Microglia, which survey CNS homeostasis and regulate innate immune responses, are rapidly activated after ischemic stroke. Activated microglia release inflammatory cytokines that induce neuronal tissue injury. By contrast, anti-inflammatory cytokines and neurotrophic factors secreted by alternatively activated microglia are beneficial for recovery after ischemic stroke. Astrocyte activation and reactive gliosis in ischemic stroke contribute to limiting brain injury and re-establishing CNS homeostasis. However, glial scarring hinders neuronal reconnection and extension. Neuroinflammation affects the demyelination and remyelination of oligodendrocytes. Myelin-associated antigens released from oligodendrocytes activate peripheral T cells, thereby resulting in the autoimmune response. Oligodendrocyte precursor cells, which can differentiate into oligodendrocytes, follow an ischemic stroke and may result in functional recovery. Herein, we discuss the mechanisms of post-stroke immune regulation mediated by glial cells and the interaction between glial cells and neurons. In addition, we describe the potential roles of various glial cells at different stages of ischemic stroke and discuss future intervention targets.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Wnt-3a alleviates neuroinflammation after ischemic stroke by modulating the responses of microglia/macrophages and astrocytes. Int Immunopharmacol 2019; 75:105760. [DOI: 10.1016/j.intimp.2019.105760] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
|
25
|
Zhu Z, Zheng L, Li Y, Huang T, Chao YC, Pan L, Zhu H, Zhao Y, Yu W, Li P. Potential Immunotherapeutic Targets on Myeloid Cells for Neurovascular Repair After Ischemic Stroke. Front Neurosci 2019; 13:758. [PMID: 31447626 PMCID: PMC6696904 DOI: 10.3389/fnins.2019.00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Neurological deficits and cognitive dysfunctions caused by acute ischemic stroke pose enormous burden to the stroke families and the communities. Restoration of the normal function of the neurovascular unit following ischemic stroke is critical for improving neurological recovery and cognitive functions after stroke. Recent evidence suggests that the myeloid cells including both the resident microglia and infiltrating monocytes/macrophages and neutrophils are highly plastic in response to the environmental cues. They intimately interact with multiple components of the neurovascular unit in response to the alarmins, danger associated pattern molecules (DAMPs) and other signals released from the ischemic brain. The aim of this review is to discuss the reciprocal interactions between the myeloid cells and the ischemic neurovascular unit during the late repair phase of cerebral ischemic stroke. We also summarize potential immunotherapeutic targets on myeloid cells and new therapeutic approaches targeting myeloid cells, such as cell transplantation, mitochondrial dynamic and extracellular vesicles-based therapy et al to enhance neurovascular repair for better stroke recovery.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Chieh Chao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lijun Pan
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hui Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanhua Zhao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Arac A, Grimbaldeston MA, Galli SJ, Bliss TM, Steinberg GK. Meningeal Mast Cells as Key Effectors of Stroke Pathology. Front Cell Neurosci 2019; 13:126. [PMID: 31001088 PMCID: PMC6457367 DOI: 10.3389/fncel.2019.00126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/13/2019] [Indexed: 01/14/2023] Open
Abstract
Stroke is the leading cause of adult disability in the United States. Because post-stroke inflammation is a critical determinant of damage and recovery after stroke, understanding the interplay between the immune system and the brain after stroke holds much promise for therapeutic intervention. An understudied, but important aspect of this interplay is the role of meninges that surround the brain. All blood vessels travel through the meningeal space before entering the brain parenchyma, making the meninges ideally located to act as an immune gatekeeper for the underlying parenchyma. Emerging evidence suggests that the actions of immune cells resident in the meninges are essential for executing this gatekeeper function. Mast cells (MCs), best known as proinflammatory effector cells, are one of the long-term resident immune cells in the meninges. Here, we discuss recent findings in the literature regarding the role of MCs located in the meningeal space and stroke pathology. We review the latest advances in mouse models to investigate the roles of MCs and MC-derived products in vivo, and the importance of using these mouse models. We examine the concept of the meninges playing a critical role in brain and immune interactions, reevaluate the perspectives on the key effectors of stroke pathology, and discuss the opportunities and challenges for therapeutic development.
Collapse
Affiliation(s)
- Ahmet Arac
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Stephen J. Galli
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Tonya M. Bliss
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
- Stanford Stroke Center, School of Medicine, Stanford University, Stanford, CA, United States
| | - Gary K. Steinberg
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
- Stanford Stroke Center, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
27
|
Qin J, Li Z, Gong G, Li H, Chen L, Song B, Liu X, Shi C, Yang J, Yang T, Xu Y. Early increased neutrophil-to-lymphocyte ratio is associated with poor 3-month outcomes in spontaneous intracerebral hemorrhage. PLoS One 2019; 14:e0211833. [PMID: 30730945 PMCID: PMC6366889 DOI: 10.1371/journal.pone.0211833] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to evaluate the association of dynamic neutrophil-to-lymphocyte ratio (NLR) with 3-month functional outcomes in patients with sICH. We retrospectively identified 213 consecutive patients with sICH hospitalized in The First Affiliated Hospital of Zhengzhou University from January 2017 to May 2018. Patients were divided into functional independence (FI) or unfavorable prognosis (UP) groups based on 3-month outcomes. Admission leukocyte counts within 24 hours of symptom onset were obtained, and the recorded fraction, of which the numerator is neutrophil and the denominator is lymphocyte, as NLR0. Determined NLR1, NLR3, NLR7, and NLR14 were recorded on day 1 (n = 77), day 3 (n = 126), day 7 (n = 123), and day 14 (n = 105), respectively. The relationships between dynamic NLR or leukocyte counts and clinical features were evaluated using Spearman’s or Kendall’s correlation analysis. Logistic regression analyses were used to identify the risk factors for unfavorable 3-month prognosis. The patients’ dynamic NLR was positively associated with the National Institutes of Health Stroke Scale, ICH score, and hematoma volume at admission, while inversely correlated to the onset GCS score and FI at 3-month follow-up. Furthermore, higher NLR or lower absolute lymphocyte count obtained at admission was independently risk factor for UP at 3 months (adjusted odds ratio [OR]: 1.06, 95% confidence interval [CI]: 1.003, 1.12; OR: 0.41, 95% CI: 0.18, 0.94, respectively). In conclusion, higher NLR and lower lymphocyte counts at early stages were predictive of 3-month unfavorable outcomes in sICH patients.
Collapse
Affiliation(s)
- Jie Qin
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
- * E-mail: (JQ); (GG)
| | - Zhu Li
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Guangming Gong
- Department of Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
- * E-mail: (JQ); (GG)
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ling Chen
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bo Song
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xinjing Liu
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Changhe Shi
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jing Yang
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Ting Yang
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yuming Xu
- Third Department of Neurology and Key Disciplines Laboratory of Clinical Medicine of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
28
|
Miyazaki T. Homage to Mechnikov - the phagocytic system: past and present. Semin Immunopathol 2018; 40:519-521. [PMID: 30382362 DOI: 10.1007/s00281-018-0719-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|