1
|
Ikäläinen H, Guzman C, Saari M, Söderling E, Loimaranta V. Real-time acid production and extracellular matrix formation in mature biofilms of three Streptococcus mutans strains with special reference to xylitol. Biofilm 2024; 8:100219. [PMID: 39281714 PMCID: PMC11402442 DOI: 10.1016/j.bioflm.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Background Acidogenicity and production of an extracellular matrix (ECM) are important virulence factors for the dental caries-associated bacteria, such as Streptococcus mutans, that live in biofilms on tooth surface. The ECM protects the bacteria from the flushing and buffering effects of saliva resulting in highly acidic microenvironments inside the biofilm. Materials and methods In this in vitro study, we applied real-time assays to follow biofilm formation and pH decrease in a growth medium and saliva by three S. mutans strains, as well as acid neutralization inside the mature biofilm. Results were compared with the biofilm composition. Effects of a non-fermentable polyol, xylitol, on acid production and acid neutralization in mature biofilms were evaluated by real-time pH measurements and confocal microscopy. Results Combination of real-time pH measurements with biofilm accumulation assays revealed growth media dependent differences in the pH decrease and biofilm accumulation, as well as strain differences in acid production and biofilm formation but not in the buffer diffusion through ECM. The presence of xylitol reduced the pH drop during biofilm formation of all strains. In addition, with strain Ingbritt xylitol reduced the amount of ECM in biofilm, which increased the rate of acid neutralization inside the biofilm after buffer exposure. Conclusion Our results stress the importance of biofilm matrix in creating the acidic environment inside a S. mutans biofilm, especially in the presence of saliva. In addition, our results suggest a novel mechanism of xylitol action. The observed increase in the permeability of the S. mutans ECM after xylitol exposure may allow acid-neutralizing saliva to reach deeper layer of the biofilms and thus, in part, explain previous clinical observations of reduced plaque acidogenicity after frequent xylitol use.
Collapse
Affiliation(s)
- Henna Ikäläinen
- Institute of Dentistry, University of Turku, Lemminkaisenkatu 2, 20520, Turku, Finland
| | - Camilo Guzman
- Cell Imaging and Cytometry Core, Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- Euro-Bioimaging ERIC, Turku, Finland
| | - Markku Saari
- Cell Imaging and Cytometry Core, Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eva Söderling
- Institute of Dentistry, University of Turku, Lemminkaisenkatu 2, 20520, Turku, Finland
| | - Vuokko Loimaranta
- Institute of Dentistry, University of Turku, Lemminkaisenkatu 2, 20520, Turku, Finland
| |
Collapse
|
2
|
Laforgia A, Inchingolo AD, Piras F, Colonna V, Giorgio RV, Carone C, Rapone B, Malcangi G, Inchingolo AM, Inchingolo F, Palermo A, Dipalma G. Therapeutic Strategies and Genetic Implications for Periodontal Disease Management: A Systematic Review. Int J Mol Sci 2024; 25:7217. [PMID: 39000324 PMCID: PMC11242487 DOI: 10.3390/ijms25137217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The objective of this review is to identify the microbiological alterations caused by various therapy modalities by critically analyzing the current findings. We limited our search to English-language papers published between 1 January 2004 and 7 May 2024 in PubMed, Scopus, and Web of Science that were relevant to our topic. In the search approach, the Boolean keywords "microbio*" AND "periodontitis" were used. A total of 5152 papers were obtained from the databases Web of Science (2205), PubMed (1793), and Scopus (1154). This resulted in 3266 articles after eliminating duplicates (1886), and 1411 entries were eliminated after their titles and abstracts were examined. The qualitative analysis of the 22 final articles is included in this study. Research on periodontal disease shows that periodontitis alters the oral microbiome and increases antibiotic resistance. Treatments like scaling and root planing (SRP), especially when combined with minocycline, improve clinical outcomes by reducing harmful bacteria. Comprehensive mechanical debridement with antibiotics, probiotics, EMD with bone grafts, and other adjunctive therapies enhances periodontal health. Personalized treatment strategies and advanced microbial analyses are crucial for effective periodontal management and antibiotic resistance control.
Collapse
Affiliation(s)
- Alessandra Laforgia
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Valeria Colonna
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Roberto Vito Giorgio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Claudio Carone
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Andrea Palermo
- College of Medicine and Dentistry, CoMD Birmingham Campus, Birmingham B4 6BN, UK
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
3
|
Rajala O, Mäntynen M, Loimaranta V. Pine-Oil-Derived Sodium Resinate Inhibits Growth and Acid Production of Streptococcus mutans In Vitro. Dent J (Basel) 2024; 12:40. [PMID: 38392244 PMCID: PMC10887496 DOI: 10.3390/dj12020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
S. mutans is a key pathogen in dental caries initiation and progression. It promotes oral biofilm dysbiosis and biofilm acidification. Sodium resinate is a salt of pine-oil-derived resin which has antimicrobial properties. Pine-oil-derived resin consists of terpenes, diterpenes, and abietic acids. The aim of this study was to determine the effects of pine (Pinus sylvestris) oil resinate (RS) on growth and acid production of cariogenic S. mutans strains in planktonic form and biofilm. The S. mutans type strain NCTC10449 and clinical isolate CI2366 were grown on 96-well plates for testing of RS effects on growth and biofilm formation, and on plates with integrated pH-sensitive optical ensors for real-time measurements of the effects of RS on bacterial acid production. We found that even short-time exposure to RS inhibits the growth and acid production of S. mutans in the planktonic phase and biofilms. In addition, RS was able to penetrate the biofilm matrix and reduce acid production inside S. mutans biofilm. RS thus shows potential as a novel antibacterial agent against cariogenic bacteria in biofilm.
Collapse
Affiliation(s)
- Otto Rajala
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland
| | - Matias Mäntynen
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland
| | - Vuokko Loimaranta
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland
| |
Collapse
|
4
|
Li E, Li S, Wang S, Li Q, Pang D, Yang Q, Zhu Q, Zou Y. Antibacterial Effects of Ramulus mori Oligosaccharides against Streptococcus mutans. Foods 2023; 12:3182. [PMID: 37685114 PMCID: PMC10486356 DOI: 10.3390/foods12173182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Ramulus mori has been widely used in traditional Chinese medicine because of its physiological activities, including antibacterial, anti-inflammatory, and antioxidant activities. Antimicrobial properties of Ramulus mori extract have been well described. However, no information is available regarding on Ramulus mori oligosaccharides (RMOS). The aim of this study was to investigate the effects of RMOS on the growth and virulence properties of the cariogenic bacterium Streptococcus mutans. The effects of RMOS on the biofilm structure and virulence gene expression of S. mutans were also evaluated, and the results were compared with the effects of commercial prebiotic galactooligosaccharides. RMOS were found to have an antibacterial effect against S. mutans, resulting in significant reductions in acid production, lactate dehydrogenase activity, adhesion, insoluble extracellular polysaccharide production, glucosyltransferase activity, and biofilm formation in a dose-dependent manner. Moreover, the biofilm structure was visibly damaged. A quantitative real-time PCR assay revealed downregulation of virulence gene-regulated acid production, polysaccharide production, adhesion, biofilm formation, and quorum sensing. These findings suggest that RMOS may be a promising natural product for the prevention of dental caries.
Collapse
Affiliation(s)
- Erna Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Shipei Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Siyuan Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Qian Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Daorui Pang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Qiong Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Qiaoling Zhu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| |
Collapse
|
5
|
Rabe A, Gesell Salazar M, Michalik S, Kocher T, Below H, Völker U, Welk A. Impact of different oral treatments on the composition of the supragingival plaque microbiome. J Oral Microbiol 2022; 14:2138251. [PMID: 36338832 PMCID: PMC9629129 DOI: 10.1080/20002297.2022.2138251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Dental plaque consists of a diverse microbial community embedded in a complex structure of exopolysaccharides. Dental biofilms form a natural barrier against pathogens but lead to oral diseases in a dysbiotic state. Objective Using a metaproteome approach combined with a standard plaque-regrowth study, this pilot study examined the impact of different concentrations of lactoperoxidase (LPO) on early plaque formation, and active biological processes. Design Sixteen orally healthy subjects received four local treatments as a randomized single-blind study based on a cross-over design. Two lozenges containing components of the LPO-system in different concentrations were compared to a placebo and Listerine®. The newly formed dental plaque was analyzed by mass spectrometry (nLC-MS/MS). Results On average 1,916 metaproteins per sample were identified, which could be assigned to 116 genera and 1,316 protein functions. Listerine® reduced the number of metaproteins and their relative abundance, confirming the plaque inhibiting effect. The LPO-lozenges triggered mainly higher metaprotein abundances of early and secondary colonizers as well as bacteria associated with dental health but also periodontitis. Functional information indicated plaque biofilm growth. Conclusion In conclusion, the mechanisms on plaque biofilm formation of Listerine® and the LPO-system containing lozenges are different. In contrast to Listerine®, the lozenges led to a higher bacterial diversity.
Collapse
Affiliation(s)
- Alexander Rabe
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475Greifswald, Germany,CONTACT Alexander Rabe University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, Felix-Hausdorff-Str. 8, 17489Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475Greifswald, Germany
| | - Thomas Kocher
- Center for Dentistry, Oral and Maxillofacial Medicine, Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, Dental School of University Medicine Greifswald, Fleischmannstraße 42-44, 17489
| | - Harald Below
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Walter-Rathenau-Straße 49 A17475Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475Greifswald, Germany
| | - Alexander Welk
- Center for Dentistry, Oral and Maxillofacial Medicine, Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, Dental School of University Medicine Greifswald, Fleischmannstraße 42-44, 17489
| |
Collapse
|
6
|
Effect of chewing gum containing Xylitol and blackberry powder on oral bacteria: A randomized controlled crossover trial. Arch Oral Biol 2022; 143:105523. [PMID: 36037565 DOI: 10.1016/j.archoralbio.2022.105523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim was to determine the effect of chewing gum containing xylitol and freeze-dried blackberry powder on oral bacteria. DESIGN This was a randomized, controlled, cross-over study (RCT #: NCT05133557). Fifty participants chewed gum over an 8 h period, four times for 20 min at 2-hour intervals, containing 700 mg xylitol (CG) with or without 50 mg blackberry powder (BG), while wearing a stent containing a sterile enamel chip. After a 1 week washout, participants chewed gum from the other group following the same protocol. The primary outcome was the amount of nine oral bacteria in saliva as determined by quantitative PCR. The secondary outcome was bacteria formed on enamel chips. RESULTS Chewing BG for four twenty-minute intervals reduced mean total bacteria load and the relative abundance of six of the nine bacteria studied in saliva (p < 0.05). In comparison, only four bacteria were reduced in abundance in the CG group. After gum chewing and regardless of group, S. sanguinis and A. naeslundii were the predominant bacteria adherent to enamel, with S. mutans representing < 1 % of the total bacteria on enamel. CONCLUSION Bacterial loads in saliva were rapidly, differentially, and significantly reduced after one day of chewing BG.
Collapse
|
7
|
Liu C, Zhan S, Tian Z, Li N, Li T, Wu D, Zeng Z, Zhuang X. Food Additives Associated with Gut Microbiota Alterations in Inflammatory Bowel Disease: Friends or Enemies? Nutrients 2022; 14:nu14153049. [PMID: 35893902 PMCID: PMC9330785 DOI: 10.3390/nu14153049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
During the 21st century, the incidence and prevalence of inflammatory bowel disease (IBD) is rising globally. Despite the pathogenesis of IBD remaining largely unclear, the interactions between environmental exposure, host genetics and immune response contribute to the occurrence and development of this disease. Growing evidence implicates that food additives might be closely related to IBD, but the involved molecular mechanisms are still poorly understood. Food additives may be categorized as distinct types in accordance with their function and property, including artificial sweeteners, preservatives, food colorant, emulsifiers, stabilizers, thickeners and so on. Various kinds of food additives play a role in modifying the interaction between gut microbiota and intestinal inflammation. Therefore, this review comprehensively synthesizes the current evidence on the interplay between different food additives and gut microbiome alterations, and further elucidates the potential mechanisms of food additives–associated microbiota changes involved in IBD.
Collapse
Affiliation(s)
- Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Zhenyi Tian
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Tong Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Dongxuan Wu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
- Correspondence: (Z.Z.); (X.Z.)
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
- Correspondence: (Z.Z.); (X.Z.)
| |
Collapse
|
8
|
Salli K, Söderling E, Hirvonen J, Gürsoy UK, Ouwehand AC. Influence of 2'-fucosyllactose and galacto-oligosaccharides on the growth and adhesion of Streptococcus mutans. Br J Nutr 2020; 124:824-831. [PMID: 32498722 PMCID: PMC7525117 DOI: 10.1017/s0007114520001956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/05/2020] [Accepted: 05/27/2020] [Indexed: 01/15/2023]
Abstract
Human milk oligosaccharides, such as 2'-fucosyllactose (2'-FL), and galacto-oligosaccharides (GOS), a prebiotic carbohydrate mixture, are being increasingly added to infant formulas, necessitating the understanding of their impact on the oral microbiota. Here, for the first time, the effects of 2'-FL and GOS on the planktonic growth and adhesion characteristics of the caries-associated oral pathogen Streptococcus mutans were assessed, and the results were compared against the effects of xylitol, lactose and glucose. There were differences in S. mutans growth between 2'-FL and GOS. None of the three S. mutans strains grew with 2'-FL, while they all grew with GOS as well as lactose and glucose. Xylitol inhibited S. mutans growth. The adhesion of S. mutans CI 2366 to saliva-coated hydroxyapatite was reduced by 2'-FL and GOS. Exopolysaccharide-mediated adhesion of S. mutans DSM 20523 to a glass surface was decreased with 2'-FL, GOS and lactose, and the adhesion of strain CI 2366 strain was reduced only by GOS. Unlike GOS, 2'-FL did not support the growth of any S. mutans strain. Neither 2'-FL nor GOS enhanced the adhesive properties of the S. mutans strains, but they inhibited some of the tested strains. Thus, the cariogenic tendency may vary between infant formulas containing different types of oligosaccharides.
Collapse
Affiliation(s)
- K. Salli
- DuPont Nutrition & Biosciences, Kantvik, Finland
- Faculty of Medicine, Institute of Dentistry, University of Turku, Turku, Finland
| | - E. Söderling
- Faculty of Medicine, Institute of Dentistry, University of Turku, Turku, Finland
| | - J. Hirvonen
- DuPont Nutrition & Biosciences, Kantvik, Finland
| | - U. K. Gürsoy
- Faculty of Medicine, Institute of Dentistry, University of Turku, Turku, Finland
| | | |
Collapse
|
9
|
Loimaranta V, Mazurel D, Deng D, Söderling E. Xylitol and erythritol inhibit real-time biofilm formation of Streptococcus mutans. BMC Microbiol 2020; 20:184. [PMID: 32600259 PMCID: PMC7325245 DOI: 10.1186/s12866-020-01867-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background Regular consumption of xylitol decreases the number of cariogenic streptococci in dental plaque. In vitro biofilm models to study the mechanism of xylitol action have been set-up, but the obtained results are contradictory. Biofilm growth is a dynamic process with time-specific characteristics that may remain undetected in conventional end-point biofilm tests. In this study we used an impedance spectroscopy instrument, xCELLigence Real Time Cell Analyzer (RTCA), that allows label-free, non-invasive real-time monitoring of biofilm formation, to explore effects of xylitol on biofilm formation by Streptococcus mutans. Based on the obtained information of biofilm dynamics, we assessed the number of viable bacteria, the polysaccharide content, and the expression levels of selected genes involved in glucan-mediated biofilm formation in different biofilm stages. Xylitol inhibition was compared with that of erythritol; another polyol suggested to have a positive impact on oral health. Results Our results showed that real-time monitoring provided new information of polyol-induced changes in S. mutans biofilm formation dynamics. The inhibitory effect of polyols was more pronounced in the early stages of biofilm formation but affected also the measured total amount of formed biofilm. Effects seen in the real-time biofilm assay were only partially explained by changes in CFU values and polysaccharide amounts in the biofilms. Both xylitol and erythritol inhibited real-time biofilm formation by all the nine tested S. mutans strains. Sensitivity of the strains to inhibition varied: some were more sensitive to xylitol and some to erythritol. Xylitol also modified the expression levels of gbpB, gtfB, gtfC and gtfD genes that are important in polysaccharide-mediated adherence of S. mutans. Conclusion The erythritol- and xylitol- induced inhibition of biofilm formation was only partly explained by decrease in the number of viable S. mutans cells or the amount of polysaccharides in the biofilm matrix, suggesting that in addition to reduced proliferation also the matrix composition and thereby the surface attachment quality of biofilm matrix may be altered by the polyols.
Collapse
Affiliation(s)
- Vuokko Loimaranta
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.
| | - Danuta Mazurel
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Eva Söderling
- Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| |
Collapse
|
10
|
Exploration of singular and synergistic effect of xylitol and erythritol on causative agents of dental caries. Sci Rep 2020; 10:6297. [PMID: 32286378 PMCID: PMC7156733 DOI: 10.1038/s41598-020-63153-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/19/2020] [Indexed: 12/04/2022] Open
Abstract
Non-cariogenic sweet substances, like sugar alcohols, are used to decrease the risk of caries by reducing the growth of dental plaque. The aim of our study was to reveal the impact of xylitol and erythritol on the growth and biofilm formation of cariogenic bacteria including as a novelty, set of clinical mutans streptococci and Scardovia wiggsiae and to assess the possible synergistic influence of these polyols. We found both xylitol and erythritol to express high growth inhibition effect on cariogenic bacteria. In synergistic effect experiments, 10% polyol combination with excess of erythritol was found to be more effective against growth of Streptococcus mutans and the combination with excess of xylitol more effective against growth of Streptococcus sobrinus and S. wiggsiae. In biofilm inhibition experiments, solutions of 10% polyols in different combinations and 15% single polyols were equally effective against mutans streptococci. At the same time, higher biofilm formation of S. wiggsiae compared to experiments without polyols was detected in different polyol concentrations for up to 34%. In conclusion, both erythritol and xylitol as well as their combinations inhibit the growth of different cariogenic bacteria. Biofilm formation of mutans streptococci is also strongly inhibited. When applying polyols in caries prophylaxis, it is relevant to consider that the profile of pathogens in a particular patient may influence the effect of polyols used.
Collapse
|
11
|
Wang T, Wang Q, Zhou H, Huang S. Effects of Preoperative Gum Chewing on Sore Throat After General Anesthesia With a Supraglottic Airway Device: A Randomized Controlled Trial. Anesth Analg 2020; 131:1864-1871. [DOI: 10.1213/ane.0000000000004664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Takeuchi K, Asakawa M, Hashiba T, Takeshita T, Saeki Y, Yamashita Y. Effects of xylitol-containing chewing gum on the oral microbiota. J Oral Sci 2018; 60:588-594. [PMID: 30429438 DOI: 10.2334/josnusd.17-0446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In this interventional study, a randomized controlled trial was used to evaluate the short-term effects of xylitol-containing chewing gum on the salivary microbiota. In total, 70 healthy adult men recruited from the Japan Ground Self Defense Force participated in the study during a 2-day training at Yamaguchi camp, Yamaguchi Prefecture, Japan. The men were randomly divided into two groups: one group chewed two pieces of xylitol-containing chewing gum 7 times/day for 2 days (n = 34) and the other did not (n = 36). Baseline and follow-up stimulated saliva samples were collected and the salivary microbial composition was assessed using the 16S rRNA gene next-generation sequencing analysis. The total salivary bacterial count was quantified using a quantitative real-time PCR system. No statistically significant difference was found between the two groups regarding any parameter analyzed in the baseline samples; however, the follow-up samples of the test group showed significantly lower total salivary bacterial count than those of the control group. Conversely, no significant difference was observed in the overall composition of the salivary microbiota between the baseline and follow-up samples of the two groups. These results indicate that xylitol-containing chewing gum inhibits the increase in total salivary bacteria over a short time during which the salivary microbial composition is not affected.
Collapse
Affiliation(s)
- Kenji Takeuchi
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University.,OBT Research Center, Faculty of Dental Science, Kyushu University
| | - Mikari Asakawa
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| | - Takafumi Hashiba
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University.,Department of Dentistry, SDF Central Hospital
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University.,OBT Research Center, Faculty of Dental Science, Kyushu University
| | - Youji Saeki
- Oral Science Section, Central Laboratory, Lotte Co., Ltd
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| |
Collapse
|
13
|
Ruiz-Ruiz JC, Moguel-Ordoñez YB, Segura-Campos MR. Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Crit Rev Food Sci Nutr 2018; 57:2680-2690. [PMID: 26479769 DOI: 10.1080/10408398.2015.1072083] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The leaves of Stevia rebaudiana Bertoni has nutrients and phytochemicals, which make it an adequate source for the extraction and production of functional food ingredients. Preclinical and clinical studies suggest therapeutic and pharmacological applications for stevia and their extracts because they are not toxic and exhibit several biological activities. This review presents the biological activity of Stevia rebaudiana Bertoni and their relationship to antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor activities. Consumption and adverse effects were also reviewed.
Collapse
Affiliation(s)
- Jorge Carlos Ruiz-Ruiz
- a Departamento de Ingeniería Química-Bioquímica , Instituto Tecnológico de Mérida , Mérida, Yucatán , México
| | - Yolanda Beatriz Moguel-Ordoñez
- b Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Mococh , Carretera Mérida-Motul, Yucatán , México
| | - Maira Rubi Segura-Campos
- c Facultad de Ingeniería Química , Universidad Autónoma de Yucatán Col. Chuburná de Hidalgo Inn, Mérida, Yucatán , México
| |
Collapse
|
14
|
Grembecka M. Sugar Alcohols as Sugar Substitutes in Food Industry. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-27027-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice. Nutrients 2017; 9:nu9070756. [PMID: 28708089 PMCID: PMC5537870 DOI: 10.3390/nu9070756] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans. It is used as a food additive to prevent caries. We previously showed that 1.5–4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella, whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism.
Collapse
|
16
|
Gutiérrez D, Hidalgo-Cantabrana C, Rodríguez A, García P, Ruas-Madiedo P. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology. PLoS One 2017. [PMID: 27695058 DOI: 10.1371/journalpone0163966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other abiotic surfaces (polystyrene and stainless steel). Therefore, this RTCA technology opens new opportunities in the biofilm research arena and its application could be further explored for other bacterial genera as well as for different bio-active molecules.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Claudio Hidalgo-Cantabrana
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| |
Collapse
|
17
|
Gutiérrez D, Hidalgo-Cantabrana C, Rodríguez A, García P, Ruas-Madiedo P. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology. PLoS One 2016; 11:e0163966. [PMID: 27695058 PMCID: PMC5047529 DOI: 10.1371/journal.pone.0163966] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Bacteria found in diverse ecosystems grow in a community of aggregated cells that favors their survival and colonization. Different extracellular polymeric substances are used to entrap this multispecies community forming a biofilm, which can be associated to biotic and abiotic surfaces. This widespread and successful way of bacterial life, however, can lead to negative effects for human activity since many pathogen and spoiling bacteria form biofilms which are not easy to eradicate. Therefore, the search for novel anti-biofilm bio-active molecules is a very active research area for which simple, reliable, and fast screening methods are demanded. In this work we have successfully validated an impedance-based method, initially developed for the study of adherent eukaryotic cells, to monitor the formation of single-species biofilms of three model bacteria in real time. The xCelligence real time cell analyzer (RTCA) equipment uses specific microtiter E-plates coated with gold-microelectrodes that detect the attachment of adherent cells, thus modifying the impedance signal. In the current study, this technology allowed the distinction between biofilm-producers and non-producers of Staphylococcus aureus and Staphylococcus epidermidis, as well as the formation of Streptococcus mutans biofilms only when sucrose was present in the culture medium. Besides, different impedance values permitted discrimination among the biofilm-producing strains tested regardless of the nature of the polymeric biofilm matrix. Finally, we have continuously monitored the inhibition of staphylococcal biofilm formation by the bacteriophage phi-IPLA7 and the bacteriophage-encoded endolysin LysH5, as well as the removal of a preformed biofilm by this last antimicrobial treatment. Results observed with the impedance-based method showed high correlation with those obtained with standard approaches, such as crystal violet staining and bacteria enumeration, as well as with those obtained upon other abiotic surfaces (polystyrene and stainless steel). Therefore, this RTCA technology opens new opportunities in the biofilm research arena and its application could be further explored for other bacterial genera as well as for different bio-active molecules.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Claudio Hidalgo-Cantabrana
- Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| |
Collapse
|
18
|
Salli K, Forssten S, Lahtinen S, Ouwehand A. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator. Arch Oral Biol 2016; 70:39-46. [DOI: 10.1016/j.archoralbio.2016.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 04/14/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
|
19
|
Cardoso C, Cassiano L, Costa E, Souza-e-Silva C, Magalhães A, Grizzo L, Caldana M, Bastos J, Buzalaf M. Effect of xylitol varnishes on remineralization of artificial enamel caries lesions in situ. J Dent 2016; 50:74-8. [DOI: 10.1016/j.jdent.2016.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/07/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022] Open
|
20
|
|
21
|
|
22
|
Tokuda M, Fujisawa M, Miyashita K, Kawakami Y, Morimoto-Yamashita Y, Torii M. Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells. Connect Tissue Res 2015; 56:44-9. [PMID: 25372661 DOI: 10.3109/03008207.2014.984804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. METHODOLOGY OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. RESULTS Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. CONCLUSION OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.
Collapse
Affiliation(s)
- M Tokuda
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences , Kagoshima , Japan
| | | | | | | | | | | |
Collapse
|
23
|
Hashiba T, Takeuchi K, Shimazaki Y, Takeshita T, Yamashita Y. Chewing Xylitol Gum Improves Self-Rated and Objective Indicators of Oral Health Status under Conditions Interrupting Regular Oral Hygiene. TOHOKU J EXP MED 2015; 235:39-46. [DOI: 10.1620/tjem.235.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Takafumi Hashiba
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| | - Kenji Takeuchi
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| | - Yoshihiro Shimazaki
- Department of Hygiene and Oral Health, School of Dentistry, Aichi Gakuin University
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University
| |
Collapse
|
24
|
Effect of xylitol varnishes on remineralization of artificial enamel caries lesions in vitro. J Dent 2014; 42:1495-501. [DOI: 10.1016/j.jdent.2014.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/05/2014] [Accepted: 08/15/2014] [Indexed: 11/20/2022] Open
|
25
|
Park YN, Jeong SS, Zeng J, Kim SH, Hong SJ, Ohk SH, Choi CH. Anti-cariogenic effects of erythritol on growth and adhesion of Streptococcus mutans. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0215-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Zou Y, Lee Y, Huh J, Park JW. Synergistic effect of xylitol and ursolic acid combination on oral biofilms. Restor Dent Endod 2014; 39:288-95. [PMID: 25383348 PMCID: PMC4223099 DOI: 10.5395/rde.2014.39.4.288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/04/2014] [Indexed: 12/13/2022] Open
Abstract
Objectives This study was designed to evaluate the synergistic antibacterial effect of xylitol and ursolic acid (UA) against oral biofilms in vitro. Materials and Methods S. mutans UA 159 (wild type), S. mutans KCOM 1207, KCOM 1128 and S. sobrinus ATCC 33478 were used. The susceptibility of S. mutans to UA and xylitol was evaluated using a broth microdilution method. Based on the results, combined susceptibility was evaluated using optimal inhibitory combinations (OIC), optimal bactericidal combinations (OBC), and fractional inhibitory concentrations (FIC). The anti-biofilm activity of xylitol and UA on Streptococcus spp. was evaluated by growing cells in 24-well polystyrene microtiter plates for the biofilm assay. Significant mean differences among experimental groups were determined by Fisher's Least Significant Difference (p < 0.05). Results The synergistic interactions between xylitol and UA were observed against all tested strains, showing the FICs < 1. The combined treatment of xylitol and UA inhibited the biofilm formation significantly and also prevented pH decline to critical value of 5.5 effectively. The biofilm disassembly was substantially influenced by different age of biofilm when exposed to the combined treatment of xylitol and UA. Comparing to the single strain, relatively higher concentration of xylitol and UA was needed for inhibiting and disassembling biofilm formed by a mixed culture of S. mutans 159 and S. sobrinus 33478. Conclusions This study demonstrated that xylitol and UA, synergistic inhibitors, can be a potential agent for enhancing the antimicrobial and anti-biofilm efficacy against S. mutans and S. sobrinus in the oral environment.
Collapse
Affiliation(s)
- Yunyun Zou
- Department of Conservative Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| | - Yoon Lee
- Department of Conservative Dentistry, Wonju Severance Christian Hospital, Yonsei University, Wonju, Korea
| | - Jinyoung Huh
- Department of Conservative Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| | - Jeong-Won Park
- Department of Conservative Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
27
|
Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose. Int J Oral Sci 2014; 6:195-204. [PMID: 25059251 PMCID: PMC5153587 DOI: 10.1038/ijos.2014.38] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 11/24/2022] Open
Abstract
The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the cariogenic potential of S. mutans biofilms.
Collapse
|
28
|
Multidisciplinary Treatment Approach in a Patient with History of Nasopharyngeal Carcinoma. Case Rep Dent 2014; 2014:918461. [PMID: 24523971 PMCID: PMC3912759 DOI: 10.1155/2014/918461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/18/2013] [Indexed: 11/24/2022] Open
Abstract
Radiotherapy in NPC patients has side effects on the dentition, which affects quality of life dramatically. This case report presents multidisciplinary dental treatment approach in a 17-year-old male patient with a history of nasopharyngeal carcinoma (NPC), which was treated with chemotherapy and radiotherapy. The adolescent patient applied to dental hospital 4 years after the radiotherapy with aesthetic and functional problems on dentition affecting psychological, social, and physical aspects of his life. The dentition of the patient demonstrated the severe destruction as a devastating side effect of radiotherapy. With a successful multidisciplinary approach, our patient's aesthetics, function, and self-confidence were obtained. Well-established procedures, which include preventative care and maintenance, can reduce the duration and expenses of the treatment and help in challenging the life-long complications of radiotherapy.
Collapse
|
29
|
Palmer EA, Vo A, Hiles SB, Peirano P, Chaudhry S, Trevor A, Kasimi I, Pollard J, Kyles C, Leo M, Wilmot B, Engle J, Peterson J, Maier T, Machida CA. Mutans streptococci genetic strains in children with severe early childhood caries: follow-up study at one-year post-dental rehabilitation therapy. J Oral Microbiol 2012; 4:19530. [PMID: 23248741 PMCID: PMC3523314 DOI: 10.3402/jom.v4i0.19530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 11/14/2022] Open
Abstract
Background Genotypic strains of cariogenic mutans streptococci (MS) may vary in important virulence properties. In previous published studies, we identified 39 MS strains from pediatric patients undergoing full-mouth dental rehabilitation, including the removal and/or repair of carious lesions and application of antimicrobial rinse and fluoride varnish. Objectives The objectives of this current 1-year follow-up study are to assess the variability of MS strains that occur at 1-year post-rehabilitation and characterize the xylitol-resistance properties of MS strains that predominate. Methods Plaque from five children with severe early childhood caries was collected 1-year post-rehabilitation. MS isolates were subjected to arbitrarily primed-polymerase chain reaction (AP-PCR) for identification of genetic strains and in vitro xylitol-inhibition experiments. To more precisely define strain distributions within each patient, we isolated large numbers of isolates per patient. Results MS strains diminished from several strains pre-rehabilitation, to one dominant strain at 1-year post-rehabilitation, with several new emergent strains. The majority of the clinical MS strains, as well as the Streptococcus mutans laboratory strains ATCC 25175 and 35668, were predicted to undergo 50% inhibition with 2.48–5.58% xylitol, with some clinical MS strains being significantly more resistant in vitro. Conclusions Our follow-up study using patients from the original cohort demonstrates that specific MS strains are dominant at 1-year post-dental rehabilitation. Most of the clinical MS strains are similar in xylitol resistance to the attenuated S. mutans ATCC control strains, with some strains being more resistant to xylitol in vitro.
Collapse
Affiliation(s)
- Elizabeth A Palmer
- Department of Pediatric Dentistry, Oregon Health & Science University (OHSU) School of Dentistry, Portland, OR
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pereira ADFF, Silva TCD, Silva TLD, Caldana MDL, Bastos JRM, Buzalaf MAR. Xylitol concentrations in artificial saliva after application of different xylitol dental varnishes. J Appl Oral Sci 2012; 20:146-50. [PMID: 22666828 PMCID: PMC3894754 DOI: 10.1590/s1678-77572012000200004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 03/17/2010] [Indexed: 12/02/2022] Open
Abstract
Objective The present study analyzed xylitol concentrations in artificial saliva over time
after application of varnishes containing 10% and 20% xylitol. Material and Methods Fifteen bovine enamel specimens (8x4 mm) were randomly allocated to 3 groups
(n=5/group), according to the type of varnish used: 10% xylitol, 20% xylitol and
no xylitol (control). After varnish application (4 mg), specimens were immersed in
vials containing 500 µL of artificial saliva. Saliva samples were collected in
different times (1, 8, 12, 16, 24, 48 and 72 h) and xylitol concentrations were
analyzed. Data were assessed by two-way repeated-measures ANOVA (p<0.05). Results Colorimetric analysis was not able to detect xylitol in saliva samples of the
control group. Salivary xylitol concentrations were significantly higher up to 8 h
after application of the 20% xylitol varnish. Thereafter, the 10% xylitol varnish
released larger amounts of that polyol in artificial saliva. Conclusions Despite the results in short-term, sustained xylitol releases could be obtained
when the 10% xylitol varnish was used. These varnishes seem to be viable
alternatives to increase salivary xylitol levels, and therefore, should be
clinically tested to confirm their effectiveness.
Collapse
|
31
|
Use of xylitol to enhance the therapeutic efficacy of polymethylmethacrylate-based antibiotic therapy in treatment of chronic osteomyelitis. Antimicrob Agents Chemother 2012; 56:5839-44. [PMID: 22948866 DOI: 10.1128/aac.01127-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a rabbit model of postsurgical osteomyelitis, we demonstrate that incorporation of xylitol into polymethylmethacrylate (PMMA) bone cement enhances the elution of daptomycin under in vivo conditions. We also demonstrate that this can be correlated with an improved therapeutic outcome in the treatment of a chronic bone infection following surgical debridement.
Collapse
|
32
|
Misra S, Raghuwanshi S, Gupta P, Saxena R. Examine growth inhibition pattern and lactic acid production in Streptococcus mutans using different concentrations of xylitol produced from Candida tropicalis by fermentation. Anaerobe 2012; 18:273-9. [DOI: 10.1016/j.anaerobe.2012.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 02/03/2012] [Accepted: 03/07/2012] [Indexed: 11/15/2022]
|
33
|
Lee SH, Choi BK, Kim YJ. The cariogenic characters of xylitol-resistant and xylitol-sensitive Streptococcus mutans in biofilm formation with salivary bacteria. Arch Oral Biol 2012; 57:697-703. [DOI: 10.1016/j.archoralbio.2011.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/18/2011] [Accepted: 12/01/2011] [Indexed: 11/17/2022]
|
34
|
Güneri P, Alpöz E, Epstein JB, Çankaya H, Ateş M. In vitro antimicrobial effects of commercially available mouth-wetting agents. SPECIAL CARE IN DENTISTRY 2011; 31:123-8. [PMID: 21729120 DOI: 10.1111/j.1754-4505.2011.00194.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Products have been developed to provide palliation for persons with dry mouth. In addition to mouth-wetting agents, some products incorporate antimicrobial constituents with the goal of improving oral microbial defenses. The aim of this in vitro study was to investigate the potential antimicrobial and antifungal effects of two commercially available saliva substitutes on Streptococcus mutans, Lactobacillus acidophilus, and Candida albicans by using the agar-well diffusion method. Antimicrobial activity as measured by the size of the inhibition zone growth for S. mutans and L. acidophilus was observed only with Biotene Dry Mouth Oral Rinse® and BioXtra® gel. The zone of inhibition of Biotene Dry Mouth Oral Rinse was larger than that of BioXtra gel (p= 0.00, p < 0.01). No anticandidal effect was seen with any of the test products. The pH of the preparations, the variations between the amount of active ingredients within the products, and the potential antimicrobial effects of inactive ingredients should be investigated to determine the factors that impacted microbial inhibition.
Collapse
Affiliation(s)
- Pelin Güneri
- Department of Oral Diagnosis and Radiology, School of Dentistry, Ege University, Izmir, Turkey
| | | | | | | | | |
Collapse
|
35
|
Improved artificial saliva for studying the cariogenic effect of carbohydrates. Curr Microbiol 2011; 63:46-9. [PMID: 21533590 DOI: 10.1007/s00284-011-9937-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Saliva is a complex fluid that possesses many important functions regarding oral health. Many in vitro studies require relatively large quantities of saliva. While natural saliva would be the material of choice, it is difficult to obtain in sufficient quantities and varies in composition. Substitutes mimicking the physicochemical properties of saliva have been developed, but these are not appropriate to study the growth of mutans streptococci. Brain Heart Infusion (BHI) has been commonly used for this, but this medium is richer in nutrients than saliva. We therefore developed artificial saliva (AS) with nutrient levels resembling those in natural saliva as a substitute for natural human saliva (HS) to study the influence of different carbon sources on mutans streptococci growth. Growth of a wild-type Streptococcus mutans strain and S. mutans ATCC 15175 in BHI, HS, and AS was monitored anaerobically. Growth of S. mutans in the modified AS was very similar to the growth in HS, both in the absence and presence of different carbon sources. We therefore conclude that the developed AS is suitable for in vitro tests on S. mutans growth.
Collapse
|
36
|
Rodrigues JA, Lussi A, Seemann R, Neuhaus KW. Prevention of crown and root caries in adults. Periodontol 2000 2010; 55:231-49. [DOI: 10.1111/j.1600-0757.2010.00381.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Kurola P, Tapiainen T, Sevander J, Kaijalainen T, Leinonen M, Uhari M, Saukkoriipi A. Effect of xylitol and other carbon sources on Streptococcus pneumoniae biofilm formation and gene expression in vitro. APMIS 2010; 119:135-42. [PMID: 21208281 DOI: 10.1111/j.1600-0463.2010.02703.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Xylitol inhibits the growth of Streptococcus pneumoniae. In clinical trials, xylitol decreased the occurrence of acute otitis media in day-care children, but did not decrease nasopharyngeal carriage of pneumococci. We hypothesized that xylitol inhibits biofilm formation of pneumococci, and measured biofilm formation and gene expression levels of the capsule gene cpsB and two other genes: autolysin encoding gene lytA and competence gene comA in different growth media in vitro. Twenty pneumococcal isolates were grown on polystyrene plates for 18 h in test media containing 0.5% xylitol, 0.5% glucose, 0.5% xylitol and 0.5% glucose, 0.5% fructose, 0.5% xylitol and 0.5% fructose or brain heart infusion (BHI) medium supplemented with 10% horse serum. Gene expression levels were measured after 5 h of growth using a relative quantification method with calibrator normalization. Exposure to xylitol lowered OD values, which were used as an indication of biofilm, compared with BHI medium, but when the medium was supplemented with glucose or fructose, biofilm formation was enhanced and the inhibitory effect of xylitol on biofilm formation was not observed. Xylitol also lowered lytA expression levels. Changes in biofilm formation in response to different sugar compounds may partly explain the efficacy of xylitol to prevent acute otitis media in previous clinical trials.
Collapse
Affiliation(s)
- Paula Kurola
- National Institute for Health and Welfare, Oulu, Finland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Raman spectroscopy of xylitol uptake and metabolism in Gram-positive and Gram-negative bacteria. Appl Environ Microbiol 2010; 77:131-7. [PMID: 21037297 DOI: 10.1128/aem.01458-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Visible-wavelength Raman spectroscopy was used to investigate the uptake and metabolism of the five-carbon sugar alcohol xylitol by Gram-positive viridans group streptococcus and the two extensively used strains of Gram-negative Escherichia coli, E. coli C and E. coli K-12. E. coli C, but not E. coli K-12, contains a complete xylitol operon, and the viridans group streptococcus contains an incomplete xylitol operon used to metabolize the xylitol. Raman spectra from xylitol-exposed viridans group streptococcus exhibited significant changes that persisted even in progeny grown from the xylitol-exposed mother cells in a xylitol-free medium for 24 h. This behavior was not observed in the E. coli K-12. In both viridans group streptococcus and the E. coli C derivative HF4714, the metabolic intermediates are stably formed to create an anomaly in bacterial normal survival. The uptake of xylitol by Gram-positive and Gram-negative pathogens occurs even in the presence of other high-calorie sugars, and its stable integration within the bacterial cell wall may discontinue bacterial multiplication. This could be a contributing factor for the known efficacy of xylitol when taken as a prophylactic measure to prevent or reduce occurrences of persistent infection. Specifically, these bacteria are causative agents for several important diseases of children such as pneumonia, otitis media, meningitis, and dental caries. If properly explored, such an inexpensive and harmless sugar-alcohol, alone or used in conjunction with fluoride, would pave the way to an alternative preventive therapy for these childhood diseases when the causative pathogens have become resistant to modern medicines such as antibiotics and vaccine immunotherapy.
Collapse
|
39
|
Affiliation(s)
- E M Söderling
- Institute of Dentistry, University of Turku, FI-20520 Turku, Finland.
| |
Collapse
|
40
|
Kurola P, Tapiainen T, Kaijalainen T, Uhari M, Saukkoriipi A. Xylitol and capsular gene expression in Streptococcus pneumoniae. J Med Microbiol 2009; 58:1470-1473. [DOI: 10.1099/jmm.0.011700-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xylitol is a sugar alcohol that inhibits the growth and adherence of Streptococcus pneumoniae. In clinical trials, xylitol has been shown to decrease the occurrence of acute otitis media in day-care children but did not decrease nasopharyngeal carriage of the pneumococci. It has also been shown that xylitol affects the ultrastructure of the pneumococcal capsule. Here, it was hypothesized that xylitol might affect the expression of pneumococcal capsular genes. Capsule gene expression levels were studied in 24 clinical pneumococcal isolates and one ATCC strain (49619) by using a real-time RT-PCR method targeting the mRNA of the second gene of the pneumococcal capsular locus, the cpsB gene. The isolates were exposed to 5 % glucose, 5 % xylitol and control medium (brain heart infusion medium containing 10 % fetal bovine serum) for 2 h. cpsB gene expression levels were measured by using a relative quantification method with calibrator normalization where the 16S rRNA gene of pneumococcus was used as a reference. Exposure to xylitol lowered cpsB gene expression levels significantly compared with those in the control (P=0.035) and glucose (P=0.011) media. This finding supports previous results where exposure to xylitol changed the ultrastructure of the pneumococcal capsule and could explain further the high clinical efficacy of xylitol in preventing otitis media.
Collapse
Affiliation(s)
- Paula Kurola
- National Institute for Health and Welfare, Oulu, Finland
| | | | | | - Matti Uhari
- University of Oulu Department of Pediatrics, Oulu, Finland
| | | |
Collapse
|
41
|
Söderling EM, Hietala-Lenkkeri AM. Xylitol and erythritol decrease adherence of polysaccharide-producing oral streptococci. Curr Microbiol 2009; 60:25-9. [PMID: 19777305 DOI: 10.1007/s00284-009-9496-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 08/21/2009] [Indexed: 11/30/2022]
Abstract
Xylitol consumption decreases counts of mutans streptococci. However, the mechanism behind this decrease is not well understood. We studied not only type strains and clinical isolates of mutans streptococci, but also other polysaccharide-forming oral streptococci. Growth inhibition and adherence of cells to a smooth glass surface-reflecting synthesis of water-insoluble polysaccharides were studied in the presence of 2% (0.13 mol/l) and 4% (0.26 mol/l) xylitol. The effect of xylitol was compared to a novel polyol sweetener, erythritol. Except for Streptococcus mutans 10449 and S. sobrinus OMZ 176, the glass surface adhesion of most polysaccharide-forming streptococci was reduced by the presence of both 4% xylitol and erythritol. For the S. mutans and S. sobrinus type strains, the growth inhibition with 4% xylitol and erythritol was 36-77% and for the clinical S. mutans isolates 13-73%. Of the other oral streptococci, only S. sanguinis was inhibited with 4% xylitol (45-55%). For both polyols, the magnitude of the growth inhibition observed was not associated with the magnitude of the decrease in adherence (xylitol: r = -0.18; erythritol: r = 0.49). In conclusion, both xylitol and erythritol can decrease polysaccharide-mediated cell adherence contributing to plaque accumulation through a mechanism not dependent on growth inhibition.
Collapse
Affiliation(s)
- Eva M Söderling
- Institute of Dentistry, University of Turku, Turku, Finland.
| | | |
Collapse
|