1
|
Gupta M, Kumar H, Debbarma A, Kaur S. Unraveling the abundance of vip3-type genes in Indian Bacillus thuringiensis across the agroclimatic landscape and impact of amino acid substitutions for safer agriculture. Gene 2025; 933:148953. [PMID: 39299531 DOI: 10.1016/j.gene.2024.148953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Vegetative insecticidal protein (vip) genes of Bacillus thuringiensis (Bt) are candidates for gene pyramiding in the resistance management of pests. The prevalence of vip genes in Bt isolates is relatively under-explored. Bt isolates recovered from 29 diverse sources in nine agro-climatic zones of India were screened for the presence of vip3-type genes by PCR with 4 sets of oligonucleotide primers. Out of 155 Bt isolates, 70.32 % (109) and 44.52 % (69) isolates were positive for amplification of partial vip3-type genes with primer sets 1 and 4, respectively. The primer set-2 was found to be more efficient for amplifying full-length genes (29.03 % /45 isolates) as compared with primer set-3 (3.23 %/ 5 isolates), also corroborated in the amplification of full-length vip3 genes in ten Bt BGSC strains used as reference. Frequency analysis revealed presence of vip3 genes in Bt isolates across all agro-climatic zones. Thus, Indian Bt isolates from diverse sources have a rich repertoire of vip3-type genes. Our study reports the highest number (45) of full-length vip3-type genes detected in a native Bt isolates collection, demonstrating enrichment of Indian Bt isolates for vip3 genes. Twelve of these genes have been cloned, sequenced, and out of these, six were found to be effective against Helicoverpa armigera in our laboratory previously. Comparison of substitutions in deduced amino acids sequence of these genes and expression of Vip3 proteins in SDS-PAGE analysis of selected native Bt isolates positive for full-length vip3-type genes indicated their biopesticidal potential.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute for Plant Biotechnology, PUSA Campus, New Delhi 110012, India; ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab 141004, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, Punjab 151203, India
| | - Ashika Debbarma
- ICAR-National Institute for Plant Biotechnology, PUSA Campus, New Delhi 110012, India
| | - Sarvjeet Kaur
- ICAR-National Institute for Plant Biotechnology, PUSA Campus, New Delhi 110012, India.
| |
Collapse
|
2
|
Sun Y, Yang P, She M, Lin C, Ye Y, Xu C, Shen Z. A Vip3Af mutant confers high resistance to broad lepidopteran insect pests. PEST MANAGEMENT SCIENCE 2024. [PMID: 39300681 DOI: 10.1002/ps.8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis (Bt) have been utilized for control of lepidopteran insect pests. The majority of known Vip3 proteins possess exceptional high toxicity against Noctuid insects such as the fall armyworm (FAW, Spodoptera frugiperda), beet armyworm (BAW, Spodoptera exigua) and cotton bollworm (CBW, Helicoverpa armigera), but generally have relatively low or even no activity against some very important pest insects, such as Asian corn borer (ACB, Ostrinia furnacalis), European corn borer (ECB, Ostrinia nubilalis), rice stem borer (RSB, Chilo suppressalis) and oriental armyworm (OAW, Mythimna separata). RESULTS Here, we report mutant Vip3Af with a single amino acid mutation, Vip3Af-T686R, which gains significantly higher insecticidal activity against ACB, OAW and BAW, while retaining high activity against FAW, CBW and RSB. Protein proteolytic activation in vitro showed that the proteolytic activation efficiency of the mutant protein was greater than the wild-type protein in the midgut juice of ACB, OAW and BAW. Transgenic corn expressing this mutant Vip3Af showed high levels of resistance to ACB, OAW, FAW, BAW and CBW. CONCLUSION Our results suggest that Vip3Af may be a superior Vip3A mutant for the development of transgenic crops with resistance to a broad range of lepidopteran pest species. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajie Sun
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Pan Yang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingjun She
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chaoyang Lin
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Yuxuan Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Chao Xu
- Ruifeng Biotechnology Co., Ltd, Hangzhou, China
| | - Zhicheng Shen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
3
|
Ma T, Huang J, Xu P, Shu C, Wang Z, Geng L, Zhang J. In Vivo and In Vitro Interactions between Exopolysaccharides from Bacillus thuringensis HD270 and Vip3Aa11 Protein. Toxins (Basel) 2024; 16:215. [PMID: 38787067 PMCID: PMC11125869 DOI: 10.3390/toxins16050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bacillus thuringiensis (Bt) secretes the nutritional insecticidal protein Vip3Aa11, which exhibits high toxicity against the fall armyworm (Spodoptera frugiperda). The Bt HD270 extracellular polysaccharide (EPS) enhances the toxicity of Vip3Aa11 protoxin against S. frugiperda by enhancing the attachment of brush border membrane vesicles (BBMVs). However, how EPS-HD270 interacts with Vip3Aa11 protoxin in vivo and the effect of EPS-HD270 on the toxicity of activated Vip3Aa11 toxin are not yet clear. Our results indicated that there is an interaction between mannose, a monosaccharide that composes EPS-HD270, and Vip3Aa11 protoxin, with a dissociation constant of Kd = 16.75 ± 0.95 mmol/L. When EPS-HD270 and Vip3Aa11 protoxin were simultaneously fed to third-instar larvae, laser confocal microscopy observations revealed the co-localization of the two compounds near the midgut wall, which aggravated the damage to BBMVs. EPS-HD270 did not have a synergistic insecticidal effect on the activated Vip3Aa11 protein against S. frugiperda. The activated Vip3Aa11 toxin demonstrated a significantly reduced binding capacity (548.73 ± 82.87 nmol/L) towards EPS-HD270 in comparison to the protoxin (34.96 ± 9.00 nmol/L). Furthermore, this activation diminished the affinity of EPS-HD270 for BBMVs. This study provides important evidence for further elucidating the synergistic insecticidal mechanism between extracellular polysaccharides and Vip3Aa11 protein both in vivo and in vitro.
Collapse
Affiliation(s)
- Tianjiao Ma
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.M.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinqiu Huang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.M.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengdan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.M.); (J.H.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Gupta M, Kumar H, Kaur S. Vegetative Insecticidal Protein (Vip): A Potential Contender From Bacillus thuringiensis for Efficient Management of Various Detrimental Agricultural Pests. Front Microbiol 2021; 12:659736. [PMID: 34054756 PMCID: PMC8158940 DOI: 10.3389/fmicb.2021.659736] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Bacillus thuringiensis (Bt) bacterium is found in various ecological habitats, and has natural entomo-pesticidal properties, due to the production of crystalline and soluble proteins during different growth phases. In addition to Cry and Cyt proteins, this bacterium also produces Vegetative insecticidal protein (Vip) during its vegetative growth phase, which is considered an excellent toxic candidate because of the difference in sequence homology and receptor sites from Cry proteins. Vip proteins are referred as second-generation insecticidal proteins, which can be used either alone or in complementarity with Cry proteins for the management of various detrimental pests. Among these Vip proteins, Vip1 and Vip2 act as binary toxins and have toxicity toward pests belonging to Hemiptera and Coleoptera orders, whereas the most important Vip3 proteins have insecticidal activity against Lepidopteran pests. These Vip3 proteins are similar to Cry proteins in terms of toxicity potential against susceptible insects. They are reported to be toxic toward pests, which can’t be controlled with Cry proteins. The Vip3 proteins have been successfully pyramided along with Cry proteins in transgenic rice, corn, and cotton to combat resistant pest populations. This review provides detailed information about the history and importance of Vip proteins, their types, structure, newly identified specific receptors, and action mechanism of this specific class of proteins. Various studies conducted on Vip proteins all over the world and the current status have been discussed. This review will give insights into the significance of Vip proteins as alternative promising candidate toxic proteins from Bt for the management of pests in most sustainable manner.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.,ICAR-Indian Institute of Maize Research, Ludhiana, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, India
| | - Sarvjeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
5
|
Effect of substitutions of key residues on the stability and the insecticidal activity of Vip3Af from Bacillus thuringiensis. J Invertebr Pathol 2020; 186:107439. [PMID: 32663546 DOI: 10.1016/j.jip.2020.107439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 07/05/2020] [Indexed: 11/21/2022]
Abstract
Modern agriculture demands for more sustainable agrochemicals to reduce the environmental and health impact. The whole process of the discovery and development of new active substances or control agents is sorely slow and expensive. Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis are specific toxins against caterpillars with a potential capacity to broaden the range of target pests. Site-directed mutagenesis is one of the most approaches used to test hypotheses on the role of different amino acids on the structure and function of proteins. To gain a better understanding of the role of key amino acid residues of Vip3A proteins, we have generated 12 mutants of the Vip3Af1 protein by site-directed mutagenesis, distributed along the five structural domains of the protein. Ten of these mutants were successfully expressed and tested for stability and toxicity against three insect pests (Spodoptera frugiperda, Spodoptera littoralis and Grapholita molesta). The results showed that, to render a wild type fragment pattern upon trypsin treatment, position 483 required an acidic residue, and position 552 an aromatic residue. Regarding toxicity, the change of Met34 to Lys34 significantly increased the toxicity of the protein for one of the three insect species tested (S. littoralis), whereas the other residue substitutions did not improve, or even decreased, insect toxicity, confirming their key role in the structure/function of the protein.
Collapse
|
6
|
Banyuls N, Hernández-Martínez P, Quan Y, Ferré J. Artefactual band patterns by SDS-PAGE of the Vip3Af protein in the presence of proteases mask the extremely high stability of this protein. Int J Biol Macromol 2018; 120:59-65. [PMID: 30120972 DOI: 10.1016/j.ijbiomac.2018.08.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/20/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
Vip3 proteins are secretable proteins from Bacillus thuringiensis with important characteristics for the microbiological control of agricultural pests. The exact details of their mode of action are yet to be disclosed and the crystallographic structure is still unknown. Vip3 proteins are expressed as protoxins that have to be activated by the insect gut proteases. A previous study on the peptidase processing of Vip3Aa revealed that the protoxin produced artefactual band patterns by SDS-PAGE due to the differential stability of this protein and the peptidases to SDS and heating (Bel et al., 2017 Toxins 9:131). To determine whether this phenomenon also applies to other Vip3A proteins, here we chose a different Vip3A protein (Vip3Af) and subjected it to commercial trypsin and midgut juice from a target insect species (Spodoptera frugiperda). The misleading degradation patterns were also observed with Vip3Af, both with trypsin and midgut juice. However, gel filtration chromatography showed that, under native conditions, Vip3Af is found as a tetramer and that peptidases only act upon primary cleavage sites. The proteolytic cleavage renders two fragments of approximately 20 kDa and 65 kDa which remain together in the tretameric structure and that are no further processed even at high peptidase concentrations.
Collapse
Affiliation(s)
- Núria Banyuls
- ERI BIOTECMED, and Department of Genetics, Universitat de València. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Patricia Hernández-Martínez
- ERI BIOTECMED, and Department of Genetics, Universitat de València. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Yudong Quan
- ERI BIOTECMED, and Department of Genetics, Universitat de València. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Juan Ferré
- ERI BIOTECMED, and Department of Genetics, Universitat de València. Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
7
|
Rabha M, Acharjee S, Sarmah BK. Multilocus sequence typing for phylogenetic view and vip gene diversity of Bacillus thuringiensis strains of the Assam soil of North East India. World J Microbiol Biotechnol 2018; 34:103. [PMID: 29951787 DOI: 10.1007/s11274-018-2489-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/21/2018] [Indexed: 11/30/2022]
Abstract
An agriculturally important insecticidal bacterium, Bacillus thuringiensis have been isolated from the soil samples of various part of Assam including the Kaziranga National Park. Previously, the isolates were characterized based on morphology, 16S rDNA sequencing, and the presence of the various classes' crystal protein gene(s). In the present study, the phylogenetic analysis of a few selected isolates was performed by an unambiguous and quick method called the multiple locus sequence typing (MLST). A known B. thuringiensis strain kurstaki 4D4 have been used as a reference strain for MLST. A total of four the MLST locus of housekeeping genes, recF, sucC, gdpD and yhfL were selected. A total of 14 unique sequence types (STs) was identified. A total number of alleles identified for the locus gdpD and sucC was 12, followed by locus yhfL was 11, however, only 6 alleles were detected for the locus recF. The phylogenetic analysis using MEGA 7.0.26 showed three major lineages. Approximately, 87% of the isolates belonged to the STs corresponding to B. thuringiensis, whereas two isolates, BA07 and BA39, were clustered to B. cereus. The isolates were also screened for the diversity of vegetative insecticidal protein (vip) genes. In all, 8 isolates showed the presence of vip1, followed by 7 isolates having vip2 and 6 isolates for vip3 genes. The expression of Vip3A proteins was analyzed by western blot analyses and expression of the Vip3A protein was observed in the isolate BA20. Thus, the phylogenetic relationship and diversity of Bt isolates from Assam soil was established based on MLST, in addition, found isolates having vip genes, which could be used for crop improvement.
Collapse
Affiliation(s)
- Mihir Rabha
- Department of Agricultural Biotechnology, DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, 785013, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
8
|
Argôlo-Filho RC, Loguercio LL. Immunodetection of the toxic portion of Vip3A reveals differential temporal regulation of its secretion among Bacillus thuringiensis strains. J Appl Microbiol 2018; 125:544-553. [PMID: 29624810 DOI: 10.1111/jam.13775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 11/30/2022]
Abstract
AIMS To devise a protocol for heterologous expression and purification of a partial toxic portion of the Bacillus thuringiensis (Bt) vegetative insecticidal protein Vip3A and using it as an antigen for anti-Vip3A polyclonal antibody development. Also, to evaluate the regulation of Vip3A secretion into culture supernatants (SNs) of different Bt strains based on this antibody. METHODS AND RESULTS A primer pair was designed to amplify partially the toxic portion of the vip3A gene from the HD125 strain. The amplicon was cloned in expressing vector to produce a ~35 kDa peptide, which was HPLC-purified prior to rabbit immunizations. The serum containing the polyclonal anti-Vip3A antibody demonstrated a detection sensitivity of 0·4 ng mm-2 for the antigen in slot-blot experiments. Seven Bt strains from different origins were assessed regarding their temporal secretion of Vip3A toxin. ELISA results showed a strain-specific temporal regulation of Vip3A secretion in culture for the temperate isolates, with no detection of the toxin for the tropical strains, even when the presence of the gene was confirmed by PCR and sequencing. CONCLUSIONS Conformational variation in the toxic portion of Vip3A may explain lack of its detection in the tropical strains. Isolates from the same subspecies display physiological variability in proteins' secretion into culture SNs, which can affect screening procedures for more effective strains/toxins. SIGNIFICANCE AND IMPACT OF THE STUDY Immunoassays based on the developed anti-Vip3A antibody can be useful in a variety of basic studies. This method can be also coupled with toxicity assays on target insects, for more efficient screening methods of novel Bt strains/toxins with biocontrol applicability.
Collapse
Affiliation(s)
- R C Argôlo-Filho
- Department of Biological Sciences (DCB), State University of Santa Cruz (UESC), Ilhéus-BA, Brazil
| | - L L Loguercio
- Department of Biological Sciences (DCB), State University of Santa Cruz (UESC), Ilhéus-BA, Brazil
| |
Collapse
|
9
|
Banyuls N, Hernández-Rodríguez CS, Van Rie J, Ferré J. Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects. Sci Rep 2018; 8:7539. [PMID: 29765057 PMCID: PMC5953952 DOI: 10.1038/s41598-018-25346-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/20/2018] [Indexed: 11/16/2022] Open
Abstract
Vip3 vegetative insecticidal proteins from Bacillus thuringiensis are an important tool for crop protection against caterpillar pests in IPM strategies. While there is wide consensus on their general mode of action, the details of their mode of action are not completely elucidated and their structure remains unknown. In this work the alanine scanning technique was performed on 558 out of the total of 788 amino acids of the Vip3Af1 protein. From the 558 residue substitutions, 19 impaired protein expression and other 19 substitutions severely compromised the insecticidal activity against Spodoptera frugiperda. The latter 19 substitutions mainly clustered in two regions of the protein sequence (amino acids 167-272 and amino acids 689-741). Most of these substitutions also decreased the activity to Agrotis segetum. The characterisation of the sensitivity to proteases of the mutant proteins displaying decreased insecticidal activity revealed 6 different band patterns as evaluated by SDS-PAGE. The study of the intrinsic fluorescence of most selected mutants revealed only slight shifts in the emission peak, likely indicating only minor changes in the tertiary structure. An in silico modelled 3D structure of Vip3Af1 is proposed for the first time.
Collapse
Affiliation(s)
- N Banyuls
- ERI de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100, Burjassot, Spain
| | - C S Hernández-Rodríguez
- ERI de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100, Burjassot, Spain
| | - J Van Rie
- Bayer CropScience N.V., Ghent, Belgium
| | - J Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
10
|
Boukedi H, Ben Khedher S, Hadhri R, Jaoua S, Tounsi S, Abdelkefi-Mesrati L. Vegetative insecticidal protein of Bacillus thuringiensis BLB459 and its efficiency against Lepidoptera. Toxicon 2017; 129:89-94. [DOI: 10.1016/j.toxicon.2017.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 11/28/2022]
|
11
|
Chakroun M, Banyuls N, Bel Y, Escriche B, Ferré J. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiol Mol Biol Rev 2016; 80:329-350. [PMID: 26935135 DOI: 10.1128/mmbr.00060-15.address] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet.
Collapse
Affiliation(s)
- Maissa Chakroun
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Núria Banyuls
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Yolanda Bel
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Baltasar Escriche
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- ERI de Biotecnología y Biomedicina (Biotecmed),Department of Genetics, Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
12
|
Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiol Mol Biol Rev 2016; 80:329-50. [PMID: 26935135 DOI: 10.1128/mmbr.00060-15] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the Cry and Cyt proteins) as well as insecticidal proteins that are secreted into the culture medium. Among the latter are the Vip proteins, which are divided into four families according to their amino acid identity. The Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera. The Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation. Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants (Bacillus thuringiensis-treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins. For the most recently reported Vip4 family, no target insects have been found yet.
Collapse
|
13
|
Lone SA, Yadav R, Malik A, Padaria JC. Molecular and insecticidal characterization of Vip3A protein producing Bacillus thuringiensis strains toxic against Helicoverpa armigera (Lepidoptera: Noctuidae). Can J Microbiol 2015; 62:179-90. [PMID: 26751639 DOI: 10.1139/cjm-2015-0328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vegetative insecticidal proteins (Vip) represent the second generation of insecticidal proteins produced by Bacillus thuringiensis (Bt) during the vegetative growth stage of growth. Bt-based biopesticides are recognized as viable alternatives to chemical insecticides; the latter cause environmental pollution and lead to the emergence of pest resistance. To perform a systematic study of vip genes encoding toxic proteins, a total of 30 soil samples were collected from diverse locations of Kashmir valley, India, and characterized by molecular and analytical methods. Eighty-six colonies showing Bacillus-like morphology were selected. Scanning electron microscopy observations confirmed the presence of different crystal shapes, and PCR analysis of insecticidal genes revealed a predominance of the lepidopteran-specific vip3 (43.18%) gene followed by coleopteran-specific vip1 (22.72%) and vip2 (15.90%) genes in the isolates tested. Multi-alignment of the deduced amino acid sequences revealed that vip3 sequences were highly conserved, whereas vip1 and vip2 showed adequate differences in amino acid sequences compared with already reported sequences. Screening for toxicity against Helicoverpa armigera larvae was performed using partially purified soluble fractions containing Vip3A protein. The mortality levels observed ranged between 70% and 96.6% in the isolates. The LC50 values of 2 of the native isolates, JK37 and JK88, against H. armigera were found to be on par with that of Bt subsp. kurstaki HD1, suggesting that these isolates could be developed as effective biopesticides against H. armigera.
Collapse
Affiliation(s)
- Showkat Ahmad Lone
- a Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.,b Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Radha Yadav
- b Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Abdul Malik
- a Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Jasdeep Chatrath Padaria
- b Biotechnology and Climate Change Group, National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
14
|
Baranek J, Kaznowski A, Konecka E, Naimov S. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests. J Invertebr Pathol 2015; 130:72-81. [PMID: 26146224 DOI: 10.1016/j.jip.2015.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 11/25/2022]
Abstract
Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests.
Collapse
Affiliation(s)
- Jakub Baranek
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Adam Kaznowski
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Samir Naimov
- Department of Plant Physiology and Molecular Biology, Plovdiv University, Plovdiv, Bulgaria
| |
Collapse
|
15
|
Ruiz de Escudero I, Banyuls N, Bel Y, Maeztu M, Escriche B, Muñoz D, Caballero P, Ferré J. A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. J Invertebr Pathol 2014; 117:51-5. [PMID: 24508583 DOI: 10.1016/j.jip.2014.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Five Bacillus thuringiensis Vip3A proteins (Vip3Aa, Vip3Ab, Vip3Ad, Vip3Ae and Vip3Af) and their corresponding trypsin-activated toxins were tested for their toxicity against eight lepidopteran pests: Agrotis ipsilon, Helicoverpa armigera, Mamestra brassicae, Spodoptera exigua, Spodoptera frugiperda, Spodoptera littoralis, Ostrinia nubilalis and Lobesia botrana. Toxicity was first tested at a high dose at 7 and 10 days. No major differences were found when comparing protoxins vs. trypsin-activated toxins. The proteins that were active against most of the insect species were Vip3Aa, Vip3Ae and Vip3Af, followed by Vip3Ab. Vip3Ad was non-toxic to any of the species tested. Considering the results by insect species, A. ipsilon, S. frugiperda and S. littoralis were susceptible to Vip3Aa, Vip3Ab, Vip3Ae and Vip3Af; S. exigua was susceptible to Vip3Aa and Vip3Ae, and moderately susceptible to Vip3Ab; M. brassicae and L. botrana were susceptible to Vip3Aa, Vip3Ae and Vip3Af; H. armigera was moderately susceptible to Vip3Aa, Vip3Ae and Vip3Af, and O. nubilalis was tolerant to all Vip3 proteins tested, although it showed some susceptibility to Vip3Af. The results obtained will help to design new combinations of insecticidal protein genes in transgenic crops or in recombinant bacteria for the control of insect pests.
Collapse
Affiliation(s)
- Iñigo Ruiz de Escudero
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Campus Arrosadía, 31192 Mutilva, Navarra, Spain; Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Núria Banyuls
- Departamento de Genética, Facultad de CC. Biológicas, Universitat de València, 46100 Valencia, Spain
| | - Yolanda Bel
- Departamento de Genética, Facultad de CC. Biológicas, Universitat de València, 46100 Valencia, Spain
| | - Mireya Maeztu
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Campus Arrosadía, 31192 Mutilva, Navarra, Spain
| | - Baltasar Escriche
- Departamento de Genética, Facultad de CC. Biológicas, Universitat de València, 46100 Valencia, Spain
| | - Delia Muñoz
- Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, CSIC-UPNA, Gobierno de Navarra, Campus Arrosadía, 31192 Mutilva, Navarra, Spain; Laboratorio de Entomología Agrícola y Patología de Insectos, Departamento de Producción Agraria, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Juan Ferré
- Departamento de Genética, Facultad de CC. Biológicas, Universitat de València, 46100 Valencia, Spain.
| |
Collapse
|
16
|
Hernández-Martínez P, Hernández-Rodríguez CS, Rie JV, Escriche B, Ferré J. Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. J Invertebr Pathol 2013; 113:78-81. [DOI: 10.1016/j.jip.2013.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
17
|
Chakroun M, Bel Y, Caccia S, Abdelkefi-Mesrati L, Escriche B, Ferré J. Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. J Invertebr Pathol 2012; 110:334-9. [DOI: 10.1016/j.jip.2012.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/09/2012] [Accepted: 03/17/2012] [Indexed: 10/28/2022]
|
18
|
Abulreesh HH, Osman GEH, Assaeedi ASA. Characterization of Insecticidal Genes of Bacillus thuringiensis Strains Isolated from Arid Environments. Indian J Microbiol 2012; 52:500-3. [PMID: 23997347 DOI: 10.1007/s12088-012-0257-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 11/26/2022] Open
Abstract
This study aimed at characterizing the insecticidal genes of eight Bacillus thuringiensis isolates that were recovered from the local environment of western Saudi Arabia. The screening for the presence of lepidopteran-specific cry1A family and vip3A genes, dipteran-specific cry4 family and coleopteran-specific cry3A, vip1A and vip2A genes, was carried out by PCR. All eight isolates produced PCR products that confirmed the presence of cry1Aa, cry1Ab, cry1Ac, cry4A, cry4B genes, but not cry3A, vip1A and vip2A genes. However, three isolates only were found to carry vip3A genes as revealed by PCR. The observation of cry1 and cry4 genes suggests that these eight isolates may have dual activity against Lepidoptera and Diptera species, while three isolates possessed vip3 genes in addition to cry1 and cry4 which suggests that these three isolates have toxic crystals and vegetative proteins. The results of this study are interesting in the sense that they may help developing new strategies for controlling insects of economic and medical importance in Saudi Arabia, using B. thuringiensis strains that naturally exist in the local environment instead of the current control strategies that are based solely on chemical insecticides.
Collapse
Affiliation(s)
- Hussein H Abulreesh
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, P.O. Box 7388, Makkah, 21955 Saudi Arabia
| | | | | |
Collapse
|
19
|
Li H, Shu C, He X, Gao J, Liu R, Huang D. Detection and identification of vegetative insecticidal proteins vip3 genes of Bacillus thuringiensis strains using polymerase chain reaction-high resolution melt analysis. Curr Microbiol 2012; 64:463-8. [PMID: 22350000 DOI: 10.1007/s00284-012-0092-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
In this study, vegetative insecticidal proteins vip3 genes from Bacillus thuringiensis strains were detected based on polymerase chain reaction-high resolution melt (PCR-HRM) analysis. A pair of primers was designed according to the conservative sequences in 150 bp region of the known vip3 subfamily. The 150 bp regions of difference vip3 genes have only a few nucleotide difference vip3 genes were detected in 8 of 11 standard B. thuringiensis strains, and vip3Aa genes, vip3Af genes and vip3Ba gene can be distinguished as different melting curves by this method. The results demonstrate the utility of the HRM assay for mutant screening using vip3 gene. The PCR-HRM method may be a valuable and reliable tool for specific detection and identification of vip3 genes.
Collapse
Affiliation(s)
- Haitao Li
- Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
20
|
Asokan R, Swamy HMM, Arora DK. Screening, diversity and partial sequence comparison of vegetative insecticidal protein (vip3A) genes in the local isolates of Bacillus thuringiensis Berliner. Curr Microbiol 2012; 64:365-70. [PMID: 22246044 DOI: 10.1007/s00284-011-0078-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
Characterization, direct sequencing of the PCR amplicon and phylogenetic relationship was done to discover a novel Vip protein genes of the Bt isolates, to improve the prospects for insect control, more Vip proteins should be sought out and researched to predict their insecticidal activity. Characterization was based on direct sequencing of PCR amplicon using primers specific to vip3A gene was presented here. 12 out of 18 isolates screened were positive for vip gene-specific primers. Homology search for the partial sequences using BLAST showed that 11 isolates had high similarity to vip3Aa gene and only one fragment with vip3Ae gene (25-100% at nucleotide and amino acid level). Phylogenetic analysis showed that the gene sequences were responsible for geographic separation for divergence within vip genes, consistent with the evaluation of distinct bacterial population. Despite the geographical distances, strains harbouring vip genes have originated from common ancestors may significantly contribute to control resistant insect pests. Some strains have evolved to be quite distinct and others remain as members of closely related groups. The reported method is a powerful tool to find novel Vip3A proteins from large-scale Bt strains which is effective in terms of time and cost. Further the Vip proteins produced by different strains of B. thuringiensis are unique in terms of the sequence divergence and hence may also differ in their insecticidal activities.
Collapse
Affiliation(s)
- R Asokan
- Bio Pesticide Laboratory, Division of Biotechnology, Indian Institute of Horticultural Research, Hessarghatta Lake Post, Bangalore 560 089, Karnataka, India.
| | | | | |
Collapse
|
21
|
Sauka DH, Rodriguez SE, Benintende GB. New Variants of Lepidoptericidal Toxin Genes Encoding Bacillus thuringiensis Vip3Aa Proteins. J Mol Microbiol Biotechnol 2012; 22:373-80. [DOI: 10.1159/000345911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Yu X, Liu T, Liang X, Tang C, Zhu J, Wang S, Li S, Deng Q, Wang L, Zheng A, Li P. Rapid detection of vip1-type genes from Bacillus cereus and characterization of a novel vip binary toxin gene. FEMS Microbiol Lett 2011; 325:30-6. [PMID: 22092859 DOI: 10.1111/j.1574-6968.2011.02409.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 11/26/2022] Open
Abstract
A PCR-restriction fragment length polymorphism (PCR-RFLP) method for identifying vegetative insecticidal protein (vip) 1-type genes from Bacillus cereus was developed by designing specific primers based on the conserved regions of the genes to amplify vip1-type gene fragments. PCR products were digested with endonuclease AciI, and four known vip1-type genes were identified. Vip1Ac and vip1Aa-type genes appeared in 17 of 26 B. cereus strains. A novel vip1-type gene, vip1Ac1, was identified from B. cereus strain HL12. The vip1Ac1 and vip2Ae3 genes were co-expressed in Escherichia coli strain BL21 by vector pCOLADuet-1. The binary toxin showed activity only against Aphis gossypii (Homoptera), but not for Coleptera (Tenebrio molitor, Holotrichia oblita), Lepidoptera (Spodoptera exigua, Helicoverpa armigera, and Chilo suppressalis), Diptera (Culex quinquefasciatus). The LC(50) of this binary toxin for A. gossypii is 87.5 (34.2-145.3) ng mL(-1) . This is probably only the second report that Vip1 and Vip2 binary toxin shows toxicity against homopteran pests. The PCR-RFLP method developed could be very useful for identifying novel Vip1-Vip2-type binary toxins, and the novel binary toxins, Vip1Ac1 and Vip2Ae3, identified in this study may have applications in biological control of insects, thus avoiding potential problems of resistance.
Collapse
Affiliation(s)
- Xiumei Yu
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu X, Zheng A, Zhu J, Wang S, Wang L, Deng Q, Li S, Liu H, Li P. Characterization of vegetative insecticidal protein vip genes of Bacillus thuringiensis from Sichuan Basin in China. Curr Microbiol 2010; 62:752-7. [PMID: 20963416 DOI: 10.1007/s00284-010-9782-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 09/26/2010] [Indexed: 10/18/2022]
Abstract
Vegetative insecticidal proteins (Vip), the second generation of insecticides, are produced during the vegetative growth stage of Bacillus thuringiensis (Bt). To perform a systematic study of vip genes in Bt strains from different ecological regions of Sichuan Basin, 1,789 soil samples were collected from this basin, which is situated in the western region of China. The basin has a complicated geomorphology and contains mountains, forests, highlands, hursts, and plains. A total of 2,134 Bt strains have been screened from the 1,789 soil samples. According to the results, three vip-type genes were found in this basin, namely the vip1, vip2, and vip3-type genes. Strains containing vip3-type genes were the most abundant in our collection (67.4%), followed by vip2-type genes (14.6%) and vip1-type genes (8.1%). The three types of vip genes were distributed in most of the regions, but E Mei Mountain and the Ba Lang Mountains only contained vip3 genes in environments with high elevation, low temperature, insufficient oxygen, and abundant snow. Moreover, five novel vip3 genes were found, and these Vip proteins were toxic for Chilo suppressalis. All the results mentioned above suggest that Sichuan Basin is a rich resource for vip genes.
Collapse
Affiliation(s)
- Xiumei Yu
- Rice Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hernández-Rodríguez CS, Boets A, Van Rie J, Ferré J. Screening and identification of vip genes in Bacillus thuringiensis strains. J Appl Microbiol 2009; 107:219-25. [PMID: 19302326 DOI: 10.1111/j.1365-2672.2009.04199.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To identify known vip genes and to detect potentially novel vip genes in a collection of 507 strains of Bacillus thuringiensis. METHODS AND RESULTS Following a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) strategy, four restriction patterns were found within the vip1 family: vip1Aa1, vip1Ba1/vip1Ba2 and vip1Ca. In the screening of vip2 genes, patterns similar to those of vip2Aa1, vip2Ba1/vip2Ba2 and vip2Ac1 genes were observed. Patterns for vip3Aa1, vip3Ae2 and vip3Af1 were found among vip3 genes. Two new patterns revealed novel vip1 and vip3A genes. The observed frequency of genes belonging to vip1 and vip2 families was around 10%, whereas 48.9% of the strains showed amplification of vip3 genes. A tendency of vip and cry genes to occur together has been observed in this collection of B. thuringiensis strains. CONCLUSIONS Ten different patterns of vip genes belonging to the three vip families and two novel vip genes have been identified in this study. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time that vip1 and vip2 genes have been identified by PCR-RFLP. Furthermore, the results show that the strategy used in this study can lead to the classification of known vip genes as well as the identification of novel vip genes.
Collapse
|