1
|
Alfilasari N, Sirivongpaisal P, Wichienchot S. Gut Health Function of Instant Dehydrated Rice Sticks Substituted with Resistant Starch Types 2 and 4. Curr Microbiol 2021; 78:3010-3019. [PMID: 34115195 DOI: 10.1007/s00284-021-02564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to analyze the effects of instant dehydrated rice sticks (IDRS) which were substituted with resistant starch (RS) types 2 and 4 whose gut health function targets gut microbiota. IDRS are a type of rice noodles that were developed by two formulations. The first formulation had substitution of rice flour with 20% RS type 2 and 0.15% carboxymethyl cellulose (CMC) (RSc-2), and the second formulation had 25% RS type 4 and 0.15% CMC (RSc-4). RSc-2 and RSc-4 were investigated for gut health function by human fecal fermentation in a pH-controlled batch culture. The results of gut microbiota enumeration by fluorescent in situ hybridization confirmed that significantly (P < 0.05) higher numbers of bifidobacteria were obtained with RSc-2 (10.06 ± 0.09 log cells/mL) and RSc-4 (10.00 ± 0.06 log cells/mL) compared to the control (100% rice flour formula) at 24 h fermentation. Additionally, the prebiotic indexes of RSc-2 and RSc-4 were 3.8 and 2.8 -fold higher than that of the control at 24 h fermentation. The short-chained fatty acids, acetic, propionic and butyric acid were analyzed by gas chromatography-flame ionization detector. The butyric acids were significantly (P < 0.05) higher with RSc-2 (43.56 ± 0.01 mM) and RSc-4 (43.63 ± 0.07 mM) compared to the control at 24 h. Thus, RSc-2 and RSc-4 showed butyrogenic, bifidogenic and prebiotic potential to support gut health and could aid in prevention of colon cancer.
Collapse
Affiliation(s)
- Nisa Alfilasari
- Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Piyarat Sirivongpaisal
- Center of Excellence in Functional Foods and Gastronomy, Food Science and Technology Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Santad Wichienchot
- Center of Excellence in Functional Foods and Gastronomy, Functional Food and Nutrition Program, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
2
|
Hartz P, Gehl M, König L, Bernhardt R, Hannemann F. Development and application of a highly efficient CRISPR-Cas9 system for genome engineering in Bacillus megaterium. J Biotechnol 2021; 329:170-179. [PMID: 33600891 DOI: 10.1016/j.jbiotec.2021.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
Bacillus megaterium has become increasingly important for the biotechnological production of valuable compounds of industrial and pharmaceutical importance. Despite recent advances in rational strain design of B. megaterium, these studies have been largely impaired by the lack of molecular tools that are not state-of-the-art for comprehensive genome engineering approaches. In the current work, we describe the adaptation of the CRISPR-Cas9 vector pJOE8999 to enable efficient genome editing in B. megaterium. Crucial modifications comprise the exchange of promoter elements and associated ribosomal binding sites as well as the implementation of a 5-fluorouracil based counterselection system to facilitate proper plasmid curing. In addition, the functionality and performance of the new CRISPR-Cas9 vector pMOE was successfully evaluated by chromosomal disruption studies of the endogenous β-galactosidase gene (BMD_2126) and demonstrated an outstanding efficiency of 100 % based on combinatorial pheno- and genotype analyses. Furthermore, pMOE was applied for the genomic deletion of a steroid esterase gene (BMD_2256) that was identified among several other candidates as the gene encoding the esterase, which prevented accumulation of pharmaceutically important glucocorticoid esters. Recombinant expression of the bacterial chloramphenicol acetyltransferase 1 gene (cat1) in the resulting esterase deficient B. megaterium strain ultimately yielded C21-acetylated as well as novel C21-esterified derivates of cortisone.
Collapse
Affiliation(s)
- Philip Hartz
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Manuel Gehl
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany; Present address: Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Lisa König
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
3
|
Khalid A, Ye M, Wei C, Dai B, Yang R, Huang S, Wang Z. Production of β-glucanase and protease from Bacillus velezensis strain isolated from the manure of piglets. Prep Biochem Biotechnol 2020; 51:497-510. [PMID: 33108947 DOI: 10.1080/10826068.2020.1833344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, a strain producing β-glucanase and protease, identified as Bacillus velezensis Y1, was isolated from the manure of piglet. We attempted to produce β-glucanase and protease after optimization of various process parameters with the submerged fermentation. The effects of each factor on producing β-glucanase and protease were as follows: temperature > time > pH > loaded liquid volume. The properties of the β-glucanase showed that the most suitable reaction temperature was 65 °C and pH was 6.0. However for protease optimum reaction temperature was 50 °C, and pH was 6.0. The amplified PCR fragments of β-glucanase and protease were 1434 bp containing an open reading frame of 1413 bp encoding a protein with 444 amino acids and 1752 bp containing an open reading frame of 1521 bp encoding a protein with 506 amino acids, respectively. So, the study demonstrated a viable approach of using newly identified B. velezensis Y1 strain for the maximum yield of two industrially important enzymes.
Collapse
Affiliation(s)
- Anam Khalid
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Miao Ye
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Chunjie Wei
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Binghong Dai
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Ru Yang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Shoujun Huang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Integration of biological pre-treatment methods for increased energy recovery from paper and pulp biosludge. J Microbiol Methods 2019; 160:93-100. [PMID: 30890400 DOI: 10.1016/j.mimet.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 11/22/2022]
Abstract
The paper and pulp industry (PPI) produces high quantities of solid and liquid discharge and is regarded as the most polluting industry in the world causing adverse effects to environments and human beings. Hence changes in the way PPI sludge and waste materials are treated is urgently required. Nearly, 10 million tons of waste is generated per year, however PPI waste is enriched with many organic chemicalscontaining a high percentage of lignin, cellulose, and hemicellulose which can be used as valuable raw materials for the production of bioenergy and value-added chemicals. Pretreatment of complex lignocellulosic materials of PPI waste is difficult because of the cellulose crystallinity and lignin barrier. At present most of this waste is recycled in a conventional treatment approach through biological and chemical processes, incurring high cost and low returns. Henceefficient pretreatment techniques are required by which complete conversion of PPI waste is possible. Therefore, the present chapter provides the scope of integration of pretreatment methods through which bioenergy recovery is possible during the PPI waste treatment. Detailed information is presented on the various pre-treatment techniques (chemical, mechanical, enzymatic and biological) in order to increase the efficiency of PPI waste treatment and energy recovery from PPI waste. Along with acid and alkali based efficient chemical treatment process, physical methods (i.e. shearing, high-pressure homogenization, etc.), biochemical techniques (whole cell-based and enzyme-based) and finally biological techniques (e.g. aerobic and anaerobic treatment) are discussed. During each of the treatment processes, scope of energy recovery and bottlenecks of the processes were elaborated. The review thus provides systemic insight into developing efficient pretreatment processes which could increase carbon recovery and treatment efficiency of PPI waste.
Collapse
|
5
|
Mamo G. Alkaline Active Hemicellulases. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:245-291. [PMID: 31372682 DOI: 10.1007/10_2019_101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Xylan and mannan are the two most abundant hemicelluloses, and enzymes that modify these polysaccharides are prominent hemicellulases with immense biotechnological importance. Among these enzymes, xylanases and mannanases which play the vital role in the hydrolysis of xylan and mannan, respectively, attracted a great deal of interest. These hemicellulases have got applications in food, feed, bioethanol, pulp and paper, chemical, and beverage producing industries as well as in biorefineries and environmental biotechnology. The great majority of the enzymes used in these applications are optimally active in mildly acidic to neutral range. However, in recent years, alkaline active enzymes have also become increasingly important. This is mainly due to some benefits of utilizing alkaline active hemicellulases over that of neutral or acid active enzymes. One of the advantages is that the alkaline active enzymes are most suitable to applications that require high pH such as Kraft pulp delignification, detergent formulation, and cotton bioscouring. The other benefit is related to the better solubility of hemicelluloses at high pH. Since the efficiency of enzymatic hydrolysis is often positively correlated to substrate solubility, the hydrolysis of hemicelluloses can be more efficient if performed at high pH. High pH hydrolysis requires the use of alkaline active enzymes. Moreover, alkaline extraction is the most common hemicellulose extraction method, and direct hydrolysis of the alkali-extracted hemicellulose could be of great interest in the valorization of hemicellulose. Direct hydrolysis avoids the time-consuming extensive washing, and neutralization processes required if non-alkaline active enzymes are opted to be used. Furthermore, most alkaline active enzymes are relatively active in a wide range of pH, and at least some of them are significantly or even optimally active in slightly acidic to neutral pH range. Such enzymes can be eligible for non-alkaline applications such as in feed, food, and beverage industries.This chapter largely focuses on the most important alkaline active hemicellulases, endo-β-1,4-xylanases and β-mannanases. It summarizes the relevant catalytic properties, structural features, as well as the real and potential applications of these remarkable hemicellulases in textile, paper and pulp, detergent, feed, food, and prebiotic producing industries. In addition, the chapter depicts the role of these extremozymes in valorization of hemicelluloses to platform chemicals and alike in biorefineries. It also reviews hemicelluloses and discusses their biotechnological importance.
Collapse
|
6
|
Singh G, Kaur S, Khatri M, Arya SK. Biobleaching for pulp and paper industry in India: Emerging enzyme technology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Isolation of endophytic fungi from Dioscorea zingiberensis C. H. Wright and application for diosgenin production by solid-state fermentation. Appl Microbiol Biotechnol 2018; 102:5519-5532. [PMID: 29725718 DOI: 10.1007/s00253-018-9030-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/13/2022]
Abstract
In this study, endophytic fungi were isolated from Dioscorea zingiberensis C.H. Wright (DZW), and a novel clean process to prepare diosgenin from DZW was developed. A total of 123 strains of endophytic fungi were isolated from different plant tissues of DZW. Among them, the strain Fusarium sp. (CPCC 400709) showed the best activity of hydrolyzing steroidal saponins in DZW into diosgenin. Thus, this strain was used to prepare diosgenin from DZW by solid-state fermentation. The fermentation parameters were optimized using response surface methodology, and a high yield of diosgenin (2.16%) was obtained at 14.5% ammonium sulfate, an inoculum size of 12.3%, and 22 days of fermentation. Furthermore, the highest diosgenin yield (2.79%) was obtained by co-fermentation with Fusarium sp. (CPCC 400709) and Curvularia lunata (CPCC 400737), which was 98.9% of that obtained by β-glucosidase pretreated acid hydrolysis (2.82%). This process is acid-free and wastewater-free, and shows promise as an effective and clean way to prepare diosgenin for use in industrial applications from DZW.
Collapse
|
8
|
Identification of lipolytic enzymes isolated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry. ACTA ACUST UNITED AC 2017; 15:114-124. [PMID: 28794998 PMCID: PMC5545822 DOI: 10.1016/j.btre.2017.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022]
Abstract
Phenol red screening plates is the best method for detecting lipolytic activity. Substrate specificity is affected by temperature and pH. Essential to test substrates at various pH and temperature to determine optima. Lipolytic enzymes indigenous to Eucalyptus sp. can assist in pitch control.
This study highlights the importance of determining substrate specificity at variable experimental conditions. Lipases and esterases were isolated from microorganisms cultivated from Eucalyptus wood species and then concentrated (cellulases removed) and characterized. Phenol red agar plates supplemented with 1% olive oil or tributyrin was ascertained to be the most favourable method of screening for lipolytic activity. Lipolytic activity of the various enzymes were highest at 45–61 U/ml at the optimum temperature and pH of between at 30–35 °C and pH 4–5, respectively. Change in pH influenced the substrate specificity of the enzymes tested. The majority of enzymes tested displayed a propensity for longer aliphatic acyl chains such as dodecanoate (C12), myristate (C14), palmitate (C16) and stearate (C18) indicating that they could be characterised as potential lipases. Prospective esterases were also detected with specificity towards acetate (C2), butyrate (C4) and valerate (C5). Enzymes maintained up to 95% activity at the optimal pH and temperature for 2–3 h. It is essential to test substrates at various pH and temperature when determining optimum activity of lipolytic enzymes, a method rarely employed. The stability of the enzymes at acidic pH and moderate temperatures makes them excellent candidates for application in the treatment of pitch during acid bi-sulphite pulping, which would greatly benefit the pulp and paper industry.
Collapse
|
9
|
Walia A, Mehta P, Guleria S, Shirkot CK. Modification in the properties of paper by using cellulase-free xylanase produced from alkalophilic Cellulosimicrobium cellulans CKMX1 in biobleaching of wheat straw pulp. Can J Microbiol 2015. [DOI: 10.1139/cjm-2015-0178] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is an actinomycete that produces industrially important and environmentally safer thermostable cellulase-free xylanase, which is used in the pulp and paper industry as an alternative to the use of toxic chlorinated compounds. Strain CKMX1 was previously characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis, and 16S rDNA and was found to be C. cellulans CKMX1. Crude enzyme (1027.65 U/g DBP) produced by C. cellulans CKMX1, having pH and temperature optima of 8.0 and 60 °C, respectively, in solid state fermentation of apple pomace, was used in the production of bleached wheat straw pulp. Pretreatment with xylanase at a dose of 5 U/g after pulping decreased pulp kappa points by 1.4 as compared with the control. Prebleaching with a xylanase dose of 5 U/g pulp reduced the chlorine charge by 12.5%, increased the final brightness points by approximately 1.42% ISO, and improved the pulp strength properties. Xylanase could be substituted for alkali extraction in C–Ep–D sequence and used for treating chemically bleached pulp, resulting in bleached pulp with higher strength properties. Modification of bleached pulp with 5 U of enzyme/g increased pulp whiteness and breaking length by 1.03% and 60 m, respectively; decreased tear factor of pulp by 7.29%; increased bulk weight by 3.99%, as compared with the original pulp. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. Cellulosimicrobium cellulans CKMX1 has a potential application in the pulp and paper industries.
Collapse
Affiliation(s)
- Abhishek Walia
- Department of Microbiology, DAV University, Jalandhar 144001, Punjab, India
| | - Preeti Mehta
- Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Shiwani Guleria
- Department of Basic Sciences, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan 173230, Himachal Pradesh, India
| | - Chand Karan Shirkot
- Department of Basic Sciences, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan 173230, Himachal Pradesh, India
| |
Collapse
|
10
|
Recent developments in solid- state fermentation: Chinese herbs as substrate. Microb Biotechnol 2014. [DOI: 10.1201/b17587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Biodegradation of palm kernel cake by cellulolytic and hemicellulolytic bacterial cultures through solid state fermentation. ScientificWorldJournal 2014; 2014:729852. [PMID: 25019097 PMCID: PMC4082864 DOI: 10.1155/2014/729852] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/15/2014] [Accepted: 05/24/2014] [Indexed: 11/17/2022] Open
Abstract
Four cellulolytic and hemicellulolytic bacterial cultures were purchased from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). Two experiments were conducted; the objective of the first experiment was to determine the optimum time period required for solid state fermentation (SSF) of palm kernel cake (PKC), whereas the objective of the second experiment was to investigate the effect of combinations of these cellulolytic and hemicellulolytic bacteria on the nutritive quality of the PKC. In the first experiment, the SSF was lasted for 12 days with inoculum size of 10% (v/w) on different PKC to moisture ratios. In the second experiment, fifteen combinations were created among the four microbes with one untreated PKC as a control. The SSF lasted for 9 days, and the samples were autoclaved, dried, and analyzed for proximate analysis. Results showed that bacterial cultures produced high enzymes activities at the 4th day of SSF, whereas their abilities to produce enzymes tended to be decreased to reach zero at the 8th day of SSF. Findings in the second experiment showed that hemicellulose and cellulose was significantly (P < 0.05) decreased, whereas the amount of reducing sugars were significantly (P < 0.05) increased in the fermented PKC (FPKC) compared with untreated PKC.
Collapse
|
12
|
Characterization of a new Providencia sp. strain X1 producing multiple xylanases on wheat bran. ScientificWorldJournal 2013; 2013:386769. [PMID: 24348154 PMCID: PMC3856158 DOI: 10.1155/2013/386769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
Providencia sp. strain X1 showing the highest xylanase activity among six bacterial isolates was isolated from saw-dust decomposing site. Strain X1 produced cellulase-free extracellular xylanase, which was higher in wheat bran medium than in xylan medium, when cultivated at pH 8.0 and 35°C. Zymogram analysis of crude preparation of enzymes obtained while growing on wheat bran and birchwood xylan revealed the presence of seven and two distinct xylanases with estimated molecular weight of 33; 35; 40; 48; 60; 75; and 95 kDa and 33 and 44 kDa, respectively. The crude xylanases were produced on wheat bran medium and showed optimum activity at pH 9.0 and 60°C. The thermotolerance studies showed activity retention of 100% and 85% at 40°C and 60°C after 30 min preincubation at pH 9.0. It was tolerant to lignin, ferulic acid, syringic acid, and guaiacol and retained 90% activity after ethanol treatment. The enzyme preparation was also tolerant to methanol and acetone and showed good activity retention in the presence of metal ions such as Fe2+, Mg2+, Zn2+, and Ca2+. The crude enzyme preparation was classified as endoxylanase based on the product pattern of xylan hydrolysis. Pretreatment of kraft pulp with crude xylanases for 3 h at 60°C led to a decrease in kappa number by 28.5%. The properties of present xylanases make them potentially useful for industrial applications.
Collapse
|
13
|
Characterization of cellulolytic bacterial cultures grown in different substrates. ScientificWorldJournal 2013; 2013:689235. [PMID: 24319380 PMCID: PMC3844246 DOI: 10.1155/2013/689235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
Nine aerobic cellulolytic bacterial cultures were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). The objectives of this study were to characterize the cellulolytic bacteria and to determine the optimum moisture ratio required for solid state fermentation (SSF) of palm kernel cake (PKC). The bacteria cultures were grown on reconstituted nutrient broth, incubated at 30°C and agitated at 200 rpm. Carboxymethyl cellulase, xylanase, and mannanase activities were determined using different substrates and after SSF of PKC. The SSF was conducted for 4 and 7 days with inoculum size of 10% (v/w) on different PKC concentration-to-moisture ratios: 1 : 0.2, 1 : 0.3, 1 : 0.4, and 1 : 0.5. Results showed that Bacillus amyloliquefaciens 1067 DSMZ, Bacillus megaterium 9885 ATCC, Paenibacillus curdlanolyticus 10248 DSMZ, and Paenibacillus polymyxa 842 ATCC produced higher enzyme activities as compared to other bacterial cultures grown on different substrates. The cultures mentioned above also produced higher enzyme activities when they were incubated under SSF using PKC as a substrate in different PKC-to-moisture ratios after 4 days of incubation, indicating that these cellulolytic bacteria can be used to degrade and improve the nutrient quality of PKC.
Collapse
|
14
|
Melikoglu M, Lin CSK, Webb C. Kinetic studies on the multi-enzyme solution produced via solid state fermentation of waste bread by Aspergillus awamori. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.09.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Wei M, Bai Y, Ao M, Jin W, Yu P, Zhu M, Yu L. Novel method utilizing microbial treatment for cleaner production of diosgenin from Dioscorea zingiberensis C.H. Wright (DZW). BIORESOURCE TECHNOLOGY 2013; 146:549-555. [PMID: 23973974 DOI: 10.1016/j.biortech.2013.07.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
A novel method utilizing microbial treatment for cleaner production of diosgenin from Dioscorea zingiberensis C.H. Wright (DZW) was presented. A new Bacillus pumilus HR19, which has the great ability to secrete pectinase, was screened and applied in the microbial treatment. Low-pressure steam expansion pretreatment (LSEP) was employed in advance to assist microbial treatment efficiently in releasing saponins, which are the precursors of diosgenin. Compared with the traditional process of acid hydrolysis, this novel process reduced the consumptions of water, acid and organic solvent by more than 92.5%, 97.0%, 97.0%, respectively, while simultaneously increasing the diosgenin yield by 6.21%. In addition, the microbial treatment was more efficient than enzymatic treatment, which arised from that microorganisms could be induced to secrete related enzymes by the compositions of DZW and relieve product inhibition by utilizing enzyme hydrolysates.
Collapse
Affiliation(s)
- Mi Wei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun Bai
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Panpan Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China; Wuhan Institute of Biotechnology, Wuhan 430075, China.
| |
Collapse
|
16
|
Nagar S, Jain RK, Thakur VV, Gupta VK. Biobleaching application of cellulase poor and alkali stable xylanase from Bacillus pumilus SV-85S. 3 Biotech 2013; 3:277-285. [PMID: 28324585 PMCID: PMC3723860 DOI: 10.1007/s13205-012-0096-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/27/2012] [Indexed: 11/12/2022] Open
Abstract
The potential of extracellular alkali stable and thermo tolerant xylanase produced by Bacilluspumilus SV-85S through solid state fermentation was investigated in pulp bleaching in association with conventional bleaching using chlorine and chlorine dioxide. The biobleaching of kraft pulp with xylanase was the most effective at an enzyme dose of 10 IU/g oven dried pulp, pH 9.0 and 120 min incubation at 55 °C. Under the optimized conditions, xylanase pretreatment reduced Kappa number by 1.6 points and increased brightness by 1.9 points. Subsequently, chlorine dioxide and alkaline bleaching sequences (CDE1D1D2) finally resulted in brightness gain of 2.7 points as compared with the control. The pretreatment of pulp with xylanase resulted in 29.16 % reduction in chlorine consumption by maintaining the same brightness as in control. An improvement in pulp strength properties was also observed after bleaching of xylanase pretreated pulp. Scanning electron microscopy revealed loosening and swelling of pulp fibers after enzyme treatment. These results clearly demonstrated that the B. pumilus SV-85S xylanase was effective as a pulp biobleaching agent. The decrease in chlorine consumption by pretreatment of pulp with xylanase apparently made the biobleaching process not only economical but also eco-friendly.
Collapse
|
17
|
Production of Alkalophilic Xylanases by Paenibacillus polymyxa CKWX1 Isolated from Decomposing Wood. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s40011-012-0122-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Optimization of cellulase-free xylanase production by alkalophilic Cellulosimicrobium sp. CKMX1 in solid-state fermentation of apple pomace using central composite design and response surface methodology. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0460-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
19
|
Mandal A, Kar S, Das Mohapatra PK, Maity C, Pati BR, Mondal KC. Regulation of xylanase biosynthesis in Bacillus cereus BSA1. Appl Biochem Biotechnol 2012; 167:1052-60. [PMID: 22222433 DOI: 10.1007/s12010-011-9523-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
Microbial xylanases have a promising biotechnological potential to be used in industries. In this study, regulation of xylanase production was examined in Bacillus cereus BSA1. Xylanase production was induced by xylan. The enzyme production further increased in the presence of xylose and arabinose in very low concentration with addition of xylan (0.5% up to 6.02 U/ml). Addition of glucose (about 0.1%) to the media supplemented with xylan repressed xylanase production. Even higher concentration (>0.1%) of xylose and arabinose repressed xylanase biosynthesis. Glucose-mediated repression was partially relived by addition of cyclic adenosine monophosphate. Chemical like 2-4-dinitrophenol, which can inhibit adenosine triphosphate synthesis in cell, repressed xylanase synthesis and it suggested xylanase synthesis to be an energy dependent process.
Collapse
Affiliation(s)
- Asish Mandal
- Post Graduate Department of Botany, Ramananda College, Bishnupur, Bankura 722122, West Bengal, India
| | | | | | | | | | | |
Collapse
|
20
|
Nagar S, Mittal A, Kumar D, Kumar L, Kuhad RC, Gupta VK. Hyper production of alkali stable xylanase in lesser duration by Bacillus pumilus SV-85S using wheat bran under solid state fermentation. N Biotechnol 2011; 28:581-7. [DOI: 10.1016/j.nbt.2010.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/27/2010] [Accepted: 12/23/2010] [Indexed: 11/28/2022]
|
21
|
Battan B, Dhiman SS, Ahlawat S, Mahajan R, Sharma J. Application of Thermostable Xylanase of Bacillus pumilus in Textile Processing. Indian J Microbiol 2011; 52:222-9. [PMID: 23729886 DOI: 10.1007/s12088-011-0118-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 03/23/2010] [Indexed: 11/25/2022] Open
Abstract
Desizing of cotton and micropoly fabrics was done using thermostable xylanase from Bacillus pumilus ASH. Micropoly fabric showed better desizing than cotton under same conditions. Violet scale readings from the TEGEWA test after enzymatic desizing for 90 min at pH 7.0 and at 60°C showed the readings falling in the range of 4-5, indicating good desizing efficiency. During bioscouring the weight loss values and liberation of reducing sugars were highest when EDTA was used along with xylanase. The weight loss value of 1.5% was observed for dry cotton fabric after 1 h in case of agitated system at pH 7.0 and at an optimal enzyme dosage of 5 IU/g. The weight loss values and the liberation of reducing sugars were higher in case of cotton fabrics. Wetting time of fabrics was lowered significantly after 60 min of bioscouring using xylanase. Increase in temperature or concentration of surfactant led to further reduction in the wetting time. The whiteness values of fabrics after bioscouring were 0.9% higher than the chemically scoured fabrics indicating good efficacy of xylanase during the scouring process.
Collapse
Affiliation(s)
- Bindu Battan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, 136 119 India
| | | | | | | | | |
Collapse
|
22
|
Giridhar PV, Chandra T. Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Production and biochemical characterization of a novel cellulase-poor alkali-thermo-tolerant xylanase from Coprinellus disseminatus SW-1 NTCC 1165. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0307-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst Eng 2009; 32:819-24. [PMID: 19271244 DOI: 10.1007/s00449-009-0308-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 02/11/2009] [Indexed: 10/21/2022]
Abstract
This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 degrees C at 70-80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 degrees C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.
Collapse
|
25
|
Pretreatment processing of fabrics by alkalothermophilic xylanase from Bacillus stearothermophilus SDX. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Evidence that the xylanase activity from Sulfolobus solfataricus Oα is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity. Extremophiles 2008; 12:689-700. [DOI: 10.1007/s00792-008-0175-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
|
27
|
Jordan E, Al-Halabi L, Schirrmann T, Hust M, Dübel S. Production of single chain Fab (scFab) fragments in Bacillus megaterium. Microb Cell Fact 2007; 6:38. [PMID: 18042285 PMCID: PMC2212634 DOI: 10.1186/1475-2859-6-38] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 11/27/2007] [Indexed: 11/10/2022] Open
Abstract
Background The demand on antigen binding reagents in research, diagnostics and therapy raises questions for novel antibody formats as well as appropriate production systems. Recently, the novel single chain Fab (scFab) antibody format combining properties of single chain Fv (scFv) and Fab fragments was produced in the Gram-negative bacterium Escherichia coli. In this study we evaluated the Gram-positive bacterium Bacillus megaterium for the recombinant production of scFab and scFvs in comparison to E. coli. Results The lysozyme specific D1.3 scFab was produced in B. megaterium and E. coli. The total yield of the scFab after purification obtained from the periplasmic fraction and culture supernatant of E. coli was slightly higher than that obtained from culture supernatant of B. megaterium. However, the yield of functional scFab determined by analyzing the antigen binding activity was equally in both production systems. Furthermore, a scFv fragment with specificity for the human C reactive protein was produced in B. megaterium. The total yield of the anti-CRP scFv produced in B. megaterium was slightly lower compared to E. coli, whereas the specific activity of the purified scFvs produced in B. megaterium was higher compared to E. coli. Conclusion B. megaterium allows the secretory production of antibody fragments including the novel scFab antibody format. The yield and quality of functional antibody fragment is comparable to the periplasmic production in E. coli.
Collapse
Affiliation(s)
- Eva Jordan
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Abteilung Biotechnologie, Spielmannstr, 7, 38106 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
28
|
Sanghi A, Garg N, Sharma J, Kuhar K, Kuhad RC, Gupta VK. Optimization of xylanase production using inexpensive agro-residues by alkalophilic Bacillus subtilis ASH in solid-state fermentation. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9521-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|