1
|
Abd El-Hack ME, El-Saadony MT, Shehata AM, Arif M, Paswan VK, Batiha GES, Khafaga AF, Elbestawy AR. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4989-5004. [PMID: 33242194 DOI: 10.1007/s11356-020-11747-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, El-Behera University, Damanhour, 22511, Egypt
| |
Collapse
|
2
|
Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol 2020; 104:10409-10436. [PMID: 33185702 PMCID: PMC7662028 DOI: 10.1007/s00253-020-10974-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Infections caused by bacterial species from the genus Campylobacter are one of the four main causes of strong diarrheal enteritis worldwide. Campylobacteriosis, a typical food-borne disease, can range from mild symptoms to fatal illness. About 550 million people worldwide suffer from campylobacteriosis and lethality is about 33 million p.a. This review summarizes the state of the current knowledge on Campylobacter with focus on its specific virulence factors. Using this knowledge, multifactorial prevention strategies can be implemented to reduce the prevalence of Campylobacter in the food chain. In particular, antiadhesive strategies with specific adhesion inhibitors seem to be a promising concept for reducing Campylobacter bacterial load in poultry production. Antivirulence compounds against bacterial adhesion to and/or invasion into the host cells can open new fields for innovative antibacterial agents. Influencing chemotaxis, biofilm formation, quorum sensing, secretion systems, or toxins by specific inhibitors can help to reduce virulence of the bacterium. In addition, the unusual glycosylation of the bacterium, being a prerequisite for effective phase variation and adaption to different hosts, is yet an unexplored target for combating Campylobacter sp. Plant extracts are widely used remedies in developing countries to combat infections with Campylobacter. Therefore, the present review summarizes the use of natural products against the bacterium in an attempt to stimulate innovative research concepts on the manifold still open questions behind Campylobacter towards improved treatment and sanitation of animal vectors, treatment of infected patients, and new strategies for prevention. KEY POINTS: • Campylobacter sp. is a main cause of strong enteritis worldwide. • Main virulence factors: cytolethal distending toxin, adhesion proteins, invasion machinery. • Strong need for development of antivirulence compounds.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, University of Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, University of Gießen, Frankfurterstraße 81, 35392, Gießen, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
3
|
Van TTH, Lacey JA, Vezina B, Phung C, Anwar A, Scott PC, Moore RJ. Survival Mechanisms of Campylobacter hepaticus Identified by Genomic Analysis and Comparative Transcriptomic Analysis of in vivo and in vitro Derived Bacteria. Front Microbiol 2019; 10:107. [PMID: 30804905 PMCID: PMC6371046 DOI: 10.3389/fmicb.2019.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/18/2019] [Indexed: 01/01/2023] Open
Abstract
Chickens infected with Campylobacter jejuni or Campylobacter coli are largely asymptomatic, however, infection with the closely related species, Campylobacter hepaticus, can result in Spotty Liver Disease (SLD). C. hepaticus has been detected in the liver, bile, small intestine and caecum of SLD affected chickens. The survival and colonization mechanisms that C. hepaticus uses to colonize chickens remain unknown. In this study, we compared the genome sequences of 14 newly sequenced Australian isolates of C. hepaticus, isolates from outbreaks in the United Kingdom, and reference strains of C. jejuni and C. coli, with the aim of identifying virulence genes associated with SLD. We also carried out global comparative transcriptomic analysis between C. hepaticus recovered from the bile of SLD infected chickens and C. hepaticus grown in vitro. This revealed how the bacteria adapt to proliferate in the challenging host environment in which they are found. Additionally, biochemical experiments confirmed some in silico metabolic predictions. We found that, unlike other Campylobacter sp., C. hepaticus encodes glucose and polyhydroxybutyrate metabolism pathways. This study demonstrated the metabolic plasticity of C. hepaticus, which may contribute to survival in the competitive, nutrient and energy-limited environment of the chicken. Transcriptomic analysis indicated that gene clusters associated with glucose utilization, stress response, hydrogen metabolism, and sialic acid modification may play an important role in the pathogenicity of C. hepaticus. An understanding of the survival and virulence mechanisms that C. hepaticus uses will help to direct the development of effective intervention methods to protect birds from the debilitating effects of SLD.
Collapse
Affiliation(s)
- Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ben Vezina
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Canh Phung
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Arif Anwar
- Scolexia Pty Ltd., Moonee Ponds, VIC, Australia
| | | | - Robert J Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
4
|
Impact of Eimeria tenella Coinfection on Campylobacter jejuni Colonization of the Chicken. Infect Immun 2019; 87:IAI.00772-18. [PMID: 30510107 DOI: 10.1128/iai.00772-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Eimeria tenella can cause the disease coccidiosis in chickens. The direct and often detrimental impact of this parasite on chicken health, welfare, and productivity is well recognized; however, less is known about the secondary effects that infection may have on other gut pathogens. Campylobacter jejuni is the leading cause of human bacterial foodborne disease in many countries and has been demonstrated to exert negative effects on poultry welfare and production in some broiler lines. Previous studies have shown that concurrent Eimeria infection can influence the colonization and replication of bacteria, such as Clostridium perfringens and Salmonella enterica serovar Typhimurium. Through a series of in vivo coinfection experiments, this study evaluated the impact that E. tenella infection had on C. jejuni colonization of chickens, including the influence of variations in parasite dose and sampling time after bacterial challenge. Coinfection with E. tenella resulted in a significant increase in C. jejuni colonization in the cecum in a parasite dose-dependent manner but a significant decrease in C. jejuni colonization in the spleen and liver of chickens. The results were reproducible at 3 and 10 days after bacterial infection. This work highlights that E. tenella not only has a direct impact on the health and well-being of chickens but can have secondary effects on important zoonotic pathogens.
Collapse
|
5
|
Ren F, Li X, Tang H, Jiang Q, Yun X, Fang L, Huang P, Tang Y, Li Q, Huang J, Jiao XA. Insights into the impact of flhF inactivation on Campylobacter jejuni colonization of chick and mice gut. BMC Microbiol 2018; 18:149. [PMID: 30348090 PMCID: PMC6196472 DOI: 10.1186/s12866-018-1318-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/15/2018] [Indexed: 11/23/2022] Open
Abstract
Background Campylobacter jejuni (C. jejuni) is a leading cause of foodborne gastroenteritis worldwide. This bacterium lacks many of the classical virulence factors, and flagellum-associated persistent colonization has been shown to be crucial for its pathogenesis. The flagellum plays a multifunctional role in C. jejuni pathogenesis, and different flagellar elements make diverse contributions. The flhF gene encodes the flagellar biosynthesis regulator, which is important for flagellar biosynthesis. In this study, the influence of flhF on C. jejuni colonization was systematically studied, and the possible mechanisms were also analyzed. Results The flhF gene has a significant influence on C. jejuni colonization, and its inactivation resulted in severe defects in the commensal colonization of chicks, with approximately 104- to 107-fold reductions (for NCTC 11168 and a C. jejuni isolate respectively) observed in the bacterial caecal loads. Similar effects were observed in mice where the flhF mutant strain completely lost the ability to continuously colonize mice, which cleared the isolate at 7 days post inoculation. Characterization of the phenotypic properties of C. jejuni that influence colonization showed that the adhesion and invasion abilities of the C. jejuni flhF mutant were reduced to approximately 52 and 27% of that of the wild-type strain, respectively. The autoagglutination and biofilm-formation abilities of the flhF mutant strain were also significantly decreased. Further genetic investigation revealed that flhF is continuously upregulated during the infection process, which indicates a close association of this gene with C. jejuni pathogenesis. The transcription of some other infection-related genes that are not directly involved in flagellar assembly were also influenced by its inactivation, with the flagellar coexpressed determinants (Feds) being apparently affected. Conclusions Inactivation of flhF has a significant influence on C. jejuni colonization in both birds and mammals. This defect may be caused by the decreased adhesion, invasion, autoagglutination and biofilm-formation abilities of the flhF mutant strain, as well as the influence on the transcription of other infection related genes, which provides insights into this virulence factor and the flagellum mediated co-regulation of C. jejuni pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12866-018-1318-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fangzhe Ren
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaofei Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China
| | - Haiyan Tang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China
| | - Qidong Jiang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China
| | - Xi Yun
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Lin Fang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Pingyu Huang
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Yuanyue Tang
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Qiuchun Li
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Jinlin Huang
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China.
| | - Xin-An Jiao
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
6
|
Shabbir MAB, Tang Y, Xu Z, Lin M, Cheng G, Dai M, Wang X, Liu Z, Yuan Z, Hao H. The Involvement of the Cas9 Gene in Virulence of Campylobacter jejuni. Front Cell Infect Microbiol 2018; 8:285. [PMID: 30177957 PMCID: PMC6109747 DOI: 10.3389/fcimb.2018.00285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/26/2018] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is considered as the leading cause of gastroenteritis all over the world. This bacterium has the CRISPR–cas9 system, which is used as a gene editing technique in different organisms. However, its role in bacterial virulence has just been discovered; that discovery, however, is just the tip of the iceberg. The purpose of this study is to find out the relationship between cas9 and virulence both phenotypically and genotypically in C. jejuni NCTC11168. Understanding both aspects of this relationship allows for a much deeper understanding of the mechanism of bacterial pathogenesis. The present study determined virulence in wild and mutant strains by observing biofilm formation, motility, adhesion and invasion, intracellular survivability, and cytotoxin production, followed by the transcriptomic analysis of both strains. The comparative gene expression profile of wild and mutant strains was determined on the basis of De-Seq transcriptomic analysis, which showed that the cas9 gene is involved in enhancing virulence. Differential gene expression analysis revealed that multiple pathways were involved in virulence, regulated by the CRISPR-cas9 system. Our findings help in understanding the potential role of cas9 in regulating the other virulence associated genes in C. jejuni NCTC11168. The findings of this study provide critical information about cas9's potential involvement in enhancing the virulence of C. jejuni, which is a major public health threat.
Collapse
Affiliation(s)
- Muhammad A B Shabbir
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanping Tang
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zihui Xu
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Mingyue Lin
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Guyue Cheng
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Menghong Dai
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zhengli Liu
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Dhanasekar NN, Aliouane S, Winterhalter M, Pagès JM, Bolla JM. Peptide translocation across MOMP, the major outer membrane channel from Campylobacter jejuni. Biochem Biophys Rep 2017; 11:79-83. [PMID: 28955771 PMCID: PMC5614690 DOI: 10.1016/j.bbrep.2017.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/12/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022] Open
Abstract
Here we report on translocation of short poly-arginines across the MOMP porin, the major outer membrane protein in the cell wall of Campylobacter jejuni. MOMP was purified to homogeneity from a pathogenic strain of C. jejuni. Its reconstitution in lipid membranes and measuring the ion-current revealed two main distinct populations of protein channels which we interpreted as mono and trimers. Addition of poly-arginines causes concentration and voltage dependent ion-current fluctuations. Increasing the transmembrane potential decreases the residence time of the peptide inside the channel indicating successful translocation. We conclude that poly-arginines can cross the outer membrane of Campylobacter through the MOMP channel. Translocation of short poly-arginines across the MOMP channel has been determined. Penta-arginine and Hepta-arginine translocate across the MOMP channel. Voltage dependent kinetics to distinguish binding from translocation.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | | | | |
Collapse
|
8
|
Wong A, Lange D, Houle S, Arbatsky NP, Valvano MA, Knirel YA, Dozois CM, Creuzenet C. Role of capsular modified heptose in the virulence ofCampylobacter jejuni. Mol Microbiol 2015; 96:1136-58. [DOI: 10.1111/mmi.12995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Anthony Wong
- Department of Microbiology and Immunology; Western University; DSB 3031 London ON N6A 5C1 Canada
| | - Dirk Lange
- Department of Microbiology and Immunology; Western University; DSB 3031 London ON N6A 5C1 Canada
| | | | - Nikolay P. Arbatsky
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow Russia
| | - Miguel A. Valvano
- Department of Microbiology and Immunology; Western University; DSB 3031 London ON N6A 5C1 Canada
- Centre for Infection and Immunity; Queen's University of Belfast; Belfast UK
| | - Yuriy A. Knirel
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow Russia
| | | | - Carole Creuzenet
- Department of Microbiology and Immunology; Western University; DSB 3031 London ON N6A 5C1 Canada
| |
Collapse
|
9
|
Bolton DJ. Campylobacter virulence and survival factors. Food Microbiol 2014; 48:99-108. [PMID: 25790997 DOI: 10.1016/j.fm.2014.11.017] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022]
Abstract
Despite over 30 years of research, campylobacteriosis is the most prevalent foodborne bacterial infection in many countries including in the European Union and the United States of America. However, relatively little is known about the virulence factors in Campylobacter or how an apparently fragile organism can survive in the food chain, often with enhanced pathogenicity. This review collates information on the virulence and survival determinants including motility, chemotaxis, adhesion, invasion, multidrug resistance, bile resistance and stress response factors. It discusses their function in transition through the food processing environment and human infection. In doing so it provides a fundamental understanding of Campylobacter, critical for improved diagnosis, surveillance and control.
Collapse
Affiliation(s)
- Declan J Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
10
|
CampylobacterSpecies. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Mertins S, Allan BJ, Townsend HG, Köster W, Potter AA. Role of motAB in adherence and internalization in polarized Caco-2 cells and in cecal colonization of Campylobacter jejuni. Avian Dis 2013; 57:116-22. [PMID: 23678739 DOI: 10.1637/10235-050412-resnote.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Campylobacter jejuni, a gram-negative motile bacterium commonly found in the chicken gastrointestinal tract, is one of the leading causes of bacterial gastroenteritis in humans worldwide. An intact and functional flagellum is important for C. jejuni virulence and colonization. To understand the role of C. jejuni motility in adherence and internalization in polarized Caco-2 cells and in cecal colonization of chickens we constructed a C. jejuni NCTC11168 V1 deltamotAB mutant. The motAB genes code for the flagellar motor, which enables the rotation of the flagellum. The nonmotile deltamotAB mutant expressed a full-length flagellum, which allowed us to differentiate between the roles of full-length flagella and motility in the ability of C. jejuni to colonize. To study the adherence and invasion abilities of the C. jejuni deltamotAB mutant we chose to use polarized Caco-2 cells, which are thought to be more representative of in vivo intestinal cell architecture and function. Although the C. jejuni deltamotAB mutant adhered significantly better than the wild type to the Caco-2 cells, we observed a significant reduction in the ability to invade the cells. In this study we obtained evidence that the flagellar rotation triggers C. jejuni invasion into polarized Caco-2 cells and we believe that C. jejuni is propelled into the cell with a drill-like rotation. The deltamotAB mutant was also tested for its colonization potential in a 1-day-old chicken model. The nonmotile C. jejuni deltamotAB mutant was not able to colonize any birds at days 3 and 7, suggesting that motility is essential for C. jejuni colonization.
Collapse
Affiliation(s)
- Sonja Mertins
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | | | | | |
Collapse
|
12
|
Thibodeau A, Fravalo P, Garneau P, Masson L, Laurent-Lewandowski S, Quessy S, Harel J, Letellier A. Distribution of colonization and antimicrobial resistance genes in Campylobacter jejuni isolated from chicken. Foodborne Pathog Dis 2013; 10:382-91. [PMID: 23510494 DOI: 10.1089/fpd.2012.1271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Campylobacter jejuni is an important worldwide foodborne pathogen commonly found as a commensal organism in poultry that can reach high numbers within the gut after colonization. Although information regarding some genes involved in colonization is available, little is known about their distribution in strains isolated specifically from chickens and whether there is a linkage between antimicrobial resistance (AMR) and colonization genes. To assess the distribution and relevance of genes associated with chicken colonization and AMR, a C. jejuni microarray was created to detect 254 genes of interest in colonization and AMR including variants. DNA derived from chicken-specific Campylobacter isolates collected in 2003 (n=29) and 2008 (n=28) was hybridized to the microarray and compared. Hybridization results showed variable colonization-associated gene presence. Acquired AMR genes were low in prevalence whereas chemotaxis receptors, arsenic resistance genes, as well as genes from the cell envelope and flagella functional groups were highly variable in their presence. Strains clustered into two groups, each linked to different control strains, 81116 and NCTC11168. Clustering was found to be independent of collection time. We also show that AMR weakly associated with the CJ0628 and arsR genes. Although other studies have implicated numerous genes associated with C. jejuni chicken colonization, our data on chicken-specific isolates suggest the opposite. The enormous variability in presumed colonization gene prevalence in our chicken isolates suggests that many are of lesser importance than previously thought. Alternatively, this also suggests that combinations of genes may be required for natural colonization of chicken intestines.
Collapse
Affiliation(s)
- Alexandre Thibodeau
- Industrial-CRSNG Meat Safety Research, University of Montreal, Saint-Hyacinthe, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hermans D, Pasmans F, Heyndrickx M, Van Immerseel F, Martel A, Van Deun K, Haesebrouck F. A tolerogenic mucosal immune response leads to persistent Campylobacter jejuni colonization in the chicken gut. Crit Rev Microbiol 2011; 38:17-29. [PMID: 21995731 DOI: 10.3109/1040841x.2011.615298] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Campylobacter enteritis is the most reported zoonotic disease in many developed countries where it imposes a serious health burden. Campylobacter transmission to humans occurs primarily through the chicken vector. Chicks are regarded as a natural host for Campylobacter species and are colonized with C. jejuni in particular. But despite carrying a very high bacterial load in their gastrointestinal tract, these birds, in contrast to humans, do not develop pathological signs. It seems that in chickens C. jejuni principally harbors in the cecal mucosal crypts, where an inefficient inflammatory response fails to clear the bacterium from the gut. Recent intensive research resulted in an increased insight into the cross talk between C. jejuni and its avian host. This review discusses the chicken intestinal mucosal immune response upon C. jejuni entrance, leading to tolerance and persistent cecal colonization. It might in addition provide a solid base for further research regarding this topic aiming to fully understand the host-bacterium dynamics of C. jejuni in chicks and to develop effective control measures to clear this zoonotic pathogen from poultry lines.
Collapse
Affiliation(s)
- David Hermans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
14
|
Hermans D, Van Deun K, Martel A, Van Immerseel F, Messens W, Heyndrickx M, Haesebrouck F, Pasmans F. Colonization factors of Campylobacter jejuni in the chicken gut. Vet Res 2011; 42:82. [PMID: 21714866 PMCID: PMC3156733 DOI: 10.1186/1297-9716-42-82] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/29/2011] [Indexed: 11/10/2022] Open
Abstract
Campylobacter contaminated broiler chicken meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this zoonotic pathogen and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing. Current intervention methods fail to reduce the colonization of broiler chicks by C. jejuni due to an incomplete understanding on the interaction between C. jejuni and its avian host. Clearly, C. jejuni developed several survival and colonization mechanisms which are responsible for its highly adapted nature to the chicken host. But how these mechanisms interact with one another, leading to persistent, high-level cecal colonization remains largely obscure. A plethora of mutagenesis studies in the past few years resulted in the identification of several of the genes and proteins of C. jejuni involved in different aspects of the cellular response of this bacterium in the chicken gut. In this review, a thorough, up-to-date overview will be given of the survival mechanisms and colonization factors of C. jejuni identified to date. These factors may contribute to our understanding on how C. jejuni survival and colonization in chicks is mediated, as well as provide potential targets for effective subunit vaccine development.
Collapse
Affiliation(s)
- David Hermans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kim Van Deun
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Winy Messens
- Institute for Agricultural and Fisheries Research, Technology and Food Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
- Current address: Biological Hazards (BIOHAZ) Unit, European Food Safety Authority (EFSA), Largo N. Palli 5/A, I-43121 Parma, Italy
| | - Marc Heyndrickx
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Institute for Agricultural and Fisheries Research, Technology and Food Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
15
|
Scott NE, Cordwell SJ. Campylobacter proteomics: guidelines, challenges and future perspectives. Expert Rev Proteomics 2009; 6:61-74. [PMID: 19210127 DOI: 10.1586/14789450.6.1.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Campylobacter species are a major cause of disease in mammalian systems. The most common human etiological agent within this genus is Campylobacter jejuni - the leading cause of bacterial gastroenteritis in the developed world. While this organism has been extensively studied at the cellular level, and the genome sequences of several strains have now been elucidated, little is known regarding the role of individual proteins in virulence processes, such as adhesion, colonization and toxicity towards host cells. Proteomics encompasses the global analysis of proteins at the organism level. The technologies included under this term have now started to be utilized for understanding how Campylobacter species respond to changes in the environment, with an emphasis on the human host, as well as to map subcellular locations of proteins, in particular those that are surface-associated. C. jejuni is also of great significance as, unlike most other bacteria, it is able to post-translationally modify its proteins. The analysis of such proteins represents a major challenge in understanding this organism at the proteomic and cellular levels. This review will examine the state-of-the-art in Campylobacter proteomics, as well as provide insights into strategies that need to be undertaken to provide a comprehensive understanding of this organism at the molecular and functional level.
Collapse
Affiliation(s)
- Nichollas E Scott
- School of Molecular and Microbial Biosciences, Building GO8, Maze Crescent, The University of Sydney, Australia.
| | | |
Collapse
|
16
|
Jagusztyn-Krynicka EK, Łaniewski P, Wyszyńska A. Update on Campylobacter jejuni vaccine development for preventing human campylobacteriosis. Expert Rev Vaccines 2009; 8:625-45. [PMID: 19397419 DOI: 10.1586/erv.09.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Campylobacteriosis constitutes a serious medical and socioeconomic problem worldwide. Rapidly increasing antibiotic resistance of bacterial strains compels us to develop alternative therapeutic strategies and to search for efficient immunoprophylactic methods. The vast majority of Campylobacter infections in developed countries occur as sporadic cases, mainly caused by eating undercooked Campylobacter-contaminated poultry. The most efficient strategy of decreasing the number of human Campylobacter infections is by implementing protective vaccinations for humans and/or chickens. Despite more than 10 years of research, an effective anti-Campylobacter vaccine has not been developed. This review highlights our increasing knowledge of Campylobacter interaction with host cells and focuses on recently published data describing the efficacy of anti-Campylobacter vaccine prototypes.
Collapse
|
17
|
Meade KG, Narciandi F, Cahalane S, Reiman C, Allan B, O'Farrelly C. Comparative in vivo infection models yield insights on early host immune response to Campylobacter in chickens. Immunogenetics 2008; 61:101-10. [PMID: 19082824 DOI: 10.1007/s00251-008-0346-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 11/20/2008] [Indexed: 01/30/2023]
Abstract
Salmonella typhimurium and Campylobacter jejuni pose significant risks to human health and poultry are a major vector for infection. Comparative in vivo infection models were performed to compare the avian host immune response to both bacterial species. Forty-five commercial broiler chickens were orally challenged with either C. jejuni or S. typhimurium whilst 60 similar control birds were mock challenged in parallel. Birds were sacrificed at 0, 6, 20 and 48 h post-infection and cloacal swabs, blood and tissue samples taken. Peripheral blood leukocytes were isolated for flow cytometric analyses and RNA was extracted for gene expression profiling. Colonisation patterns were markedly different between the two bacterial species, with systemic colonisation of Campylobacter outside the gastrointestinal tract. Salmonella infection induced significant changes in circulating heterophil and monocyte/macrophage populations, whilst Campylobacter infection had no effect on the heterophil numbers but caused a significant early increase in circulating monocytes/macrophages. Toll-like receptor 1 (TLR1) gene expression was decreased, and avian beta-defensin (AvBD) gene expression (AvBD3, AvBD10 and AvBD12) was significantly increased in response to Salmonella infection (P < 0.05). In contrast, Campylobacter infection induced increased TLR21 gene expression but significantly reduced expression of seven antimicrobial peptide (AMP) genes (AvBD3, AvBD4, AvBD8, AvBD13, AvBD14, CTHL2 and CTHL3; P < 0.05). Considered together, microbiological, cellular and gene expression profiles indicate that the innate immune system responds differently to Salmonella and to Campylobacter infection. Furthermore, reduction in the expression of AMPs may play a role in the persistence of high level colonisation of the host by Campylobacter.
Collapse
Affiliation(s)
- Kieran G Meade
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
18
|
Survival of stress exposed Campylobacter jejuni in the murine macrophage J774 cell line. Int J Food Microbiol 2008; 129:68-73. [PMID: 19058868 DOI: 10.1016/j.ijfoodmicro.2008.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 10/27/2008] [Accepted: 11/09/2008] [Indexed: 11/22/2022]
Abstract
Although campylobacters are relatively fragile and sensitive to environmental stresses, Campylobacter jejuni has evolved mechanisms for survival in diverse environments, both inside and outside the host. Their survival properties and pathogenic potential were assessed after subjecting food and clinical C. jejuni isolates to different stress conditions. After exposure to starvation (5 h and 15 h of nutrient depletion), a temperature shock (3 min at 55 degrees C) or oxidative stress (5 h and 15 h of atmospheric oxygen) we studied the culturability, viability and capability of adhesion, internalization and survival within the in vitro cell culture model using J774 murine macrophages. Starvation severely impaired C. jejuni culturability, particularly after 15 h of nutrient depletion. The number of viable cells decreased by 30-40%. Starved bacterial cells also showed a lower capability of adhesion, internalization and survival within macrophages. Despite the reduced culturability and viability of the heat treated cells, C. jejuni efficiently adhered to, and entered murine macrophages. However, the number of heat treated cells started to decrease more quickly than non-stressed cells. Within 24 h post infection all the cells were killed. The bacterial mechanisms involved in inactivating toxic oxygen products may enhance bacterial persistence through increased binding, entry and survival of both oxidatively stressed C. jejuni isolates inside the macrophages. Oxygen exposure increased the internalization and intracellular survival, although the cells cannot remain viable for extended periods within murine macrophages. However, any prolongation of survival in macrophages may increase the probability of transmission of bacteria in the host organism and have further implications in the pathogenesis of campylobacteriosis. This indicates that environmental stress conditions may be involved.
Collapse
|
19
|
Van Deun K, Pasmans F, Ducatelle R, Flahou B, Vissenberg K, Martel A, Van den Broeck W, Van Immerseel F, Haesebrouck F. Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut. Vet Microbiol 2008; 130:285-97. [DOI: 10.1016/j.vetmic.2007.11.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/15/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
20
|
Van Deun K, Haesebrouck F, Van Immerseel F, Ducatelle R, Pasmans F. Short-chain fatty acids andl-lactate as feed additives to controlCampylobacter jejuniinfections in broilers. Avian Pathol 2008; 37:379-83. [DOI: 10.1080/03079450802216603] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
|