1
|
Yekani M, Dastgir M, Fattahi S, Shahi S, Maleki Dizaj S, Memar MY. Microbiological and molecular aspects of periodontitis pathogenesis: an infection-induced inflammatory condition. Front Cell Infect Microbiol 2025; 15:1533658. [PMID: 40406516 PMCID: PMC12095233 DOI: 10.3389/fcimb.2025.1533658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/07/2025] [Indexed: 05/26/2025] Open
Abstract
Periodontitis (PD) is the most common oral infectious disease. The primary etiologic cause of the onset and development of PD is dental plaque, which consists of bacterial biofilm domiciled within a complex extracellular mass. In PD patients, there is a progressive breakdown of the periodontal ligament and the alveolar bone. In more advanced stages, tooth loss occurs. The progression of this chronic inflammatory disease involves interactions among numerous microbial pathogens particularly, bacteria, the host's immune factors, and various environmental factors. Due to persistent infection by periodonto-pathogenic bacteria, there is an impairment of both innate and acquired immunity, leading to tissue destruction. Chronic inflammation in PD may be associated with several systemic diseases, including cardiovascular conditions, respiratory issues, diabetes, neurological diseases, cancer, and adverse pregnancy outcomes. Antibiotic treatment is one of the effective strategies for treating PD cases, although the emergence of some resistant strains may limit the effectiveness some antibiotics. In this review study, we discussed the main bacteria in PD, the interaction with the immune response, the pathogenesis of bacteria in PD and antibiotic treatment. We also outlined the emergence of resistance to antibiotics among these pathogens.
Collapse
Affiliation(s)
- Mina Yekani
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Dastgir
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Fattahi
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral and Maxillofacial Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Li X, An X, Jiao K, Pan H, Lian B. Current state of the heavy metal pollution, microbial diversity, and bioremediation experiments around the Qixia Mountain lead-zinc mine in Nanjing, China. RSC Adv 2025; 15:8795-8808. [PMID: 40124912 PMCID: PMC11926974 DOI: 10.1039/d4ra07920e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
The extraction and processing of ores from lead-zinc mines, coupled with the disposal of tailings, often result in severe environmental contamination that poses significant ecological and public health risks, demanding urgent attention and action. In this study, field investigations and analyses were performed to evaluate the state of heavy metal pollution and microbial diversity in the soil around Qixia Mountain lead-zinc mine in Nanjing, China. The effect of plant-/microorganism-induced mineralization on the remediation of the contaminated soil was studied via pot experiments. Results indicated serious soil pollution around the mine, and dominant bacterial species (e.g. Sphingomonas) in different soil environments exhibited high resistance to heavy metals. Pot experiments showed that amaranth-/Bacillus velezensis-induced mineralization can significantly reduce the heavy metal pollution levels (Nemerow pollution index decreased from 4.5 to about 1.0) in soil. This study reveals the profound impacts of mining activities on soil ecology and human health, providing a theoretical basis for the prevention and control of soil pollution in farmlands surrounding lead-zinc mines.
Collapse
Affiliation(s)
- Xiaofang Li
- Shandong Provincial University Laboratory for Protected Horticulture, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology Weifang 262700 China
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University Nanjing 210023 China +86 025 85898551 +86 025 85898551
| | - Xiaochi An
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University Nanjing 210023 China +86 025 85898551 +86 025 85898551
| | - Kairui Jiao
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University Nanjing 210023 China +86 025 85898551 +86 025 85898551
| | - Haoqin Pan
- Shandong Provincial University Laboratory for Protected Horticulture, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology Weifang 262700 China
| | - Bin Lian
- College of Life Sciences, College of Marine Science and Engineering, Nanjing Normal University Nanjing 210023 China +86 025 85898551 +86 025 85898551
| |
Collapse
|
3
|
James D, Poveda C, Walton GE, Elmore JS, Linden B, Gibson J, Griffin BA, Robertson MD, Lewis MC. Do high-protein diets have the potential to reduce gut barrier function in a sex-dependent manner? Eur J Nutr 2024; 63:2035-2054. [PMID: 38662018 PMCID: PMC11377480 DOI: 10.1007/s00394-024-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Impaired gut barrier function is associated with systemic inflammation and many chronic diseases. Undigested dietary proteins are fermented in the colon by the gut microbiota which produces nitrogenous metabolites shown to reduce barrier function in vitro. With growing evidence of sex-based differences in gut microbiotas, we determined whether there were sex by dietary protein interactions which could differentially impact barrier function via microbiota modification. METHODS Fermentation systems were inoculated with faeces from healthy males (n = 5) and females (n = 5) and supplemented with 0.9 g of non-hydrolysed proteins sourced from whey, fish, milk, soya, egg, pea, or mycoprotein. Microbial populations were quantified using fluorescence in situ hybridisation with flow cytometry. Metabolite concentrations were analysed using gas chromatography, solid phase microextraction coupled with gas chromatography-mass spectrometry and ELISA. RESULTS Increased protein availability resulted in increased proteolytic Bacteroides spp (p < 0.01) and Clostridium coccoides (p < 0.01), along with increased phenol (p < 0.01), p-cresol (p < 0.01), indole (p = 0.018) and ammonia (p < 0.01), varying by protein type. Counts of Clostridium cluster IX (p = 0.03) and concentration of p-cresol (p = 0.025) increased in males, while females produced more ammonia (p = 0.02), irrespective of protein type. Further, we observed significant sex-protein interactions affecting bacterial populations and metabolites (p < 0.005). CONCLUSIONS Our findings suggest that protein fermentation by the gut microbiota in vitro is influenced by both protein source and the donor's sex. Should these results be confirmed through human studies, they could have major implications for developing dietary recommendations tailored by sex to prevent chronic illnesses.
Collapse
Affiliation(s)
- Daniel James
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK.
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - J Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Brandon Linden
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - John Gibson
- Food and Feed Innovations, Woodstock, Newcastle Rd, Woore, N Shropshire, CW3 95N, UK
| | - Bruce A Griffin
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - M Denise Robertson
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Marie C Lewis
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| |
Collapse
|
4
|
Sharma G, Garg N, Hasan S, Shirodkar S. Prevotella: An insight into its characteristics and associated virulence factors. Microb Pathog 2022; 169:105673. [PMID: 35843443 DOI: 10.1016/j.micpath.2022.105673] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Prevotella species, a gram-negative obligate anaerobe, is commonly associated with human infections such as dental caries and periodontitis, as well as other conditions such as chronic osteomyelitis, bite-related infections, rheumatoid arthritis and intestinal diseases like ulcerative colitis. This generally harmless commensal possesses virulence factors such as adhesins, hemolysins, secretion systems exopolysaccharide, LPS, proteases, quorum sensing molecules and antibiotic resistance to evolve into a well-adapted pathogen capable of causing successful infection and proliferation in the host tissue. This review describes several of these virulence factors and their advantage to Prevotella spp. in causing inflammatory diseases like periodontitis. In addition, using genome analysis of Prevotella reference strains, we examined other putative virulence determinants which can provide insights as biomarkers and be the targets for effective interventions in Prevotella related diseases like periodontitis.
Collapse
Affiliation(s)
- Geetika Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Nancy Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India
| | - Shamimul Hasan
- Department of Oral Medicine and Radiology, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheetal Shirodkar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Noida Campus, Noida, 201313, India.
| |
Collapse
|
5
|
Könönen E, Fteita D, Gursoy UK, Gursoy M. Prevotella species as oral residents and infectious agents with potential impact on systemic conditions. J Oral Microbiol 2022; 14:2079814. [PMID: 36393976 PMCID: PMC9662046 DOI: 10.1080/20002297.2022.2079814] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022] Open
Abstract
Oral Prevotella are known as anaerobic commensals on oral mucosae and in dental plaques from early life onwards, including pigmented P. melaninogenica, P. nigrescens, and P. pallens and non-pigmented Prevotella species. Many Prevotella species contribute to oral inflammatory processes, being frequent findings in dysbiotic biofilms of periodontal diseases (P. intermedia, P. nigrescens), cariotic lesions (P. denticola, Alloprevotella (formerly Prevotella) tannerae), endodontic infections (P. baroniae, P. oris, P. multisaccharivorax), and other clinically relevant oral conditions. Over the years, several novel species have been recovered from the oral cavity without knowledge of their clinical relevance. Within this wide genus, virulence properties and other characteristics like biofilm formation seemingly vary in a species- and strain-dependent manner, as shown for the P. intermedia group organisms (P. aurantiaca, P. intermedia, P. nigrescens, and P. pallens). Oral Prevotella species are identified in various non-oral infections and chronic pathological conditions. Here, we have updated the knowledge of the genus Prevotella and the role of Prevotella species as residents and infectious agents of the oral cavity, as well as their detection in non-oral infections, but also gathered information on their potential link to cancers of the head and neck, and other systemic disorders.
Collapse
Affiliation(s)
- Eija Könönen
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Dareen Fteita
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi K. Gursoy
- Institute of Dentistry, University of Turku, Turku, Finland
| | - Mervi Gursoy
- Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Genomic Insights into the Distribution of Peptidases and Proteolytic Capacity among Prevotella and Paraprevotella Species. Microbiol Spectr 2022; 10:e0218521. [PMID: 35377228 PMCID: PMC9045265 DOI: 10.1128/spectrum.02185-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial peptidases play important roles in health and nutrient digestion in both humans and animals, especially ruminant animals. In this study, we examined and compared the various peptidases (both total and secretory) among species of Prevotella (44 in total) and Paraprevotella (2) revealed in their sequenced genomes that were archived in the MEROPS database. The phylogenetic relationships were also compared among the species based on 16S rRNA gene sequences and the occurrence of peptidases. A rich repertoire of peptidases was found that represents six catalytic types of peptidases (aspartic, cysteine, glutamic, metallo, mixed, and serine), together with some with unknown catalytic mechanisms, and 78 families. Metallopeptidases were the most predominant, followed by serine and cysteine peptidases. Considerable variations in peptidase occurrence and distribution were noted among the species and the different families of peptidases. A total of 48 different families of secretory peptidases were found in the genomes of the Prevotella and Paraprevotella species. Secretory peptidases in the families of S41 and M13 were ubiquitous, and S9, M16, C1, S13, and C69 were found in more than 95% of the species. Multivariate analysis of the peptidases indicated that species were mostly clustered except for a few species. Analysis using a bipartite association network showed that the majority of peptidase families were shared among the species. The relatedness of peptidase distributions among the species did not significantly correlate with their phylogenetic relationship based on the 16S rRNA genes. The genomic overview on the peptidases of Prevotella and Paraprevotella species provided new insights into their potential capacity to degrade proteins. IMPORTANCE Species of Prevotella are prevalent and predominant bacteria residing in animals and humans, and their proteolytic capacity and activity play important roles in nutrient utilization in animals (especially ruminants) and some anaerobic infections of the intestinal, respiratory, and urinary tracts in humans. This study reveals the large repertoire and wide distribution of metallo, serine, and cysteine peptidases, especially secretory peptidases, among the Prevotella species. The information presented here could aid in the identification of the Prevotella species and the peptidases to target to decrease the excessive protein degradation in the rumen and improve dietary nitrogen utilization by ruminant animals.
Collapse
|
7
|
La X, Jiang H, Chen A, Zheng H, Shen L, Chen W, Yang F, Zhang L, Cai X, Mao H, Cheng L. Profile of the oral microbiota from preconception to the third trimester of pregnancy and its association with oral hygiene practices. J Oral Microbiol 2022; 14:2053389. [PMID: 35341210 PMCID: PMC8942530 DOI: 10.1080/20002297.2022.2053389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The oral microbiota plays vital roles in both oral and systemic health, but limited studies have explored the transition of the female oral microbiota from preconception to pregnancy along with pronounced hormonal fluctuations. Aim To characterize the oral microbiota among women in preconception and pregnancy through a prospective study and to explore the associations between the oral microbiota and oral hygiene practices. Methods A total of 202 unstimulated saliva samples were collected from 101 women in both preconception and late pregnancy. The oral microbiota was analyzed using 16S rRNA gene sequencing. Results The Ace and phylogenetic diversity (PD) index were significantly lower in the third trimester than preconception. The pathogenic taxa Prevotella and Atopobium parvulum were significantly higher during late pregnancy than preconception. Women with overall better oral hygiene practice showed lower richness and diversity in preconception compared to women with poorer oral hygiene practice. The abundance of pathogens such as Dialister during both preconception and pregnancy decreased among women with better oral hygiene practice. Conclusions The composition of the oral microbiota changed slightly from preconception to late pregnancy, with more pathogens in saliva samples during pregnancy. Improving oral hygiene practices has the potential to maintain oral micro-ecological balance.
Collapse
Affiliation(s)
- Xuena La
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China.,Department of Non-communicable Diseases Surveillance, Shanghai Municipal Center for Disease Control and Prevention (SCDC), Changning District, Shanghai,China
| | - Hong Jiang
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China
| | - An Chen
- Institute of Healthcare Engineering, Management and Architecture (HEMA), Department of Industrial Engineering and Management, Aalto University, Espoo, Finland
| | - Huajun Zheng
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Xuhui District, Shanghai,China
| | - Liandi Shen
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Weiyi Chen
- School of Public Health, Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Xuhui District, Shanghai,China
| | - Fengyun Yang
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Lifeng Zhang
- Department of Administrative Office, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai,China
| | - Xushan Cai
- Department of Woman Health care, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai, China
| | - Hongfang Mao
- Department of Woman Health care, Jiading Maternal and Child Health Care Hospital, Jiading District, Shanghai, China
| | - Lu Cheng
- Department of Computer Science, Aalto University, Espoo, Finland
| |
Collapse
|
8
|
Fakhruddin KS, Samaranayake LP, Hamoudi RA, Ngo HC, Egusa H. Diversity of site-specific microbes of occlusal and proximal lesions in severe- early childhood caries (S-ECC). J Oral Microbiol 2022; 14:2037832. [PMID: 35173909 PMCID: PMC8843124 DOI: 10.1080/20002297.2022.2037832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Severe-early childhood caries (S-ECC) a global problem of significant concern, commonly manifest on the occlusal, and proximal surfaces of affected teeth. Despite the major ecological differences between these two niches the compositional differences, if any, in the microbiota of such lesions is unknown. METHODS Deep-dentine caries samples from asymptomatic primary molars of children with S-ECC (n 19) belonging to caries-code 5/6, (ICDAS classification) were evaluated. Employing two primer pools, we amplified and compared the bacterial 16S rRNA gene sequences of the seven hypervariable regions (V2-V4 and V6-V9) using NGS-based assay. RESULTS Bray-Curtisevaluation indicated that occlusal lesions (OL) had a more homogeneous community than the proximal lesions (PL) with significant compositional differences at the species level (p = 0.01; R- 0.513). Together, the occlusal and proximal niches harbored 263 species, of which 202 (76.8%) species were common to both , while 49 (18.6%) and 12 (4.6%) disparate species were exclusively isolated from the proximal and occlusal niches, respectively. The most commonl genera at both niches included Streptococcus, Prevotella, and Lactobacillus. S. mutans was predominant in PL (p ≤ 0.05), and Atopobium parvulum (p = 0.01) was predominant in OL. CONCLUSIONS Distinct differences exist between the caries microbiota of occlusal and proximal caries in S-ECC.
Collapse
Affiliation(s)
- Kausar Sadia Fakhruddin
- Department of Preventive and Restorative Dentistry, University of Sharjah, Sharjah, UAE
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai-city, Japan
| | | | - Rifat Akram Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Hien Chi Ngo
- Uwa Dental School, The University of Western Australia, Perth, Australia
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai-city, Japan
| |
Collapse
|
9
|
Webb KA, Olagoke O, Baird T, Neill J, Pham A, Wells TJ, Ramsay KA, Bell SC, Sarovich DS, Price EP. Genomic diversity and antimicrobial resistance of Prevotella species isolated from chronic lung disease airways. Microb Genom 2022; 8. [PMID: 35113778 PMCID: PMC8942031 DOI: 10.1099/mgen.0.000754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are characterized by increasingly frequent acute pulmonary exacerbations that reduce life quality and length. Human airways are home to a rich polymicrobial environment, which includes members of the obligately anaerobic genus Prevotella. Despite their commonness, surprisingly little is known about the prevalence, role, genomic diversity and antimicrobial resistance (AMR) potential of Prevotella species and strains in healthy and diseased airways. Here, we used comparative genomics to develop a real-time PCR assay to permit rapid Prevotella species identification and quantification from cultures and clinical specimens. Assay specificity was validated across a panel of Prevotella and non-Prevotella species, followed by PCR screening of CF and COPD respiratory-derived cultures. Next, 35 PCR-positive isolates were subjected to whole-genome sequencing. Of eight identified Prevotella species, P. histicola, P. melaninogenica, P. nanceiensis, P. salivae and P. denticola overlapped between participant cohorts. Phylogenomic analysis revealed considerable interhost but limited intrahost diversity, suggesting patient-specific lineages in the lower airways, probably from oral cavity aspirations. Correlation of phenotypic AMR profiles with AMR genes identified excellent correlation between tetQ presence and decreased doxycycline susceptibility, and ermF presence and decreased azithromycin susceptibility and clindamycin resistance. AMR rates were higher in the CF isolates, reflecting greater antibiotic use in this cohort. All tested Prevotella isolates were tobramycin-resistant, providing a potential selection method to improve Prevotella culture retrieval rates. Our addition of 35 airway-derived Prevotella genomes to public databases will enhance ongoing efforts to unravel the role of this diverse and enigmatic genus in both diseased and healthy lungs.
Collapse
Affiliation(s)
- Kasey A Webb
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Olusola Olagoke
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Timothy Baird
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.,Sunshine Coast Hospital and Health Service, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Jane Neill
- Sunshine Coast Hospital and Health Service, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Amy Pham
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Timothy J Wells
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Kay A Ramsay
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Present address: Child Health Research Centre, The University of Queensland, Centre for Children's Health Research, South Brisbane, Queensland, Australia
| | - Scott C Bell
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia.,Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Derek S Sarovich
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Erin P Price
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|
10
|
Xie X, Liao J, Ai Y, Gao J, Zhao J, Qu F, Xu C, Zhang Z, Wen W, Cui H, Wang H. Pi-Dan-Jian-Qing Decoction Ameliorates Type 2 Diabetes Mellitus Through Regulating the Gut Microbiota and Serum Metabolism. Front Cell Infect Microbiol 2021; 11:748872. [PMID: 34938667 PMCID: PMC8685325 DOI: 10.3389/fcimb.2021.748872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/03/2021] [Indexed: 01/01/2023] Open
Abstract
Pi-Dan-Jian-Qing decoction (PDJQ) can been used in the treatment of type 2 diabetes mellitus (T2DM) in clinic. However, the protective mechanisms of PDJQ on T2DM remain unknown. Recent studies have shown that the changes in gut microbiota could affect the host metabolism and contribute to progression of T2DM. In this study, we first investigated the therapeutic effects of PDJQ on T2DM rats. 16S rRNA sequencing and untargeted metabolomics analyses were used to investigate the mechanisms of action of PDJQ in the treatment of T2DM. Our results showed that PDJQ treatment could improve the hyperglycemia, hyperlipidemia, insulin resistance (IR) and pathological changes of liver, pancreas, kidney, and colon in T2DM rats. PDJQ could also decrease the levels of pro-inflammatory cytokines and inhibit the oxidative stress. 16S rRNA sequencing showed that PDJQ could decrease the Firmicutes/Bacteroidetes (F to B) ratio at the phylum level. At the genus level, PDJQ could increase the relative abundances of Lactobacillus, Blautia, Bacteroides, Desulfovibrio and Akkermansia and decrease the relative abundance of Prevotella. Serum untargeted metabolomics analysis showed that PDJQ could regulate tryptophan metabolism, histidine metabolism, tricarboxylic acid (TCA) cycle, phenylalanine, tyrosine and tryptophan biosynthesis and tyrosine metabolism pathways. Correlation analysis indicated that the modulatory effects of PDJQ on the tryptophan metabolism, histidine metabolism and TCA cycle pathways were related to alterations in the abundance of Lactobacillus, Bacteroides and Akkermansia. In conclusion, our study revealed the various ameliorative effects of PDJQ on T2DM, including improving the liver and kidney functions and alleviating the hyperglycemia, hyperlipidemia, IR, pathological changes, oxidative stress and inflammatory response. The mechanisms of PDJQ on T2DM are likely linked to an improvement in the dysbiosis of gut microbiota and modulation of tryptophan metabolism, histamine metabolism, and the TCA cycle.
Collapse
Affiliation(s)
- Xuehua Xie
- First College of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Jiangsu, China
- Department of Endocrinology, Yunnan Provincial Hospital of Chinese Medicine, Yunnan, China
| | - Jiabao Liao
- Department of Emergency, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Yuanliang Ai
- Department of Orthopedics, Kunming Municipal Hospital of Traditional Chinese Medicine, Yunnan, China
| | - Jinmei Gao
- Department of Rehabilitation, Fujian People’s Hospital of Traditional Chinese Medicine, Fujian, China
| | - Jie Zhao
- Department of Endocrinology, Yunnan Provincial Hospital of Chinese Medicine, Yunnan, China
| | - Fei Qu
- Department of Emergency, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Chao Xu
- Department of Endocrinology, Yunnan Provincial Hospital of Chinese Medicine, Yunnan, China
| | - Zhaiyi Zhang
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weibo Wen
- Department of Endocrinology, Yunnan Provincial Hospital of Chinese Medicine, Yunnan, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Shandong, China
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Sarwar MT, Ohara-Nemoto Y, Kobayakawa T, Naito M, Nemoto TK. Characterization of substrate specificity and novel autoprocessing mechanism of dipeptidase A from Prevotella intermedia. Biol Chem 2021; 401:629-642. [PMID: 31913843 DOI: 10.1515/hsz-2019-0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 01/06/2023]
Abstract
Prevotella intermedia, a Gram-negative anaerobic rod, is frequently observed in subgingival polymicrobial biofilms from adults with chronic periodontitis. Peptidases in periodontopathic bacteria are considered to function as etiological reagents. Prevotella intermedia OMA14 cells abundantly express an unidentified cysteine peptidase specific for Arg-4-methycoumaryl-7-amide (MCA). BAU17746 (locus tag, PIOMA14_I_1238) and BAU18827 (locus tag, PIOMA14_II_0322) emerged as candidates of this peptidase from the substrate specificity and sequence similarity with C69-family Streptococcus gordonii Arg-aminopeptidase. The recombinant form of the former solely exhibited hydrolyzing activity toward Arg-MCA, and BAU17746 possesses a 26.6% amino acid identity with the C69-family Lactobacillus helveticus dipeptidase A. It was found that BAU17746 as well as L. helveticus dipeptidase A was a P1-position Arg-specific dipeptidase A, although the L. helveticus entity, a representative of the C69 family, had been reported to be specific for Leu and Phe. The full-length form of BAU17746 was intramolecularly processed to a mature form carrying the N-terminus of Cys15. In conclusion, the marked Arg-MCA-hydrolyzing activity in Pre. intermedia was mediated by BAU17746 belonging to the C69-family dipeptidase A, in which the mature form carries an essential cysteine at the N-terminus.
Collapse
Affiliation(s)
- Mohammad Tanvir Sarwar
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takeshi Kobayakawa
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
12
|
Yang W, Chen CH, Jia M, Xing X, Gao L, Tsai HT, Zhang Z, Liu Z, Zeng B, Yeung SCJ, Lee MH, Cheng C. Tumor-Associated Microbiota in Esophageal Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:641270. [PMID: 33681225 PMCID: PMC7930383 DOI: 10.3389/fcell.2021.641270] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Important evidence indicates the microbiota plays a key role in esophageal squamous cell carcinoma (ESCC). The esophageal microbiota was prospectively investigated in 18 patients with ESCC and 11 patients with physiological normal (PN) esophagus by 16S rRNA gene profiling, using next-generation sequencing. The microbiota composition in tumor tissues of ESCC patients were significantly different from that of patients with PN tissues. The ESCC microbiota was characterized by reduced microbial diversity, by decreased abundance of Bacteroidetes, Fusobacteria, and Spirochaetes. Employing these taxa into a microbial dysbiosis index demonstrated that dysbiosis microbiota had good capacity to discriminate between ESCC and PN esophagus. Functional analysis characterized that ESCC microbiota had altered nitrate reductase and nitrite reductase functions compared with PN group. These results suggest that specific microbes and the microbiota may drive or mitigate ESCC carcinogenesis, and this study will facilitate assigning causal roles in ESCC development to certain microbes and microbiota.
Collapse
Affiliation(s)
- Weixiong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang-Han Chen
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou County, Taiwan
| | - Minghan Jia
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangbin Xing
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hsin-Ting Tsai
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou County, Taiwan
| | - Zhanfei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenguo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mong-Hong Lee
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Gui Q, Hoffman PS, Lewis JP. Amixicile targets anaerobic bacteria within the oral microbiome. J Oral Biosci 2019; 61:226-235. [PMID: 31706024 PMCID: PMC7550198 DOI: 10.1016/j.job.2019.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Anaerobic bacteria are the major causative agents of periodontal disease. However, so far, targeted therapy aimed at reducing those pathogens has not been widely implemented. We have previously reported on a novel antimicrobial, amixicile, that targets anaerobic bacteria through inhibition of the function of the major anaerobic metabolic enzyme pyruvate ferredoxin oxidoreductase (PFOR), while not affecting aerotolerant organisms. It effectively inhibited the growth of oral anaerobes both in monocultures as well as in mixed in vitro mixed cultured however, amixicile's activity in in vivo-like conditions remained to be established. METHODS Here, we expand our study using an ex vivo oral microbiome combined with metagenomic sequencing to determine the effect of amixicile treatment on the composition of the microbiome and compare it to that of metronidazole. RESULTS Our results show that in the complex microbiomes, anaerobic bacteria are selectively inhibited, while the growth of aerotolerant ones, such as Streptococcus, Klebsiella, Neisseria, and Rothia is unaffected. Veillonella was the most abundant anaerobic genus in our ex vivo microbiome, and we observed complete inhibition of its growth. In addition, growth of other anaerobes, Fusobacterium and Prevotella, was significantly inhibited. It is noteworthy that a change in abundance of bacteriophages, such as Siphoviridae and Myoviridae, associated with the oral microbiome was observed. CONCLUSIONS Collectively, our data expand on the so far reported inhibitory spectrum of amixicile and demonstrates that it inhibits anaerobic bacteria, including both clinical isolates and laboratory strains.
Collapse
Affiliation(s)
- Qin Gui
- Philips Institute of Oral Health Research, Richmond, VA, USA
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Janina P Lewis
- Philips Institute of Oral Health Research, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
Bertelsen A, Elborn JS, Schock BC. Infection with Prevotella nigrescens induces TLR2 signalling and low levels of p65 mediated inflammation in Cystic Fibrosis bronchial epithelial cells. J Cyst Fibros 2019; 19:211-218. [PMID: 31607634 DOI: 10.1016/j.jcf.2019.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
Prevotella spp. are frequently identified in Cystic Fibrosis sputum. This study examined whether infection with Prevotella nigrescens, a frequently identified member of this species, contributes to inflammation in CF bronchial epithelial cells through activation of TLR- and NF-κB signalling pathways. CFBE41o- cells were infected with either P.nigrescens or Pseudomonas aeruginosa and incubated under anaerobic conditions for 4h. P.nigrescens activated TLR2 signalling but not TLR4 signalling while P.aeruginosa activated TLR4 signalling with a lesser effect on TLR2. P.aeruginosa induced significant IκBα phosphorylation 10min post infection with a return to control levels by 30min post infection. A significant induction in nuclear p65 DNA binding was observed at 2h post infection. In contrast, infection with P.nigrescens induced phosphorylation of IκBα 120min post infection, with significant induction in nuclear p65 DNA binding at 4h post infection only. Cytokine gene and protein responses were lower for P.nigrescens compared to P.aeruginosa. This study demonstrates the ability of a clinical P.nigrescens isolate to provoke a delayed NF-κB(p65) driven response through induction in TLR2 signalling and activation of sustained levels of IKKα.
Collapse
Affiliation(s)
- A Bertelsen
- Department of Veterinary Medicine, The University of Cambridge, Madingley Road, Cambridge, United Kingdom; Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
| | - J S Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - B C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom.
| |
Collapse
|
15
|
Does estradiol have an impact on the dipeptidyl peptidase IV enzyme activity of the Prevotella intermedia group bacteria? Anaerobe 2015; 36:14-8. [DOI: 10.1016/j.anaerobe.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022]
|
16
|
Kidd JM, Sharpton TJ, Bobo D, Norman PJ, Martin AR, Carpenter ML, Sikora M, Gignoux CR, Nemat-Gorgani N, Adams A, Guadalupe M, Guo X, Feng Q, Li Y, Liu X, Parham P, Hoal EG, Feldman MW, Pollard KS, Wall JD, Bustamante CD, Henn BM. Exome capture from saliva produces high quality genomic and metagenomic data. BMC Genomics 2014; 15:262. [PMID: 24708091 PMCID: PMC4051168 DOI: 10.1186/1471-2164-15-262] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/28/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Targeted capture of genomic regions reduces sequencing cost while generating higher coverage by allowing biomedical researchers to focus on specific loci of interest, such as exons. Targeted capture also has the potential to facilitate the generation of genomic data from DNA collected via saliva or buccal cells. DNA samples derived from these cell types tend to have a lower human DNA yield, may be degraded from age and/or have contamination from bacteria or other ambient oral microbiota. However, thousands of samples have been previously collected from these cell types, and saliva collection has the advantage that it is a non-invasive and appropriate for a wide variety of research. RESULTS We demonstrate successful enrichment and sequencing of 15 South African KhoeSan exomes and 2 full genomes with samples initially derived from saliva. The expanded exome dataset enables us to characterize genetic diversity free from ascertainment bias for multiple KhoeSan populations, including new exome data from six HGDP Namibian San, revealing substantial population structure across the Kalahari Desert region. Additionally, we discover and independently verify thirty-one previously unknown KIR alleles using methods we developed to accurately map and call the highly polymorphic HLA and KIR loci from exome capture data. Finally, we show that exome capture of saliva-derived DNA yields sufficient non-human sequences to characterize oral microbial communities, including detection of bacteria linked to oral disease (e.g. Prevotella melaninogenica). For comparison, two samples were sequenced using standard full genome library preparation without exome capture and we found no systematic bias of metagenomic information between exome-captured and non-captured data. CONCLUSIONS DNA from human saliva samples, collected and extracted using standard procedures, can be used to successfully sequence high quality human exomes, and metagenomic data can be derived from non-human reads. We find that individuals from the Kalahari carry a higher oral pathogenic microbial load than samples surveyed in the Human Microbiome Project. Additionally, rare variants present in the exomes suggest strong population structure across different KhoeSan populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Brenna M Henn
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Mehmood M, Jaffar NA, Nazim M, Khasawneh FA. Bacteremic skin and soft tissue infection caused by Prevotella loescheii. BMC Infect Dis 2014; 14:162. [PMID: 24661318 PMCID: PMC3997918 DOI: 10.1186/1471-2334-14-162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background Anaerobes are a major component of gut flora. They play an important role in the pathogenesis of infections resulting from breaches in mucus membranes. Because of the difficulties in cultivating and identifying it, their role continues to be undermined. The purpose of this paper is to report a case of Prevotella loescheii bacteremic skin and soft tissue infection and review the literature. Case presentation A 42-year-old Caucasian man was admitted for an elective bariatric surgery. A lengthy intensive care unit stay and buttocks decubitus ulcers complicated his post-operative course. After being transferred to a long-term care facility, the decubitus ulcer became secondarily infected with multiple bacteria including P. loescheii; an anaerobe that grew in blood and wound cultures. The patient was treated successfully with aggressive surgical debridement, antibiotics and subsequent wound care. Conclusion P. loescheii colonizes the gut and plays an important role in periodontal infections. In rare occasions and under suitable circumstances, it can infect skin and soft tissues as well as joints. Given the difficulties in isolating anaerobes in the microbiology lab, considering this bacterium alongside other anaerobes in infections of devitalized tissue is indicated even if cultures were reported negative.
Collapse
Affiliation(s)
| | | | | | - Faisal A Khasawneh
- Section of Infectious Diseases, Department of internal medicine, Texas Tech University Health Sciences Center, 1400 S, Coulter Street, Amarillo, TX 79106, USA.
| |
Collapse
|
18
|
Kumar PS. Sex and the subgingival microbiome: Do female sex steroids affect periodontal bacteria? Periodontol 2000 2012; 61:103-24. [DOI: 10.1111/j.1600-0757.2011.00398.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Affiliation(s)
- S. D. Cahalan
- Department of Pathology and Infectious Diseases; Royal Veterinary College; Hatfield; Hertsfordshire
| | | | | | | |
Collapse
|
20
|
Alauzet C, Marchandin H, Lozniewski A. New insights into Prevotella diversity and medical microbiology. Future Microbiol 2011; 5:1695-718. [PMID: 21133690 DOI: 10.2217/fmb.10.126] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In light of recent studies based on cultivation-independent methods, it appears that the diversity of Prevotella in human microbiota is greater than was previously assumed from cultivation-based studies, and that the implication of these bacteria in several human diseases was unrecognized. While some Prevotella taxa were found during opportunistic infections, changes in Prevotella abundance and diversity were discovered during dysbiosis-associated diseases. As member of the microbiota, Prevotella may also be considered as a reservoir for resistance genes. Greater knowledge on Prevotella diversity, as well as new insights into its pathogenic potential and implication in dysbiosis are expected from the use of human microbe identification microarrays, from whole-genome sequence analyse, and from the NIH Human Microbiome Project data. New approaches, including molecular-based methods, could contribute to improve the diagnosis of Prevotella infections.
Collapse
Affiliation(s)
- Corentine Alauzet
- Laboratoire de Bactériologie, EA 4369, Faculté de Médecine, Nancy Université, Vandoeuvre-les-Nancy, France
| | | | | |
Collapse
|
21
|
Krauss JL, Potempa J, Lambris JD, Hajishengallis G. Complementary Tolls in the periodontium: how periodontal bacteria modify complement and Toll-like receptor responses to prevail in the host. Periodontol 2000 2010; 52:141-62. [PMID: 20017800 DOI: 10.1111/j.1600-0757.2009.00324.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Potempa M, Potempa J, Kantyka T, Nguyen KA, Wawrzonek K, Manandhar SP, Popadiak K, Riesbeck K, Eick S, Blom AM. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3. PLoS Pathog 2009; 5:e1000316. [PMID: 19247445 PMCID: PMC2642729 DOI: 10.1371/journal.ppat.1000316] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/28/2009] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A) resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.
Collapse
Affiliation(s)
- Michal Potempa
- Lund University, Department of Laboratory Medicine, Section of Medical Protein Chemistry, University Hospital Malmö, Malmö, Sweden
- Jagiellonian University, Department of Microbiology, Krakow, Poland
| | - Jan Potempa
- Jagiellonian University, Department of Microbiology, Krakow, Poland
- University of Georgia, Department of Biochemistry and Molecular Biology, Athens, Georgia, United States of America
| | - Tomasz Kantyka
- Jagiellonian University, Department of Microbiology, Krakow, Poland
| | - Ky-Anh Nguyen
- Westmead Millennium Institute, Institute of Dental Research, Sydney, Australia
| | | | - Surya P. Manandhar
- Westmead Millennium Institute, Institute of Dental Research, Sydney, Australia
| | - Katarzyna Popadiak
- Lund University, Department of Laboratory Medicine, Section of Medical Protein Chemistry, University Hospital Malmö, Malmö, Sweden
- Jagiellonian University, Department of Microbiology, Krakow, Poland
| | - Kristian Riesbeck
- Lund University, Department of Laboratory Medicine, Section of Medical Microbiology, University Hospital Malmö, Malmö, Sweden
| | - Sigrun Eick
- Department of Medical Microbiology, University Hospital of Jena, Jena, Germany
| | - Anna M. Blom
- Lund University, Department of Laboratory Medicine, Section of Medical Protein Chemistry, University Hospital Malmö, Malmö, Sweden
- * E-mail:
| |
Collapse
|