1
|
Zhong W, Agarwal V. Polymer degrading marine Microbulbifer bacteria: an un(der)utilized source of chemical and biocatalytic novelty. Beilstein J Org Chem 2024; 20:1635-1651. [PMID: 39076296 PMCID: PMC11285056 DOI: 10.3762/bjoc.20.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Microbulbifer is a genus of halophilic bacteria that are commonly detected in the commensal marine microbiomes. These bacteria have been recognized for their ability to degrade polysaccharides and other polymeric materials. Increasingly, Microbulbifer genomes indicate these bacteria to be an untapped reservoir for novel natural product discovery and biosynthetic novelty. In this review, we summarize the distribution of Microbulbifer bacteria, activities of the various polymer degrading enzymes that these bacteria produce, and an up-to-date summary of the natural products that have been isolated from Microbulbifer strains. We argue that these bacteria have been hiding in plain sight, and contemporary efforts into their genome and metabolome mining are going to lead to a proliferation of Microbulbifer-derived natural products in the future. We also describe, where possible, the ecological interactions of these bacteria in marine microbiomes.
Collapse
Affiliation(s)
- Weimao Zhong
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Consuming fresh macroalgae induces specific catabolic pathways, stress reactions and Type IX secretion in marine flavobacterial pioneer degraders. THE ISME JOURNAL 2022; 16:2027-2039. [PMID: 35589967 PMCID: PMC9296495 DOI: 10.1038/s41396-022-01251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
Macroalgae represent huge amounts of biomass worldwide, largely recycled by marine heterotrophic bacteria. We investigated the strategies of bacteria within the flavobacterial genus Zobellia to initiate the degradation of whole algal tissues, which has received little attention compared to the degradation of isolated polysaccharides. Zobellia galactanivorans DsijT has the capacity to use fresh brown macroalgae as a sole carbon source and extensively degrades algal tissues via the secretion of extracellular enzymes, even in the absence of physical contact with the algae. Co-cultures experiments with the non-degrading strain Tenacibaculum aestuarii SMK-4T showed that Z. galactanivorans can act as a pioneer that initiates algal breakdown and shares public goods with other bacteria. A comparison of eight Zobellia strains, and strong transcriptomic shifts in Z. galactanivorans cells using fresh macroalgae vs. isolated polysaccharides, revealed potential overlooked traits of pioneer bacteria. Besides brown algal polysaccharide degradation, they notably include oxidative stress resistance proteins, type IX secretion system proteins and novel uncharacterized polysaccharide utilization loci. Overall, this work highlights the relevance of studying fresh macroalga degradation to fully understand the metabolic and ecological strategies of pioneer microbial degraders, key players in macroalgal biomass remineralization.
Collapse
|
3
|
Gu X, Fu L, Pan A, Gui Y, Zhang Q, Li J. Multifunctional alkalophilic α-amylase with diverse raw seaweed degrading activities. AMB Express 2021; 11:139. [PMID: 34669086 PMCID: PMC8528909 DOI: 10.1186/s13568-021-01300-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Uncultured microbes are an important resource for the discovery of novel enzymes. In this study, an amylase gene (amy2587) that codes a protein with 587 amino acids (Amy2587) was obtained from the metagenomic library of macroalgae-associated bacteria. Recombinant Amy2587 was expressed in Escherichia coli BL21 (DE3) and was found to simultaneously possess α-amylase, agarase, carrageenase, cellulase, and alginate lyase activities. Moreover, recombinant Amy2587 showed high thermostability and alkali resistance which are important characteristics for industrial application. To investigate the multifunctional mechanism of Amy2587, three motifs (functional domains) in the Amy2587 sequence were deleted to generate three truncated Amy2587 variants. The results showed that, even though these functional domains affected the multiple substrates degrading activity of Amy2587, they did not wholly explain its multifunctional characteristics. To apply the multifunctional activity of Amy2587, three seaweed substrates (Grateloupia filicina, Chondrus ocellatus, and Scagassum) were digested using Amy2587. After 2 h, 6 h, and 24 h of digestion, 121.2 ± 4 µg/ml, 134.8 ± 6 µg/ml, and 70.3 ± 3.5 µg/ml of reducing sugars were released, respectively. These results show that Amy2587 directly and effectively degraded three kinds of raw seaweeds. This finding provides a theoretical basis for one-step enzymatic digestion of raw seaweeds to obtain seaweed oligosaccharides.
Collapse
|
4
|
Purification and Characterization of a Novel Endolytic Alginate Lyase from Microbulbifer sp. SH-1 and Its Agricultural Application. Mar Drugs 2020; 18:md18040184. [PMID: 32244418 PMCID: PMC7230735 DOI: 10.3390/md18040184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/09/2023] Open
Abstract
Alginate, an important acidic polysaccharide in marine multicellular algae, has attracted attention as a promising biomass resource for the production of medical and agricultural chemicals. Alginate lyase is critical for saccharification and utilization of alginate. Discovering appropriate and efficient enzymes for depolymerizing alginate into fermentable fractions plays a vital role in alginate commercial exploitation. Herein, a unique alginate lyase, AlgSH7, belonging to polysaccharide lyase 7 family is purified and characterized from an alginate-utilizing bacterium Microbulbifer sp. SH-1. The purified AlgSH7 shows a specific activity of 12,908.26 U/mg, and its molecular weight is approximately 66.4 kDa. The optimal temperature and pH of AlgSH7 are 40 °C and pH 9.0, respectively. The enzyme exhibits stability at temperatures below 30 °C and within an extensive pH range of 5.0-9.0. Metal ions including Na+, K+, Al3+, and Fe3+ considerably enhance the activity of the enzyme. AlgSH7 displays a preference for poly-mannuronic acid (polyM) and a very low activity towards poly-guluronic acid (polyG). TLC and ESI-MS analysis indicated that the enzymatic hydrolysates mainly include disaccharides, trisaccharides, and tetrasaccharides. Noteworthy, the alginate oligosaccharides (AOS) prepared by AlgSH7 have an eliciting activity against chilling stress in Chinese flowering cabbage (Brassica parachinensis L.). These results suggest that AlgSH7 has a great potential to design an effective process for the production of alginate oligomers for agricultural applications.
Collapse
|
5
|
Ma L, Lu Y, Yan H, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Screening of cellulolytic bacteria from rotten wood of Qinling (China) for biomass degradation and cloning of cellulases from Bacillus methylotrophicus. BMC Biotechnol 2020; 20:2. [PMID: 31910834 PMCID: PMC6947901 DOI: 10.1186/s12896-019-0593-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cellulosic biomass degradation still needs to be paid more attentions as bioenergy is the most likely to replace fossil energy in the future, and more evaluable cellulolytic bacteria isolation will lay a foundation for this filed. Qinling Mountains have unique biodiversity, acting as promising source of cellulose-degrading bacteria exhibiting noteworthy properties. Therefore, the aim of this work was to find potential cellulolytic bacteria and verify the possibility of the cloning of cellulases from the selected powerful bacteria. RESULTS In present study, 55 potential cellulolytic bacteria were screened and identified from the rotten wood of Qinling Mountains. Based on the investigation of cellulase activities and degradation effect on different cellulose substrates, Bacillus methylotrophicus 1EJ7, Bacillus subtilis 1AJ3 and Bacillus subtilis 3BJ4 were further applied to hydrolyze wheat straw, corn stover and switchgrass, and the results suggested that B. methylotrophicus 1EJ7 was the most preponderant bacterium, and which also indicated that Bacillus was the main cellulolytic bacteria in rotten wood. Furthermore, scanning electron microscopy (SEM) and X-ray diffraction analysis of micromorphology and crystallinity of wheat straw also verified the significant hydrolyzation. With ascertaining the target sequence of cellulase β-glucosidase (243 aa) and endoglucanase (499 aa) were successfully heterogeneously cloned and expressed from B. methylotrophicus 1EJ7, and which performed a good effect on cellulose degradation with enzyme activity of 1670.15 ± 18.94 U/mL and 0.130 ± 0.002 U/mL, respectively. In addition, based on analysis of amino acid sequence, it found that β-glucosidase were belonged to GH16 family, and endoglucanase was composed of GH5 family catalytic domain and a carbohydrate-binding module of CBM3 family. CONCLUSIONS Based on the screening, identification and cellulose degradation effect evaluation of cellulolytic bacteria from rotten wood of Qinling Mountains, it found that Bacillus were the predominant species among the isolated strains, and B. methylotrophicus 1EJ7 performed best on cellulose degradation. Meanwhile, the β-glucosidase and endoglucanase were successfully cloned and expressed from B. methylotrophicus for the first time, which provided new materials of both strain and the recombinant enzymes for the study of cellulose degradation and its application in industry.
Collapse
Affiliation(s)
- Lingling Ma
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hong Yan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
6
|
Poduval PB, Noronha JM, Bansal SK, Ghadi SC. Characterization of a new virulent phage ϕMC1 specific to Microbulbifer strain CMC-5. Virus Res 2018; 257:7-13. [DOI: 10.1016/j.virusres.2018.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/11/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
|
7
|
Jonnadula R, Imran M, Poduval PB, Ghadi SC. Effect of polysaccharide admixtures on expression of multiple polysaccharide-degrading enzymes in Microbulbifer strain CMC-5. ACTA ACUST UNITED AC 2018. [PMID: 29541601 PMCID: PMC5849783 DOI: 10.1016/j.btre.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microbulbifer strain CMC-5 produces agarase, alginate lyase, xylanase, carboxymethyl cellulase and carrageenase. The extracellular production of the above carbohydrases was investigated by growing Microbulbifer strain CMC-5 in a sea water based medium containing homologous/heterologous polysaccharides as a single substrate or as a combination of mixed assorted substrate. Presence of singular homologous polysaccharides in the growth medium induces respective carbohydrase at high levels. Any two polysaccharides in various combinations produced high level of homologous carbohydrase and low level of other heterologous carbohydrase. All five carbohydrases were consistently produced by strain CMC-5, when carboxymethyl cellulose was included as one of the substrate in dual substrate combination, or in presence of mix blends of all five polysaccharides. Interestingly, thalli of Gracilaria sp. that contain agar and cellulose predominantly in their cell wall induces only agarase expression in strain CMC-5.
Collapse
Affiliation(s)
- RaviChand Jonnadula
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403206, India
| | - Md Imran
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403206, India
| | - Preethi B Poduval
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403206, India
| | - Sanjeev C Ghadi
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa 403206, India
| |
Collapse
|
8
|
Imran M, Pant P, Shanbhag YP, Sawant SV, Ghadi SC. Genome Sequence of Microbulbifer mangrovi DD-13 T Reveals Its Versatility to Degrade Multiple Polysaccharides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:116-124. [PMID: 28161851 DOI: 10.1007/s10126-017-9737-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Microbulbifer mangrovi strain DD-13T is a novel-type species isolated from the mangroves of Goa, India. The draft genome sequence of strain DD-13 comprised 4,528,106 bp with G+C content of 57.15%. Out of 3479 open reading frames, functions for 3488 protein coding sequences were predicted on the basis of similarity with the cluster of orthologous groups. In addition to protein coding sequences, 34 tRNA genes and 3 rRNA genes were detected. Analysis of nucleotide sequence of predicted gene using a Carbohydrate-Active Enzymes (CAZymes) Analysis Toolkit indicates that strain DD-13 encodes a large set of CAZymes including 255 glycoside hydrolases, 76 carbohydrate esterases, 17 polysaccharide lyases, and 113 carbohydrate-binding modules (CBMs). Many genes from strain DD-13 were annotated as carbohydrases specific for degradation of agar, alginate, carrageenan, chitin, xylan, pullulan, cellulose, starch, β-glucan, pectin, etc. Some of polysaccharide-degrading genes were highly modular and were appended at least with one CBM indicating the versatility of strain DD-13 to degrade complex polysaccharides. The cell growth of strain DD-13 was validated using pure polysaccharides such as agarose or alginate as carbon source as well as by using red and brown seaweed powder as substrate. The homologous carbohydrase produced by strain DD-13 during growth degraded the polysaccharide, ensuring the production of metabolizable reducing sugars. Additionally, several other polysaccharides such as carrageenan, xylan, pullulan, pectin, starch, and carboxymethyl cellulose were also corroborated as growth substrate for strain DD-13 and were associated with concomitant production of homologous carbohydrase.
Collapse
Affiliation(s)
- Md Imran
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Poonam Pant
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Yogini P Shanbhag
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Samir V Sawant
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Sanjeev C Ghadi
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| |
Collapse
|
9
|
Song T, Zhang W, Wei C, Jiang T, Xu H, Cao Y, Cao Y, Qiao D. Isolation and characterization of agar-degrading endophytic bacteria from plants. Curr Microbiol 2014; 70:275-81. [PMID: 25331792 DOI: 10.1007/s00284-014-0713-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
Agar is a polysaccharide extracted from the cell walls of some macro-algaes. Among the reported agarases, most of them come from marine environment. In order to better understand different sources of agarases, it is important to search new non-marine native ones. In this study, seven agar-degrading bacteria were first isolated from the tissues of plants, belonging to three genera, i.e., Paenibacillus sp., Pseudomonas sp., and Klebsiella sp. Among them, the genus Klebsiella was first reported to have agarolytic ability and the genus Pseudomonas was first isolated from non-marine environment with agarase activity. Besides, seven strains were characterized by investigating the growth and agarase production in the presence of various polysaccharides. The results showed that they could grow on several polysaccharides such as araban, carrageenan, chitin, starch, and xylan. Besides, they could also produce agarase in the presence of different polysaccharides other than agar. Extracellular agarases from seven strains were further analyzed by SDS-PAGE combined with activity staining and estimated to be 75 kDa which has great difference from most reported agarases.
Collapse
Affiliation(s)
- Tao Song
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Wangjiang Road 29#, Chengdu, 610064, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sakatoku A, Wakabayashi M, Tanaka Y, Tanaka D, Nakamura S. Isolation of a novel Saccharophagus species (Myt-1) capable of degrading a variety of seaweeds and polysaccharides. Microbiologyopen 2012; 1:2-12. [PMID: 22950007 PMCID: PMC3426404 DOI: 10.1002/mbo3.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 11/06/2022] Open
Abstract
A bacterial strain, Myt-1, was isolated in Toyama Bay in Toyama Prefecture, Japan. Myt-1 was capable of reducing the thalli of various seaweed species to single cell detritus particles. A 16S rDNA homology search revealed that the closest relative of Myt-1 was Saccharophagus degradans 2-40 (CP000282; 100% similarity), which was first isolated in Chesapeake Bay in Virginia, USA. The Myt-1 strain was capable of degrading more than 10 polysaccharides, almost all of which were also degraded by S. degradans 2-40. Analyses of alginase gene DNA sequence homology, DNA-DNA homology, and zymogram analysis of obtained polysaccharidases suggested that Myt-1 was a new species of Saccharophagus. Thus, Myt-1 is only the second species in this genus, which has contained only one strain and species since 1988, and was tentatively designated Saccharophagus sp. Myt-1. Myt-1 has considerable potential for reducing the volume of seaweed wastes, and for producing functional materials from seaweed substrate.
Collapse
Affiliation(s)
- A Sakatoku
- Graduate School of Science and Engineering, University of Toyama Toyama 930-8555, Japan
| | | | | | | | | |
Collapse
|
11
|
Wakabayashi M, Sakatoku A, Noda F, Noda M, Tanaka D, Nakamura S. Isolation and characterization of Microbulbifer species 6532A degrading seaweed thalli to single cell detritus particles. Biodegradation 2012; 23:93-105. [PMID: 21681519 DOI: 10.1007/s10532-011-9489-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 06/04/2011] [Indexed: 10/18/2022]
Abstract
To reduce the volume of seaweed wastes and extract polysaccharides, seaweed-degrading bacteria were isolated from drifting macroalgae harvested along the coast of Toyama Bay, Japan. Sixty-four bacterial isolates were capable of degrading "Wakame" (Undaria pinnatifida) thallus fragments into single cell detritus (SCD) particles. Amongst these, strain 6532A was the most active degrader of thallus fragments, and was capable of degrading thallus fragments to SCD particles within a day. Although the sequence similarity of the 16S rRNA gene of strain 6532A was 100% similar to that of Microbulbifer elongatus JAMB-A7, several distinct differences were observed between strains, including motility, morphology, and utilization of D: -arabinose and gelatin. Consequently, strain 6532A was classified as a new Microbulbifer strain, and was designated Microbulbifer sp. 6532A. Strain 6532A was capable of degrading both alginate and cellulose in the culture medium, zymogram analysis of which revealed the presence of multiple alginate lyases and cellulases. To the best of our knowledge, this is the first study to directly demonstrate the existence of these enzymes in Microbulbifer species. Shotgun cloning and sequencing of the alginate lyase gene in 6532A revealed a 1,074-bp open reading frame, which was designated algMsp. The reading frame encoded a PL family seven enzyme composed of 358 amino acids (38,181 Da). With a similarity of 74.2%, the deduced amino acid sequence was most similar to a Saccharophagus enzyme (alg 7C). These findings suggest that algMsp in strain 6532A is a novel alginate lyase gene.
Collapse
|
12
|
Jonnadula R, Ghadi SC. Purification and characterization of β-agarase from seaweed decomposing bacterium Microbulbifer sp. Strain CMC-5. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0399-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|