1
|
Esparza-Diaz G, Villanueva RT, Badillo-Vargas IE. A Novel Interaction of Nesidiocoris tenuis (Hemiptera: Miridae) as a Biological Control Agent of Bactericera cockerelli (Hemiptera: Triozidae) in Potato. INSECTS 2024; 15:261. [PMID: 38667391 PMCID: PMC11050558 DOI: 10.3390/insects15040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Nesidiocoris tenuis (Hemiptera: Miridae) is a generalist predator commonly used to control the whitefly Bemisia tabaci in Europe. This mirid has been found and established in South Texas, where it was initially observed feeding on nymphs of the psyllid Bactericera cockerelli (Hemiptera: Triozidae) in open tomato fields. B. cockerelli is the vector of the fastidious bacterium "Candidatus Liberibacter solanacearum" that causes diseases in several solanaceous crops, including zebra chip (ZC) disease in potatoes. There is a need to better understand how this predator impacts the control of important crop pests, such as potato psyllids. We assessed the interactions between N. tenuis and B. cockerelli in three different environmental settings. First, we estimated the numeric response of N. tenuis preying on B. cockerelli under laboratory and greenhouse conditions. Second, we evaluated the predator-prey interaction under controlled field cage conditions. Then, we exposed N. tenuis under controlled field release conditions to the natural occurrence of B. cockerelli. Finally, we assessed the compatibility between the use of N. tenuis as a biological control agent in a field study and its impact on ZC disease incidence, severity in potato tubers, and potato yield. Laboratory and greenhouse experiments resulted in diverse types of functional model responses, including exponential and linear mathematical models. Our findings revealed a significant predation effect exerted by N. tenuis, resulting in a reduction of more than fourfold in the number of B. cockerelli nymphs per cage. Specifically, the nymphal population decreased from 21 ± 3.2 in the absence of N. tenuis to 5 ± 1.6 when N. tenuis was present. Furthermore, the combination of N. tenuis with a reduced insecticide program increased potato yields, but only reduced ZC tuber incidence in one of two potato cultivars evaluated, and in one season. Findings from these studies indicate that N. tenuis could be effective as a biological control agent for B. cockerelli in potato production in South Texas. This is the first report of N. tenuis preying on immature stages of any psyllid species.
Collapse
Affiliation(s)
- Gabriela Esparza-Diaz
- Texas A&M AgriLife Research and Extension Center, 2415 E. US Highway 83, Weslaco, TX 78596, USA
| | - Raul T. Villanueva
- Department of Entomology, University of Kentucky Research and Education Center, University of Kentucky, 348 University Drive, Princeton, KY 42445, USA
| | - Ismael E. Badillo-Vargas
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
- Biology Department, South Texas College, 400 N. Border, Weslaco, TX 78596, USA
| |
Collapse
|
2
|
Caamal-Chan MG, Barraza A, Loera-Muro A, Montes-Sánchez JJ, Castellanos T, Rodríguez-Pagaza Y. Bacterial communities of the psyllid pest Bactericera cockerelli (Hemiptera: Triozidae) Central haplotype of tomato crops cultivated at different locations of Mexico. PeerJ 2023; 11:e16347. [PMID: 37941933 PMCID: PMC10629388 DOI: 10.7717/peerj.16347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Background The psyllid, Bactericera cockerelli, is an insect vector of 'Candidatus Liberibacter' causing "Zebra chip" disease that affects potato and other Solanaceae crops worldwide. In the present study, we analyzed the bacterial communities associated with the insect vector Bactericera cockerelli central haplotype of tomato crop fields in four regions from Mexico. Methods PCR was used to amplify the mitochondrial cytochrome oxidase I gene (mtCOI) and then analyze the single nucleotide polymorphisms (SNP) and phylogenetic analysis for haplotype identification of the isolated B. cockerelli. Moreover, we carried out the microbial diversity analysis of several B. cockerelli collected from four regions of Mexico through the NGS sequencing of 16S rRNA V3 region. Finally, Wolbachia was detected by the wsp gene PCR amplification, which is the B. cockerelli facultative symbiont. Also we were able to confirm the relationship with several Wolbachia strains by phylogenetic analysis. Results Our results pointed that B. cockerelli collected in the four locations from Mexico (Central Mexico: Queretaro, and Northern Mexico: Sinaloa, Coahuila, and Nuevo Leon) were identified, such as the central haplotype. Analyses of the parameters of the composition, relative abundance, and diversity (Shannon index: 1.328 ± 0.472; Simpson index 0.582 ± 0.167), showing a notably relatively few microbial species in B. cockerelli. Analyses identified various facultative symbionts, particularly the Wolbachia (Rickettsiales: Anaplasmataceae) with a relative abundance higher. In contrast, the genera of Sodalis and 'Candidatus Carsonella' (Gammaproteobacteria: Oceanospirillales: Halomonadaceae) were identified with a relatively low abundance. On the other hand, the relative abundance for the genus 'Candidatus Liberibacter' was higher only for some of the locations analyzed. PCR amplification of a fragment of the gene encoding a surface protein (wsp) of Wolbachia and phylogenetic analysis corroborated the presence of this bacterium in the central haplotype. Beta-diversity analysis revealed that the presence of the genus 'Candidatus Liberibacter' influences the microbiota structure of this psyllid species. Conclusions Our data support that the members with the highest representation in microbial community of B. cockerelli central haplotype, comprise their obligate symbiont, Carsonella, and facultative symbionts. We also found evidence that among the factors analyzed, the presence of the plant pathogen affects the structure and composition of the bacterial community associated with B. cockerelli.
Collapse
Affiliation(s)
- Maria Goretty Caamal-Chan
- Agricultura en Zonas Áridas, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | - Aarón Barraza
- Agricultura en Zonas Áridas, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | - Abraham Loera-Muro
- Agricultura en Zonas Áridas, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | - Juan J. Montes-Sánchez
- Agricultura, CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, SC, Guerrero Negro, B.C.S., México
| | - Thelma Castellanos
- Agricultura en Zonas Áridas, Centro de Investigaciones Biológicas del Noroeste, SC, La Paz, B.C.S., México
| | | |
Collapse
|
3
|
Kwak Y, Hansen AK. Unveiling metabolic integration in psyllids and their nutritional endosymbionts through comparative transcriptomics analysis. iScience 2023; 26:107930. [PMID: 37810228 PMCID: PMC10558732 DOI: 10.1016/j.isci.2023.107930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Psyllids, a group of insects that feed on plant sap, have a symbiotic relationship with an endosymbiont called Carsonella. Carsonella synthesizes essential amino acids and vitamins for its psyllid host, but lacks certain genes required for this process, suggesting a compensatory role of psyllid host genes. To investigate this, gene expression was compared between two psyllid species, Bactericera cockerelli and Diaphorina citri, in specialized cells where Carsonella resides (bacteriomes). Collaborative psyllid genes, including horizontally transferred genes, showed patterns of conserved gene expression; however, species-specific patterns were also observed, suggesting differences in the nutritional metabolism between psyllid species. Also, the recycling of nitrogen in bacteriomes may primarily rely on glutamate dehydrogenase (GDH). Additionally, lineage-specific gene clusters were differentially expressed in B. cockerelli and D. citri bacteriomes and are highlighted here. These findings shed light on potential host adaptations for the regulation of this symbiosis due to host, microbiome, and environmental differences.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, 5200 Lake Road, Merced, CA 95343, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Wu W, Lei JN, Mao Q, Tian YZ, Shan HW, Chen JP. Distribution, Vertical Transmission, and Cooperative Mechanisms of Obligate Symbiotic Bacteria in the Leafhopper Maiestas dorsalis (Hemiptera, Cicadellidea). INSECTS 2023; 14:710. [PMID: 37623420 PMCID: PMC10455556 DOI: 10.3390/insects14080710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Many insects rely on ancient symbiotic bacterial associations for essential nutrition. Auchenorrhyncha commonly harbor two obligate symbionts: Sulcia (Bacteroidetes) and a proteobacterial partner that supplies essential amino acids lacking in their plant-sap diets. In this study focusing on Maiestas dorsalis, we investigated the distribution and vertical transmission of two obligate symbiotic bacteria, Sulcia and Nasuia, within the leafhopper. Sulcia primarily inhabits the external region of the bacteriome, while Nasuia is restricted to the internal region. Both symbionts progressively infiltrate the ovary through the epithelial plug, ultimately reaching the developing primary oocyte. Furthermore, co-phylogenetic analysis suggests a close correlation between the evolution of Auchenorrhyncha insects and the presence of their obligate symbiotic bacteria. Genomic analysis further unveiled the extreme genome reduction of the obligate symbiotic bacteria, with Sulcia retaining genes involved in basic cellular processes and limited energy synthesis, while Nasuia exhibited further gene loss in replication, transcription, translation, and energy synthesis. However, both symbionts retained the genes for synthesizing the essential amino acids required by the host insect. Our study highlights the coevolutionary dynamics between Sulcia, proteobacterial partners, and their insect hosts, shedding light on the intricate nutritional interactions and evolutionary adaptations in Auchenorrhyncha insects.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | | | | | | | | | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Nian X, Wu S, Li J, Luo Y, He J, Tan S, Wang D, Cen Y, He Y. Spatial Distribution and Temporal Dynamics of Candidatus Liberibacter Asiaticus in Different Stages of Embryos, Nymphs and Adults of Diaphorina citri. Int J Mol Sci 2023; 24:ijms24108997. [PMID: 37240344 DOI: 10.3390/ijms24108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Huanglongbing, a globally devastating citrus disease, is associated with Candidatus Liberibacter asiaticus (CLas) and is mainly transmitted by Diaphorina citri. Verification of the distribution and dynamics of CLas in D. citri is critical to understanding CLas transmitted by vectors in nature. Here, the distribution and titers of CLas in different sexes and tissues of D. citri adults were investigated by fluorescence in-situ hybridization (FISH) and quantitative real-time PCR (qRT-PCR). Results showed that CLas had widespread distribution in the brain, salivary glands, digestive system, and reproductive system of both females and males, indicating a systemic infection of CLas in D. citri. Moreover, CLas fluorescence intensity and titers were significantly increased in both the digestive system and the female reproductive system with development and there was a marked decreased in both the salivary glands and the male brain, but there was no significant change in the female brain or the male reproductive system. Furthermore, the distribution and dynamics of CLas in embryos and nymphs were investigated. CLas was observed in all laid eggs and subsequent first-second-instar nymphs, indicating that a high percentage of embryos and nymphs resulting from infected D. citri mothers were infected with CLas.
Collapse
Affiliation(s)
- Xiaoge Nian
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Shujie Wu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiayun Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaru Luo
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jielan He
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shijian Tan
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Desen Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yijing Cen
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yurong He
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Štarhová Serbina L, Gajski D, Pafčo B, Zurek L, Malenovský I, Nováková E, Schuler H, Dittmer J. Microbiome of pear psyllids: A tale about closely related species sharing their endosymbionts. Environ Microbiol 2022; 24:5788-5808. [PMID: 36054322 PMCID: PMC10086859 DOI: 10.1111/1462-2920.16180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/20/2022] [Indexed: 01/12/2023]
Abstract
Psyllids are phloem-feeding insects that can transmit plant pathogens such as phytoplasmas, intracellular bacteria causing numerous plant diseases worldwide. Their microbiomes are essential for insect physiology and may also influence the capacity of vectors to transmit pathogens. Using 16S rRNA gene metabarcoding, we compared the microbiomes of three sympatric psyllid species associated with pear trees in Central Europe. All three species are able to transmit 'Candidatus Phytoplasma pyri', albeit with different efficiencies. Our results revealed potential relationships between insect biology and microbiome composition that varied during psyllid ontogeny and between generations in Cacopsylla pyri and C. pyricola, as well as between localities in C. pyri. In contrast, no variations related to psyllid life cycle and geography were detected in C. pyrisuga. In addition to the primary endosymbiont Carsonella ruddii, we detected another highly abundant endosymbiont (unclassified Enterobacteriaceae). C. pyri and C. pyricola shared the same taxon of Enterobacteriaceae which is related to endosymbionts harboured by other psyllid species from various families. In contrast, C. pyrisuga carried a different Enterobacteriaceae taxon related to the genus Sodalis. Our study provides new insights into host-symbiont interactions in psyllids and highlights the importance of host biology and geography in shaping microbiome structure.
Collapse
Affiliation(s)
- Liliya Štarhová Serbina
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Domagoj Gajski
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Ludek Zurek
- Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.,Department of Microbiology, Nutrition and Dietetics/CINeZ, Czech University of Life Sciences, Prague, Czech Republic
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Jessica Dittmer
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.,Université d'Angers, Institut Agro, INRAE, IRHS, SFR Quasav, Angers, France
| |
Collapse
|
7
|
Wolbachia infection dynamics in a natural population of the pear psyllid Cacopsylla pyri (Hemiptera: Psylloidea) across its seasonal generations. Sci Rep 2022; 12:16502. [PMID: 36192576 PMCID: PMC9529970 DOI: 10.1038/s41598-022-20968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Wolbachia is one of the most abundant intracellular symbionts of arthropods and has profound effects on host biology. Wolbachia transmission and host phenotypes often depend on its density within the host, which can be affected by multiple biotic and abiotic factors. However, very few studies measured Wolbachia density in natural host populations. Here, we describe Wolbachia in the pear psyllid Cacopsylla pyri from three populations in the Czech Republic. Using phylogenetic analyses based on wsp and multilocus sequence typing genes, we demonstrate that C. pyri harbours three new Wolbachia strains from supergroup B. A fourth Wolbachia strain from supergroup A was also detected in parasitised immatures of C. pyri, but likely came from a hymenopteran parasitoid. To obtain insights into natural Wolbachia infection dynamics, we quantified Wolbachia in psyllid individuals from the locality with the highest prevalence across an entire year, spanning several seasonal generations of the host. All tested females were infected and Wolbachia density remained stable across the entire period, suggesting a highly efficient vertical transmission and little influence from the environment and different host generations. In contrast, we observed a tendency towards reduced Wolbachia density in males which may suggest sex-related differences in Wolbachia-psyllid interactions.
Collapse
|
8
|
Schuler H, Dittmer J, Borruso L, Galli J, Fischnaller S, Anfora G, Rota‐Stabelli O, Weil T, Janik K. Investigating the microbial community of Cacopsylla spp. as potential factor in vector competence of phytoplasma. Environ Microbiol 2022; 24:4771-4786. [PMID: 35876309 PMCID: PMC9804460 DOI: 10.1111/1462-2920.16138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/05/2023]
Abstract
Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors. Knowledge about factors that might determine the vector capacity is currently scarce. Here, we characterized the microbiomes of vector and non-vector species of apple proliferation (AP) phytoplasma 'Candidatus Phytoplasma mali' to investigate their potential role in the vector capacity of the host. We performed high-throughput 16S rRNA metabarcoding of the two principal AP-vectors Cacopsylla picta and Cacopsylla melanoneura and eight Cacopsylla species, which are not AP-vectors but co-occur in apple orchards. The microbiomes of all species are dominated by Carsonella, the primary endosymbiont of psyllids and a second uncharacterized Enterobacteriaceae endosymbiont. Each Cacopsylla species harboured a species-specific phylotype of both symbionts. Moreover, we investigated differences between the microbiomes of AP-vector versus non-vector species and identified the predominant endosymbionts but also Wolbachia and several minor taxa as potential indicator species. Our study highlights the importance of considering the microbiome in future investigations of potential factors influencing host vector competence. We investigated the potential role of symbiotic bacteria in the acquisition and transmission of phytoplasma. By comparing the two main psyillid vector species of Apple proliferation (AP) phytoplasma and eight co-occurring species, which are not able to vector AP-phytoplasma, we found differences in the microbial communities of AP-vector and non-vector species, which appear to be driven by the predominant symbionts in both vector species and Wolbachia and several minor taxa in the non-vector species. In contrast, infection with AP-phytoplasma did not affect microbiome composition in both vector species. Our study provides new insights into the endosymbiont diversity of Cacopsylla spp. and highlights the importance of considering the microbiome when investigating potential factors influencing host vector competence.
Collapse
Affiliation(s)
- Hannes Schuler
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly,Competence Centre for Plant HealthFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | - Jessica Dittmer
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly,Université d'Angers, Institut Agro, INRAE, IRHS, SFR QuasavAngersFrance
| | - Luigimaria Borruso
- Faculty of Science and TechnologyFree University of Bozen‐BolzanoBozen‐BolzanoItaly
| | - Jonas Galli
- Department of Forest and Soil Sciences, BOKUUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | | | - Gianfranco Anfora
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly,Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| | - Omar Rota‐Stabelli
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly,Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| | - Tobias Weil
- Research and Innovation CenterFondazione Edmund MachSan Michele all'AdigeItaly
| | - Katrin Janik
- Center Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeItaly
| |
Collapse
|
9
|
Harrison K, Levy JG, Tamborindeguy C. Effects of 'Candidatus Liberibacter solanacearum' haplotypes A and B on tomato gene expression and geotropism. BMC PLANT BIOLOGY 2022; 22:156. [PMID: 35354405 PMCID: PMC8966271 DOI: 10.1186/s12870-022-03505-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen 'Candidatus Liberibacter solanacearum' (or Lso). Disease symptom severity is dependent on Lso haplotype: tomato plants infected with Lso haplotype B experience more severe symptoms and higher mortality compared to plants infected with Lso haplotype A. By characterizing the molecular differences in the tomato plant's responses to Lso haplotypes, the key components of LsoB virulence can be identified and, thus, targeted for disease mitigation strategies. RESULTS To characterize the tomato plant genes putatively involved in the differential immune responses to Lso haplotypes A and B, RNA was extracted from tomato 'Moneymaker' leaves 3 weeks after psyllid infestation. Gene expression levels were compared between uninfected tomato plants (i.e., controls and plants infested with Lso-free psyllids) and infected plants (i.e., plants infested with psyllids infected with either Lso haplotype A or Lso haplotype B). Furthermore, expression levels were compared between plants infected with Lso haplotype A and plants infected with Lso haplotype B. A whole transcriptome analysis identified 578 differentially expressed genes (DEGs) between uninfected and infected plants as well as 451 DEGs between LsoA- and LsoB-infected plants. These DEGs were primarily associated with plant defense against abiotic and biotic stressors, growth/development, plant primary metabolism, transport and signaling, and transcription/translation. These gene expression changes suggested that tomato plants traded off plant growth and homeostasis for improved defense against pathogens, especially when infected with LsoB. Consistent with these results, tomato plant growth experiments determined that LsoB-infected plants were significantly stunted and had impaired negative geotropism. However, it appeared that the defense responses mounted by tomatoes were insufficient for overcoming the disease symptoms and mortality caused by LsoB infection, while these defenses could compensate for LsoA infection. CONCLUSION The transcriptomic analysis and growth experiments demonstrated that Lso-infected tomato plants underwent gene expression changes related to abiotic and biotic stressors, impaired growth/development, impaired plant primary metabolism, impaired transport and signaling transduction, and impaired transcription/translation. Furthermore, the transcriptomic analysis also showed that LsoB-infected plants, relative to LsoA-infected, experienced more severe stunting, had improved responses to some stressors and impaired responses to others, had poorer transport and signaling transduction, and had impaired carbohydrate synthesis and photosynthesis.
Collapse
Affiliation(s)
- Kyle Harrison
- Department of Horticultural Sciences, Texas A&M University, College station, TX 77843, USA
- Present address: USDA-ARS, Agroecosystem Management Research, Lincoln, NE, 68503, USA
| | - Julien G Levy
- Department of Horticultural Sciences, Texas A&M University, College station, TX 77843, USA.
| | | |
Collapse
|
10
|
Cooper WR, Horton DR, Swisher-Grimm K, Krey K, Wildung MR. Bacterial Endosymbionts of Bactericera maculipennis and Three Mitochondrial Haplotypes of B. cockerelli (Hemiptera: Psylloidea: Triozidae). ENVIRONMENTAL ENTOMOLOGY 2022; 51:94-107. [PMID: 34864906 DOI: 10.1093/ee/nvab133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Insects harbor bacterial endosymbionts that provide their hosts with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, or abiotic stresses. We used directed sequencing of 16S rDNA to identify and compare endosymbionts of Bactericera maculipennis (Crawford) and the western, central, and northwestern haplotypes of B. cockerelli (Šulc) (Hemiptera: Psylloidea: Triozidae). Both species are native to North America, are known to harbor the plant pathogen 'Candidatus Liberibacter solanacearum' and develop on shared host plants within the Convolvulaceae. The Old-World species Heterotrioza chenopodii (Reuter) (Psylloidea: Triozidae), now found in North America, was included as an outgroup. 16S sequencing confirmed that both Bactericera species harbor 'Candidatus Liberibacter solanacearum' and revealed that both species harbor unique strains of Wolbachia and Sodalis. However, the presence of Wolbachia and Sodalis varied among haplotypes of B. cockerelli. The central and western haplotypes harbored the same strains of Wolbachia, which was confirmed by Sanger sequencing of the wsp and ftsZ genes. Wolbachia was also detected in very low abundance from the northwestern haplotype by high-throughput sequencing of 16S but was not detected from this haplotype by PCR screening. The northwestern and central haplotypes also harbored Sodalis, which was not detected in the western haplotype. Heterotrioza chenopodii harbored an entirely different community of potential endosymbionts compared with the Bactericera spp. that included Rickettsia and an unidentified bacterium in the Enterobacteriaceae. Results of this study provide a foundation for further research on the interactions between psyllids and their bacterial endosymbionts.
Collapse
Affiliation(s)
- W Rodney Cooper
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - David R Horton
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Kylie Swisher-Grimm
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Prosser, WA 99350, USA
| | - Karol Krey
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Mark R Wildung
- Laboratory for Bioinformatics and Bioanalysis, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
11
|
Nakabachi A, Inoue H, Hirose Y. Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids. BMC Microbiol 2022; 22:15. [PMID: 34996376 PMCID: PMC8740488 DOI: 10.1186/s12866-021-02429-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02429-2.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan. .,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
12
|
Nakabachi A, Inoue H, Hirose Y. High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O. Microbes Environ 2022; 37:ME22078. [PMID: 36476840 PMCID: PMC9763047 DOI: 10.1264/jsme2.me22078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that include important agricultural pests. To obtain insights into the ecological and evolutionary behaviors of microbes, including plant pathogens, in Psylloidea, high-resolution ana-lyses of the microbiomes of nine psyllid species belonging to the family Triozidae were performed using high-throughput amplicon sequencing of the 16S rRNA gene. Analyses identified various bacterial populations, showing that all nine psyllids have at least one secondary symbiont, along with the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria: Oceanospirillales: Halomonadaceae). The majority of the secondary symbionts were gammaproteobacteria, particularly those of the order Enterobacterales, which included Arsenophonus and Serratia symbiotica, a bacterium formerly recognized only as a secondary symbiont of aphids (Hemiptera: Sternorrhyncha: Aphidoidea). The non-Enterobacterales gammaproteobacteria identified in the present study were Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae), a potential human pathogen, and Carnimonas (Oceanospirillales: Halomonadaceae), a lineage detected for the first time in Psylloidea. Regarding alphaproteobacteria, the potential plant pathogen "Ca. Liberibacter europaeus" (Rhizobiales: Rhizobiaceae) was detected for the first time in Epitrioza yasumatsui, which feeds on the Japanese silverberry Elaeagnus umbellata (Elaeagnaceae), an aggressive invasive plant in the United States and Europe. Besides the detection of Wolbachia (Rickettsiales: Anaplasmataceae) of supergroup B in three psyllid species, a lineage belonging to supergroup O was identified for the first time in Psylloidea. These results suggest the rampant transfer of bacterial symbionts among animals and plants, thereby providing deeper insights into the evolution of interkingdom interactions among multicellular organisms and bacteria, which will facilitate the control of pest psyllids.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan, Corresponding author. E-mail: ; Tel: +81–532–44–6901
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739–2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| |
Collapse
|
13
|
Kwak Y, Sun P, Meduri VR, Percy DM, Mauck KE, Hansen AK. Uncovering Symbionts Across the Psyllid Tree of Life and the Discovery of a New Liberibacter Species, " Candidatus" Liberibacter capsica. Front Microbiol 2021; 12:739763. [PMID: 34659173 PMCID: PMC8511784 DOI: 10.3389/fmicb.2021.739763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Sap-feeding insects in the order Hemiptera associate with obligate endosymbionts that are required for survival and facultative endosymbionts that can potentially modify resistance to stress, enemies, development, and reproduction. In the superfamily Psylloidea, the jumping plant lice (psyllids), less is known about the diversity and prevalence of their endosymbionts compared to other sap-feeding pests such as aphids (Aphididae). To address this knowledge gap, using 16S rRNA sequencing we identify symbionts across divergent psyllid host lineages from around the world. Taking advantage of a new comprehensive phylogenomic analyses of Psylloidea, we included psyllid samples from 44 species of 35 genera of five families, collected from 11 international locations for this study. Across psyllid lineages, a total of 91 OTUs were recovered, predominantly of the Enterobacteriaceae (68%). The diversity of endosymbionts harbored by each psyllid species was low with an average of approximately 3 OTUs. Two clades of endosymbionts (clade 1 and 2), belonging to Enterobacteriaceae, were identified that appear to be long term endosymbionts of the psyllid families Triozidae and Psyllidae, respectively. We also conducted high throughput metagenomic sequencing on three Ca. Liberibacter infected psyllid species (Russelliana capsici, Trichochermes walkeri, and Macrohomotoma gladiata), initially identified from 16S rRNA sequencing, to obtain more genomic information on these putative Liberibacter plant pathogens. The phylogenomic analyses from these data identified a new Ca. Liberibacter species, Candidatus Liberibacter capsica, that is a potential pathogen of solanaceous crops. This new species shares a distant ancestor with Ca. L. americanus, which occurs in the same range as R. capsici in South America. We also detected the first association between a psyllid specializing on woody hosts and the Liberibacter species Ca. L. psyllaurous, which is a globally distributed pathogen of herbaceous crop hosts in the Solanaceae. Finally, we detected a potential association between a psyllid pest of figs (M. gladiata) and a Ca. Liberibacter related to Ca. L. asiaticus, which causes severe disease in citrus. Our findings reveal a wider diversity of associations between facultative symbionts and psyllids than previously reported and suggest numerous avenues for future work to clarify novel associations of ecological, evolutionary, and pathogenic interest.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Penglin Sun
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | | | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Harrison K, Mendoza-Herrera A, Levy JG, Tamborindeguy C. Lasting consequences of psyllid (Bactericera cockerelli L.) infestation on tomato defense, gene expression, and growth. BMC PLANT BIOLOGY 2021; 21:114. [PMID: 33627099 PMCID: PMC7905647 DOI: 10.1186/s12870-021-02876-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen 'Candidatus Liberibacter solanacearum'. Currently, the only effective strategies for controlling the diseases associated with this pathogen involve regular pesticide applications to manage psyllid population density. However, such practices are unsustainable and will eventually lead to widespread pesticide resistance in psyllids. Therefore, new control strategies must be developed to increase host-plant resistance to insect vectors. For example, expression of constitutive and inducible plant defenses can be improved through selection. Currently, it is still unknown whether psyllid infestation has any lasting consequences on tomato plant defense or tomato plant gene expression in general. RESULTS In order to characterize the genes putatively involved in tomato defense against psyllid infestation, RNA was extracted from psyllid-infested and uninfested tomato leaves (Moneymaker) 3 weeks post-infestation. Transcriptome analysis identified 362 differentially expressed genes. These differentially expressed genes were primarily associated with defense responses to abiotic/biotic stress, transcription/translation, cellular signaling/transport, and photosynthesis. These gene expression changes suggested that tomato plants underwent a reduction in plant growth/health in exchange for improved defense against stress that was observable 3 weeks after psyllid infestation. Consistent with these observations, tomato plant growth experiments determined that the plants were shorter 3 weeks after psyllid infestation. Furthermore, psyllid nymphs had lower survival rates on tomato plants that had been previously psyllid infested. CONCLUSION These results suggested that psyllid infestation has lasting consequences for tomato gene expression, defense, and growth.
Collapse
Affiliation(s)
- Kyle Harrison
- USDA-ARS, Agroecosystem Management Research Unit, Lincoln, NE, 68503, USA.
| | | | - Julien Gad Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | | |
Collapse
|
15
|
Nakabachi A, Malenovský I, Gjonov I, Hirose Y. 16S rRNA Sequencing Detected Profftella, Liberibacter, Wolbachia, and Diplorickettsia from Relatives of the Asian Citrus Psyllid. MICROBIAL ECOLOGY 2020; 80:410-422. [PMID: 32052099 DOI: 10.1007/s00248-020-01491-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
The Asian citrus psyllid Diaphorina citri (Hemiptera: Psylloidea) is a serious pest of citrus species worldwide because it transmits Candidatus Liberibacter spp. (Alphaproteobacteria: Rhizobiales), the causative agents of the incurable citrus disease, huanglongbing or greening disease. Diaphorina citri possesses a specialized organ called a bacteriome, which harbors vertically transmitted intracellular mutualists, Ca. Carsonella ruddii (Gammaproteobacteria: Oceanospirillales) and Ca. Profftella armatura (Gammaproteobacteria: Betaproteobacteriales). Whereas Carsonella is a typical nutritional symbiont, Profftella is an unprecedented type of toxin-producing defensive symbiont, unusually sharing organelle-like features with nutritional symbionts. Additionally, many D. citri strains are infected with Wolbachia, which manipulate reproduction in various arthropod hosts. In the present study, in an effort to obtain insights into the evolution of symbioses between Diaphorina and bacteria, microbiomes of psyllids closely related to D. citri were investigated. Bacterial populations of Diaphorina cf. continua and Diaphorina lycii were analyzed using Illumina sequencing of 16S rRNA gene amplicons and compared with data obtained from D. citri. The analysis revealed that all three Diaphorina spp. harbor Profftella as well as Carsonella lineages, implying that Profftella is widespread within the genus Diaphorina. Moreover, the analysis identified Ca. Liberibacter europaeus and Diplorickettsia sp. (Gammaproteobacteria: Diplorickettsiales) in D. cf. continua, and a total of four Wolbachia (Alphaproteobacteria: Rickettsiales) lineages in the three psyllid species. These results provide deeper insights into the interactions among insects, bacteria, and plants, which would eventually help to better manage horticulture.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
| | - Ilia Gjonov
- Department of Zoology and Anthropology, Faculty of Biology, Sofia University, Dragan Tzankov 8, 1164, Sofia, Bulgaria
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
16
|
Levy JG, Gross R, Mendoza-Herrera A, Tang X, Babilonia K, Shan L, Kuhl JC, Dibble MS, Xiao F, Tamborindeguy C. Lso-HPE1, an Effector of ' Candidatus Liberibacter solanacearum', Can Repress Plant Immune Response. PHYTOPATHOLOGY 2020; 110:648-655. [PMID: 31697198 DOI: 10.1094/phyto-07-19-0252-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
'Candidatus Liberibacter solanacearum' is a plant pathogen affecting the families Solanaceae and Apiaceae in different parts of the world. 'Ca. L. solanacearum' is a Gram-negative, fastidious α-proteobacterium that is vectored by different psyllid species. Plant-pathogenic bacteria are known for interfering with the host physiology or defense mechanisms, often by secreting bacterial effectors. Effector proteins are critical for virulence; therefore, the identification of effectors could help with disease management. In this study, we characterized the Sec-translocon-dependent 'Ca. L. solanacearum'-hypothetical protein effector 1 (Lso-HPE1). We compared this protein sequence in the different 'Ca. L. solanacearum' haplotypes. We predicted the signal peptide and validated its function using Escherichia coli's alkaline phosphatase fusion assay. Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana demonstrated that Lso-HPE1 from 'Ca. L. solanacearum' haplotypes A and B were able to inhibit the induction of cell death in plants. We also compared gene expression of the Lso-HPE1- transcripts in 'Ca. L. solanacearum' haplotypes A and B in tomato and in the vector Bactericera cockerelli. This work validates the identification of a Sec-translocon-dependent 'Ca. L. solanacearum' protein possibly involved in suppression of plant cell death.
Collapse
Affiliation(s)
- Julien G Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843
| | - Rachel Gross
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844
| | | | - Xiaotian Tang
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Kevin Babilonia
- Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843
| | - Libo Shan
- Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843
| | - Joseph C Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844
| | | | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844
| | | |
Collapse
|
17
|
Albuquerque Tomilhero Frias A, Ibanez F, Mendoza A, de Carvalho Nunes WM, Tamborindeguy C. Effects of "Candidatus Liberibacter solanacearum" (haplotype B) on Bactericera cockerelli fitness and vitellogenesis. INSECT SCIENCE 2020; 27:58-68. [PMID: 29676854 DOI: 10.1111/1744-7917.12599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
"Candidatus Liberibacter solanacearum" (Lso) are phloem-restricted and unculturable Gram-negative bacteria. Presently five haplotypes have been identified worldwide; but only haplotypes A and B are associated with the vector Bactericera cockerelli (Šulc.) in the Americas. Previous studies showed that Lso-infection reduces B. cockerelli reproductive output and that Lso haplotype B is more pathogenic than Lso haplotype A. To understand the interaction of Lso haplotype B and B. cockerelli, the fitness of Lso-free and Lso B-infected insects, and the expression of vitellogenin (BcVg1-like), a gene involved directly in the insect reproduction were analyzed. Statistical differences in the number of eggs oviposited, and the total number of progeny nymphs and adults were found among crosses of insects with or without Lso. Significant differences in sex proportions were found between Lso B-infected and Lso-free crosses: a higher proportion of F1 adult females were obtained from Lso B-infected mothers. A significant reduction of BcVg1-like was observed in crosses performed with Lso B-infected females compared to the Lso-free insects. In female cohorts of different age, a significant reduction of BcVg1-like expression was measured in 7-d-old Lso B-infected females (virgin and mated) compared with 7-d-old Lso-free females (virgin and mated), respectively. The reduction of BcVg1-like transcript was associated with a lower number of developing oocytes observed in female's reproductive systems. Overall, this study represents the first step to understand the interaction of Lso B with B. cockerelli, highlighting the effect of Lso B infection on egg production, BcVg1-like expression, and oocyte development.
Collapse
Affiliation(s)
- Angélica Albuquerque Tomilhero Frias
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
- UEM-Depto. de Agronomia, Núcleo de Pesquisa em Biotecnologia Aplicada, Maringá, Brazil
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| | - Azucena Mendoza
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| | | | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| |
Collapse
|
18
|
Meng L, Li X, Cheng X, Zhang H. 16S rRNA Gene Sequencing Reveals a Shift in the Microbiota of Diaphorina citri During the Psyllid Life Cycle. Front Microbiol 2019; 10:1948. [PMID: 31507561 PMCID: PMC6716071 DOI: 10.3389/fmicb.2019.01948] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023] Open
Abstract
The Asian citrus psyllid (Diaphorina citri) is a major pest of citrus trees as it transmits Candidatus Liberibacter asiaticus (CLas). The composition of a host’s microbiota can affect the evolution and ecological distribution of the host. This study monitored the compositional shifts in the citrus psyllid microbiota through all the life stages (egg, nymph 1–5 stages, and adult) by next-generation sequencing (NGS) and quantitative real-time PCR. There were clear differences in both α- and β-diversity of microbiota through the psyllid life stages. Microbiota diversity was markedly higher in the nymph 2–5 stages than in the adult, egg, and nymph 1 stages. Proteobacteria were dominant in all the life stages of D. citri, representing >97.5% of the total bacterial community, and Candidatus Profftella armature was the dominant genus in all the life stages. Data from the qPCR analysis showed an exponential increase in the populations of three D. citri endosymbionts: Candidatus Profftella armature, Candidatus Carsonella ruddii, and Wolbachia. The gut bacterium Pantoea was present in all the life stages, but it was markedly higher in the nymph 2–5 stages. The microbiota composition substantially differed among the egg–nymph 1, nymphs 2–5, and adult stages. Therefore, we successfully characterized the microbiota dynamics and thus identified a microbiota shift during the life cycle of D. citri by 16S rRNA gene sequencing and quantitative PCR. Moreover, 16S rRNA gene sequencing suggested that D. citri acquired the ability to bear CLas in the nymph 1 stage. This study enhances our understanding of microbial establishment in the developing D. citri and provides a reference resource for the identification of potential biocontrol approaches against this pest.
Collapse
Affiliation(s)
- Lixue Meng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqin Cheng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), College of Plant Science and Technology, Institute of Urban and Horticultural Entomology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Hosseinzadeh S, Ramsey J, Mann M, Bennett L, Hunter WB, Shams-Bakhsh M, Hall DG, Heck M. Color morphology of Diaphorina citri influences interactions with its bacterial endosymbionts and 'Candidatus Liberibacter asiaticus'. PLoS One 2019; 14:e0216599. [PMID: 31095639 PMCID: PMC6522040 DOI: 10.1371/journal.pone.0216599] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
Diaphorina citri is a vector of 'Candidatus Liberibacter asiaticus,' (CLas), associated with Huanglongbing, (HLB, or citrus greening) disease in citrus. D. citri exhibits three different color morph variants, blue, gray and yellow. Blue morphs have a greater capacity for long-distance flight as compared to non-blue morphs, but little else is known about how color morphology influences vector characteristics. In this study, we show that the color morphology of the insect is derived from pigmented cells of the fat body. Blue morphs acquire a lower level of CLas in their bodies from infected trees as compared to their gray and yellow conspecifics, referred to in this paper collectively as non-blue morphs. Accordingly, CLas titer in citrus leaves inoculated by non-blue insects was 6-fold higher than in leaves inoculated by blue insects. Blue color morphs harbored lower titers of Wolbachia and 'Candidatus Profftella armatura,' two of the D. citri bacterial endosymbionts. Expression of hemocyanin, a copper-binding oxygen transport protein responsible for the blue coloration of hemolymph of other arthropods and mollusks, was previously correlated with blue color morphology and is highly up-regulated in insects continuously reared on CLas infected citrus trees. Based on our results, we hypothesized that a reduction of hemocyanin expression would reduce the D. citri immune response and an increase in the titer of CLas would be observed. Surprisingly, a specific 3-fold reduction of hemocyanin-1 transcript levels using RNA silencing in blue adult D. citri morphs had an approximately 2-fold reduction on the titer of CLas. These results suggest that hemocyanin signaling from the fat body may have multiple functions in the regulation of bacterial titers in D. citri, and that hemocyanin is one of multiple psyllid genes involved in regulating CLas titer.
Collapse
Affiliation(s)
- Saeed Hosseinzadeh
- Boyce Thompson Institute, Ithaca, NY, United States of America
- Department of Plant Pathology, Tarbiat Modares University, Tehran, Iran
| | - John Ramsey
- Boyce Thompson Institute, Ithaca, NY, United States of America
- USDA ARS Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States of America
| | - Marina Mann
- Boyce Thompson Institute, Ithaca, NY, United States of America
| | - Lily Bennett
- Boyce Thompson Institute, Ithaca, NY, United States of America
| | - Wayne B. Hunter
- US Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, United States of America
| | | | - David G. Hall
- US Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, United States of America
| | - Michelle Heck
- Boyce Thompson Institute, Ithaca, NY, United States of America
- USDA ARS Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States of America
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
- * E-mail: ,
| |
Collapse
|
20
|
Mendoza-Herrera A, Levy J, Harrison K, Yao J, Ibanez F, Tamborindeguy C. Infection by Candidatus Liberibacter solanacearum' haplotypes A and B in Solanum lycopersicum 'Moneymaker'. PLANT DISEASE 2018; 102:2009-2015. [PMID: 30133358 DOI: 10.1094/pdis-12-17-1982-re] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
'Candidatus Liberibacter solanacearum' is a plant pathogen associated with diseases affecting several crops of the Solanaceae and Apiaceae families. Two 'Ca. L. solanacearum' haplotypes (LsoA and LsoB) infect solanaceous crops in North America and are transmitted by the tomato psyllid Bactericera cockerelli. Although both 'Ca. L. solanacearum' haplotypes cause zebra chip in potato, the diseases associated with each haplotype in tomato (Solanum lycopersicum) have not been described. 'Ca. L. solanacearum'-infected tomato plants exhibit symptoms resembling those of permanent yellowing disease (known in Mexico as "permanente del tomate") and sometimes called psyllid yellows. In this study, the symptoms associated with each 'Ca. L. solanacearum' haplotype in tomato were compared, and the bacterial abundance in different nodes of the plants was measured by quantitative polymerase chain reaction. Surprisingly, both plant phenotype and bacterium distribution were different between LsoA- and LsoB-infected plants. Plants infected with LsoB died prematurely, whereas those infected with LsoA did not. Across the measured time points, LsoB abundance in infected plants was consistent with previous reports describing a sink to source gradient, while such gradient was only observed in LsoA-infected plants early after infection. This is the first report describing the differences in symptoms in tomato associated with two 'Ca. L. solanacearum' haplotypes, LsoA and LsoB.
Collapse
Affiliation(s)
| | | | | | - Jianxiu Yao
- Department of Entomology, Texas A&M University, College Station 77843
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station 77843
| | | |
Collapse
|
21
|
Huot OB, Levy JG, Tamborindeguy C. Global gene regulation in tomato plant (Solanum lycopersicum) responding to vector (Bactericera cockerelli) feeding and pathogen ('Candidatus Liberibacter solanacearum') infection. PLANT MOLECULAR BIOLOGY 2018; 97:57-72. [PMID: 29619663 DOI: 10.1007/s11103-018-0724-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/28/2018] [Indexed: 05/24/2023]
Abstract
Different responses are elicited in tomato plants by Bactericera cockerelli harboring or not the pathogen 'Candidatus Liberibacter solanacearum'. 'Candidatus Liberibacter solanacearum' (Lso) has emerged as a major pathogen of crops worldwide. This bacterial pathogen is transmitted by Bactericera cockerelli, the tomato psyllid, to solanaceous crops. In this study, the transcriptome profiles of tomato (Solanum lycopersicum) exposed to B. cockerelli infestation and Lso infection were evaluated at 1, 2 and 4 weeks following colonization and/or infection. The plant transcriptional responses to Lso-negative B. cockerelli were different than plant responses to Lso-positive B. cockerelli. The comparative transcriptome analyses of plant responses to Lso-negative B. cockerelli revealed the up-regulation of genes associated with plant defenses regardless of the time-point. In contrast, the general responses to Lso-positive B. cockerelli and Lso-infection were temporally different. Infected plants down-regulated defense genes at week one while delayed the up-regulation of the defense genes until weeks two and four, time points in which early signs of disease development were also detected in the transcriptional response. For example, infected plants regulated carbohydrate metabolism genes which could be linked to the disruption of sugar distribution usually associated with Lso infection. Also, infected plants down-regulated photosynthesis-related genes potentially resulting in plant chlorosis, another symptom associated with Lso infection. Overall, this study highlights that tomato plants induce different sets of genes in response to different stages of B. cockerelli infestation and Lso infection. This is the first transcriptome study of tomato responses to B. cockerelli and Lso, a first step in the direction of finding plant defense genes to enhance plant resistance.
Collapse
Affiliation(s)
- Ordom Brian Huot
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Julien Gad Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
22
|
Ravindran A, Saenkham P, Levy J, Tamborindeguy C, Lin H, Gross DC, Pierson E. Characterization of the Serralysin-Like Gene of 'Candidatus Liberibacter solanacearum' Associated with Potato Zebra Chip Disease. PHYTOPATHOLOGY 2018; 108:327-335. [PMID: 29106346 DOI: 10.1094/phyto-02-17-0064-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nonculturable bacterium 'Candidatus Liberibacter solanacearum' is the causative agent of zebra chip disease in potato. Computational analysis of the 'Ca. L. solanacearum' genome revealed a serralysin-like gene based on conserved domains characteristic of genes encoding metalloprotease enzymes similar to serralysin. Serralysin and other serralysin family metalloprotease are typically characterized as virulence factors and are secreted by the type I secretion system (T1SS). The 'Ca. L. solanacearum' serralysin-like gene is located next to and divergently transcribed from genes encoding a T1SS. Based on its relationship to the T1SS and the role of other serralysin family proteases in circumventing host antimicrobial defenses, it was speculated that a functional 'Ca. L. solanacearum' serralysin-like protease could be a potent virulence factor. Gene expression analysis showed that, from weeks 2 to 6, the expression of the 'Ca. L. solanacearum' serralysin-like gene was at least twofold higher than week 1, indicating that gene expression stays high as the disease progresses. A previously constructed serralysin-deficient mutant of Serratia liquefaciens FK01, an endophyte associated with insects, as well as an Escherichia coli lacking serralysin production were used as surrogates for expression analysis of the 'Ca. L. solanacearum' serralysin-like gene. The LsoA and LsoB proteins were expressed as both intact proteins and chimeric S. liquefaciens-'Ca. L. solanacearum' serralysin-like proteins to facilitate secretion in the S. liquefaciens surrogate and as intact proteins or as a truncated LsoB protein containing just the putative catalytic domains in the E. coli surrogate. None of the 'Ca. L. solanacearum' protein constructs expressed in either surrogate demonstrated proteolytic activity in skim milk or zymogram assays, or in colorimetric assays using purified protein, suggesting that the 'Ca. L. solanacearum' serralysin-like gene does not encode a functional protease, or at least not in our surrogate systems.
Collapse
Affiliation(s)
- Aravind Ravindran
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Panatda Saenkham
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Julien Levy
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Cecilia Tamborindeguy
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Hong Lin
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Dennis C Gross
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Elizabeth Pierson
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
23
|
Tamborindeguy C, Huot OB, Ibanez F, Levy J. The influence of bacteria on multitrophic interactions among plants, psyllids, and pathogen. INSECT SCIENCE 2017; 24:961-974. [PMID: 28493539 DOI: 10.1111/1744-7917.12474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 05/10/2023]
Abstract
The recent emergence of several plant diseases caused by psyllid-borne bacterial pathogens worldwide (Candidatus Liberibacter spp.) has created renewed interest on the interaction between psyllids and bacteria. In spite of these efforts to understand psyllid association with bacteria, many aspects of their interactions remain poorly understood. As more organisms are studied, subtleties on the molecular interactions as well as on the effects of the bacteria on the psyllid host are being uncovered. Additionally, psyllid-borne bacterial phytopathogens can also affect the host plant, which in turn can impact psyllid physiology and behavior. Here, we review the current literature on different aspects of the influence of bacteria on multitrophic interactions among plants, psyllids, and pathogens. We then highlight gaps that need to be addressed to advance this field, which can have significant implications for controlling these newly emergent and other plant diseases.
Collapse
Affiliation(s)
| | - Ordom Brian Huot
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
24
|
Seri Masran SNA, Ab Majid AH. Response to Tseng and Yang 2017. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1453-1462. [PMID: 28981881 DOI: 10.1093/jme/tjx137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Siti Nor Ain Seri Masran
- Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
- Department of Environmental Health, Faculty of Health Sciences, Universiti Teknologi MARA Malaysia, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Abdul Hafiz Ab Majid
- Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
25
|
Wang N, Stelinski LL, Pelz-Stelinski KS, Graham JH, Zhang Y. Tale of the Huanglongbing Disease Pyramid in the Context of the Citrus Microbiome. PHYTOPATHOLOGY 2017; 107:380-387. [PMID: 28095208 DOI: 10.1094/phyto-12-16-0426-rvw] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Huanglongbing (HLB) disease pyramid is composed of Liberibacters, psyllid vectors, citrus hosts, and the environment. The epidemiological outcomes for Liberibacter-associated plant diseases are collectively determined by the inherent relationships among plant-Liberibacters-psyllids, and how various environmental factors affect plant-Liberibacter-psyllid interactions. Citrus-Liberibacter-psyllid interactions occur in a complex microbiome system. In this review, we focus on the progress in understanding the HLB disease pyramid, and how the microbiome affects the HLB disease pyramid including the interaction between HLB and the citrus microbiome; the interaction between Liberibacters and psyllids; the interaction between Liberibacters and gut microbiota in psyllids; and the effect of HLB on selected above- and belowground citrus pathogens. Their implications for HLB management are also discussed.
Collapse
Affiliation(s)
- Nian Wang
- First and fifth authors: Department of Microbiology and Cell Science, second and third authors: Department of Entomology and Nematology, and fourth author: Department of Soil and Water Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL
| | - Lukasz L Stelinski
- First and fifth authors: Department of Microbiology and Cell Science, second and third authors: Department of Entomology and Nematology, and fourth author: Department of Soil and Water Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL
| | - Kirsten S Pelz-Stelinski
- First and fifth authors: Department of Microbiology and Cell Science, second and third authors: Department of Entomology and Nematology, and fourth author: Department of Soil and Water Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL
| | - James H Graham
- First and fifth authors: Department of Microbiology and Cell Science, second and third authors: Department of Entomology and Nematology, and fourth author: Department of Soil and Water Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL
| | - Yunzeng Zhang
- First and fifth authors: Department of Microbiology and Cell Science, second and third authors: Department of Entomology and Nematology, and fourth author: Department of Soil and Water Sciences, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL
| |
Collapse
|
26
|
Yao J, Saenkham P, Levy J, Ibanez F, Noroy C, Mendoza A, Huot O, Meyer DF, Tamborindeguy C. Interactions "Candidatus Liberibacter solanacearum"-Bactericera cockerelli: Haplotype Effect on Vector Fitness and Gene Expression Analyses. Front Cell Infect Microbiol 2016; 6:62. [PMID: 27376032 PMCID: PMC4899927 DOI: 10.3389/fcimb.2016.00062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/25/2016] [Indexed: 01/18/2023] Open
Abstract
"Candidatus Liberibacter solanacearum" (Lso) has emerged as a serious threat world-wide. Five Lso haplotypes have been identified so far. Haplotypes A and B are present in the Americas and/or New Zealand, where they are vectored to solanaceous plants by the potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae). The fastidious nature of these pathogens has hindered the study of the interactions with their eukaryotic hosts (vector and plant). To understand the strategies used by these pathogens to infect their vector, the effects of each Lso haplotype (A or B) on psyllid fitness was investigated, and genome-wide transcriptomic and RT-qPCR analyses were performed to evaluate Lso gene expression in association with its vector. Results showed that psyllids infected with haplotype B had significantly lower percentage of nymphal survival compared to psyllids infected with haplotype A. Although overall gene expression across Lso genome was similar between the two Lso haplotypes, differences in the expression of key candidate genes were found. Among the 16 putative type IV effector genes tested, four of them were differentially expressed between Lso haplotypes, while no differences in gene expression were measured by qPCR or transcriptomic analysis for the rest of the genes. This study provides new information regarding the pathogenesis of Lso haplotypes in their insect vector.
Collapse
Affiliation(s)
- Jianxiu Yao
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Panatda Saenkham
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M UniversityCollege Station, TX, USA
| | - Freddy Ibanez
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Christophe Noroy
- CIRAD, UMR CMAEEPetit-Bourg, Guadeloupe, France
- Institut National de la Recherche Agronomique, UMR1309 CMAEEMontpellier, France
- Université des Antilles, Pointe-à-PitreGuadeloupe, France
| | - Azucena Mendoza
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Ordom Huot
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Damien F. Meyer
- CIRAD, UMR CMAEEPetit-Bourg, Guadeloupe, France
- Institut National de la Recherche Agronomique, UMR1309 CMAEEMontpellier, France
| | | |
Collapse
|
27
|
Hall AAG, Morrow JL, Fromont C, Steinbauer MJ, Taylor GS, Johnson SN, Cook JM, Riegler M. Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ Microbiol 2016; 18:2591-603. [DOI: 10.1111/1462-2920.13351] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/20/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Aidan A. G. Hall
- Hawkesbury Institute for the Environment, Western Sydney University; Penrith NSW 2751 Australia
| | - Jennifer L. Morrow
- Hawkesbury Institute for the Environment, Western Sydney University; Penrith NSW 2751 Australia
| | - Caroline Fromont
- Hawkesbury Institute for the Environment, Western Sydney University; Penrith NSW 2751 Australia
| | - Martin J. Steinbauer
- Department of Ecology, Environment & Evolution; La Trobe University; Melbourne VIC 3084 Australia
| | - Gary S. Taylor
- Australian Centre for Evolutionary Biology and Biodiversity; The University of Adelaide; Adelaide SA 5005 Australia
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University; Penrith NSW 2751 Australia
| | - James M. Cook
- Hawkesbury Institute for the Environment, Western Sydney University; Penrith NSW 2751 Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University; Penrith NSW 2751 Australia
| |
Collapse
|
28
|
Pennington MJ, Prager SM, Walton WE, Trumble JT. Culex quinquefasciatus larval microbiomes vary with instar and exposure to common wastewater contaminants. Sci Rep 2016; 6:21969. [PMID: 26912375 PMCID: PMC4766396 DOI: 10.1038/srep21969] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/03/2016] [Indexed: 11/09/2022] Open
Abstract
Like many insects, mosquitoes, rely on endosymbionts to grow and develop. These can be acquired from the environment. We used next generation 454 pyrosequencing to discern the whole-body microbiome of the mosquito species Culex quinquefasciatus in various larval stadia and following exposure to common pharmaceutical and personal care products (PPCPs) found in wastewater. PPCP treatments included environmentally-relevant concentrations; 1) a combination of common antibiotics, 2) a combination of mammalian hormones, 3) a mixture of the antibiotic and hormone treatments plus acetaminophen and caffeine and, 4) an untreated control. Within control groups, the predominant families of bacterial symbionts change with each larval instar despite consistent diets and rearing conditions. This trend was also seen in hormone treatments but not in the antibiotic or the mixture treatments. Richness and evenness were reduced in both antibiotic and mixture treatments, suggesting that antibiotics remove certain bacteria or inhibit them from increasing to proportions seen in the control treatment. Interestingly, the mixture treatments had greater richness and evenness compared to antibiotic alone treatments, possibly due to the other contaminants facilitating growth of different bacteria. These findings illuminate the complexity of the microbiome of C. quinquefasciatus and may have implications for more effective control strategies.
Collapse
Affiliation(s)
- Marcus J. Pennington
- Department of Entomology, University of California, Riverside, USA
- Graduate Program in Environmental Toxicology, University of California, Riverside, USA
| | - Sean M. Prager
- Department of Entomology, University of California, Riverside, USA
| | | | - John T. Trumble
- Department of Entomology, University of California, Riverside, USA
- Graduate Program in Environmental Toxicology, University of California, Riverside, USA
| |
Collapse
|
29
|
Ultrastructure of the salivary glands, alimentary canal and bacteria-like organisms in the Asian citrus psyllid, vector of citrus huanglongbing disease bacteria. J Microsc Ultrastruct 2016; 5:9-20. [PMID: 30023232 PMCID: PMC6014262 DOI: 10.1016/j.jmau.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 11/22/2022] Open
Abstract
The Asian citrus psyllid (ACP, Diaphorina citri, Hemiptera: Liviidae) is the principal vector of Candidatus Liberibacter asiaticus (Las), the putative bacterial agent of citrus greening/huanglongbing (HLB); currently the most serious citrus disease worldwide. Las is transmitted in a persistent–propagative manner by ACP, and the salivary glands and midgut have been suggested as transmission barriers that can impede translocation of Las within the vector. However, no detailed ultrastructural studies have been reported on these organs in this or other psyllid species, although some bacterium-like structures have been described in them and assumed to be the causal agents of HLB. In this study, we describe the ultrastructure of the salivary glands, filter chamber, other parts of the alimentary canal, and other organs and tissues of ACP including the compound ganglionic mass (in the thorax) and the bacteriome (in the abdomen). Furthermore, in addition to two ultrastructurally apparently different symbiotic bacteria found in the bacteriome, other morphological types of bacteria were found in the gut epithelial cells and salivary glands of both Las-infected (quantitative polymerase chain reaction positive) and noninfected (quantitative polymerase chain reaction negative) ACP. These results show the importance of immunolabeling, fluorescence in situ hybridization, or other labeling techniques that must be used before identifying any bacterium-like structures in ACP or other vectors as Las or other possible agents of HLB. This ultrastructural investigation should help future work on the cellular and subcellular aspects of pathogen–psyllid relationships, including the study of receptors, binding sites, and transmission barriers of Las and other pathogens within their psyllid vectors.
Collapse
|
30
|
Cicero JM, Fisher TW, Brown JK. Localization of 'Candidatus Liberibacter solanacearum' and Evidence for Surface Appendages in the Potato Psyllid Vector. PHYTOPATHOLOGY 2016; 106:142-154. [PMID: 26551449 DOI: 10.1094/phyto-04-15-0088-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The potato psyllid Bactericera cockerelli is implicated as the vector of the causal agent of zebra chip of potato and vein-greening of tomato diseases. Until now, visual identification of bacteria in the genus 'Candidatus Liberibacter' has relied on direct imaging by light and electron microscopy without labeling, or with whole-organ fluorescence labeling only. In this study, aldehyde fixative followed by a coagulant fixative, was used to process adult psyllids for transmission electron microscopy (TEM) colloidal gold in situ hybridization experiments. Results indicated that 'Ca. Liberibacter solanacearum' (CLso)-specific DNA probes annealed to a bacterium that formed extensive, monocultural biofilms on gut, salivary gland, and oral region tissues, confirming that it is one morphotype of potentially others, that is rod-shaped, approximately 2.5 µm in diameter and of variable length, and has a rough, granular cytosol. In addition, CLso, prepared from shredded midguts, and negatively stained for TEM, possessed pili- and flagella-like surface appendages. Genes implicating coding capacity for both types of surface structures are encoded in the CLso genome sequence. Neither type was seen for CLso associated with biofilms within or on digestive organs, suggesting that their production is stimulated only in certain environments, putatively, in the gut during adhesion leading to multiplication, and in hemolymph to afford systemic invasion.
Collapse
Affiliation(s)
- J M Cicero
- First, second, and third authors: School of Plant Sciences, 303 Forbes Bld., University of Arizona, Tucson 85721
| | - T W Fisher
- First, second, and third authors: School of Plant Sciences, 303 Forbes Bld., University of Arizona, Tucson 85721
| | - J K Brown
- First, second, and third authors: School of Plant Sciences, 303 Forbes Bld., University of Arizona, Tucson 85721
| |
Collapse
|
31
|
Lewis OM, Michels GJ, Pierson EA, Heinz KM. A Predictive Degree Day Model for the Development of Bactericera cockerelli (Hemiptera: Triozidae) Infesting Solanum tuberosum. ENVIRONMENTAL ENTOMOLOGY 2015; 44:1201-1209. [PMID: 26314066 DOI: 10.1093/ee/nvv078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a pest of potato (Solanum tuberosum L.) that vectors the bacterium that putatively causes zebra chip disease in potatoes, 'Candidatus Liberibacter solanacearum.' Zebra chip disease is managed by controlling populations of B. cockerelli in commercial potato fields. Lacking an integrated pest management strategy, growers have resorted to an intensive chemical control program that may be leading to insecticide-resistant B. cockerelli populations in south Texas and Mexico. To initiate the development of an integrated approach of controlling B. cockerelli, we used constant temperature studies, nonlinear and linear modeling, and field sampling data to determine and validate the degree day parameters for development of B. cockerelli infesting potato. Degree day model predictions for three different B. cockerelli life stages were tested against data collected from pesticide-free plots. The model was most accurate at predicting egg-to-egg and nymph-to-nymph peaks, with less accuracy in predicting adult-to-adult peaks. It is impractical to predict first occurrence of B. cockerelli in potato plantings as adults are present as soon cotyledons break through the soil. Therefore, we suggest integrating the degree day model into current B. cockerelli management practices using a two-phase method. Phase 1 occurs from potato planting through to the first peak in a B. cockerelli field population, which is managed using current practices. Phase 2 begins with the first B. cockerelli population peak and the degree day model is initiated to predict the subsequent population peaks, thus providing growers a tool to proactively manage this pest.
Collapse
Affiliation(s)
- O M Lewis
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475.
| | - G J Michels
- Texas A&M AgriLife Research and Extension Center, 6500 Amarillo Blvd., West Amarillo, TX 79106
| | - E A Pierson
- Department of Horticultural Sciences, Texas A&M University, 202 HSF Building, College Station, TX 77843
| | - K M Heinz
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475
| |
Collapse
|
32
|
Pennington MJ, Rivas NG, Prager SM, Walton WE, Trumble JT. Pharmaceuticals and personal care products alter the holobiome and development of a medically important mosquito. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:199-207. [PMID: 25913146 DOI: 10.1016/j.envpol.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
The increasing demand for fresh water has forced many countries to use reclaimed wastewater for agricultural purposes. This water contains pharmaceuticals and personal care products (PPCPs) that remain biologically active following passage through wastewater treatment plants. Run-off from farms and contaminated water from treatment facilities exposes aquatic ecosystems to PPCPs. This study examined the effects of PPCPs on a lower trophic organism. Culex quinquefasciatus larvae were reared in water contaminated with environmentally relevant concentrations of common PPCPs. Acetaminophen alone and a mixture of contaminants were found to increase developmental time of larvae. Susceptibility to Bti increased in larvae exposed to antibiotics, acetaminophen, or a mixture of PPCPs. Antibiotics, hormones, and the mixture altered the mosquito bacterial microbiome. Overall, the results indicate that at environmentally relevant concentrations, PPCPs in reclaimed water can have biologically important effects on an ecologically and medically important lower trophic level insect.
Collapse
Affiliation(s)
- Marcus J Pennington
- Department of Entomology, University of California, Riverside, CA 92521, USA; Graduate Program in Environmental Toxicology, University of California, Riverside, CA 92521, USA.
| | - Nicholas G Rivas
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Sean M Prager
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - William E Walton
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - John T Trumble
- Department of Entomology, University of California, Riverside, CA 92521, USA; Graduate Program in Environmental Toxicology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
33
|
Overholt WA, Diaz R, Rosskopf E, Green SJ, Overholt WA. Deep Characterization of the Microbiomes of Calophya spp. (Hemiptera: Calophyidae) Gall-Inducing Psyllids Reveals the Absence of Plant Pathogenic Bacteria and Three Dominant Endosymbionts. PLoS One 2015; 10:e0132248. [PMID: 26161659 PMCID: PMC4498736 DOI: 10.1371/journal.pone.0132248] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/11/2015] [Indexed: 02/01/2023] Open
Abstract
Bacteria associated with sap-feeding insect herbivores include not only symbionts that may increase their hosts’ fitness but also harmful plant pathogens. Calophya spp. gall-inducing psyllids (Hemiptera: Calophyidae) are being investigated for their potential as biological control agents of the noxious weed, Brazilian peppertree (Schinus terebinthifolia), in Florida. Although there are no examples of plant pathogen transmission by members of the family Calophyidae, several insects in the superfamily Psylloidea are known to transmit pathogenic bacteria in the genera Candidatus Liberibacter and Candidatus Phytoplasma. To determine whether Calophya spp. harbor potentially harmful plant pathogenic bacteria, we sequenced small subunit (SSU) ribosomal RNA (rRNA) gene amplicons generated from individuals from four Calophya spp. populations. All microbial SSU gene sequences fell into the bacterial domain, with 98-99% belonging to the Proteobacteria. The Calophya microbiomes contained a relatively simple community, with 49-79 operational taxonomic units (OTUs; 97%) detected, and only 5-8 OTUs with greater than 1% abundance. Candidatus Carsonella showed the highest relative abundance, with OTUs from this candidate genus representing between 51 – 65% of all recovered sequences. The next most abundant clade observed was an unclassified Enterobacteriacae group closely related to bacteria from the genera Buchnera and Blochmannia that ranged from 20-31% in relative abundance. Wolbachia populations were the third most abundant group and represented 7-27% of the diversity in microbial OTUs. No SSU rRNA gene sequences from putative pathogenic bacteria from the genera Ca. Liberibacter or Ca. Phytoplasma were detected in the microbiomes of the four Calophya populations. The probability that infected psyllids were present in our colonies, but were not sampled, was extremley low (1.39 x 10-10). As far as we are aware, our study is the first to characterize the microbiome of a candidate biological control agent, and coupled with previous work demonstrating a high degree of host specificity and absence of plant viruses, suggests that releasing Calophya spp. in United States poses minimal risk to non-target plants.
Collapse
Affiliation(s)
- Will A Overholt
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Rodrigo Diaz
- Department of Entomology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Erin Rosskopf
- United States Horticultural Research Laboratory, United States Department of Agriculture, Fort Pierce, Florida, United States of America
| | - Stefan J Green
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - William A Overholt
- Biological Control Research and Containment Laboratory, University of Florida, Fort Pierce, Florida, United States of America
| |
Collapse
|
34
|
Cooper WR, Garczynski SF, Horton DR. Relative Abundance of Carsonella ruddii (Gamma Proteobacterium) in Females and Males of Cacopsylla pyricola (Hemiptera: Psyllidae) and Bactericera cockerelli (Hemiptera: Triozidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev050. [PMID: 26056318 PMCID: PMC4535576 DOI: 10.1093/jisesa/iev050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Carsonella ruddii (Gamma Proteobacterium) is an obligate bacterial endosymbiont of psyllids that produces essential amino acids that are lacking in the insect's diet. Accurate estimations of Carsonella populations are important to studies of Carsonella-psyllid interactions and to developing ways to target Carsonella for control of psyllid pests including pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae) and potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae). We used two methods, namely fluorescence in situ hybridization and quantitative polymerase chain reaction (qPCR), to estimate relative abundance of Carsonella in bacteriocytes and whole bodies of psyllids, respectively. Using these two methods, we compared Carsonella populations between female and male insects. Estimations using fluorescence in situ hybridization indicated that Carsonella was more abundant in bacteriocytes of female C. pyricola than in those of males, but Carsonella abundance in bacteriocytes did not differ between sexes of B. cockerelli. Analyses by qPCR using whole-body specimens indicated Carsonella was more abundant in females than in males of both psyllids. Neither fluorescence in situ hybridization nor qPCR indicated that Carsonella populations differed in abundance among adults of different ages (0-3 wk after adult eclosion). Using fluorescence in situ hybridization, Carsonella was observed in ovarioles of newly emerged females and formed an aggregation in the posterior end of mature oocytes. Results of our study indicate that female psyllids harbor greater populations of Carsonella than do males and that sex should be controlled for in studies which require estimations of Carsonella populations.
Collapse
Affiliation(s)
- W Rodney Cooper
- USDA-ARS, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Rd., Wapato, WA 98951
| | - Stephen F Garczynski
- USDA-ARS, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Rd., Wapato, WA 98951
| | - David R Horton
- USDA-ARS, Yakima Agricultural Research Laboratory, 5230 Konnowac Pass Rd., Wapato, WA 98951
| |
Collapse
|
35
|
Fisher TW, Vyas M, He R, Nelson W, Cicero JM, Willer M, Kim R, Kramer R, May GA, Crow JA, Soderlund CA, Gang DR, Brown JK. Comparison of potato and asian citrus psyllid adult and nymph transcriptomes identified vector transcripts with potential involvement in circulative, propagative liberibacter transmission. Pathogens 2014; 3:875-907. [PMID: 25436509 PMCID: PMC4282890 DOI: 10.3390/pathogens3040875] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023] Open
Abstract
The potato psyllid (PoP) Bactericera cockerelli (Sulc) and Asian citrus psyllid (ACP) Diaphorina citri Kuwayama are the insect vectors of the fastidious plant pathogen, Candidatus Liberibacter solanacearum (CLso) and Ca. L. asiaticus (CLas), respectively. CLso causes Zebra chip disease of potato and vein-greening in solanaceous species, whereas, CLas causes citrus greening disease. The reliance on insecticides for vector management to reduce pathogen transmission has increased interest in alternative approaches, including RNA interference to abate expression of genes essential for psyllid-mediated Ca. Liberibacter transmission. To identify genes with significantly altered expression at different life stages and conditions of CLso/CLas infection, cDNA libraries were constructed for CLso-infected and -uninfected PoP adults and nymphal instars. Illumina sequencing produced 199,081,451 reads that were assembled into 82,224 unique transcripts. PoP and the analogous transcripts from ACP adult and nymphs reported elsewhere were annotated, organized into functional gene groups using the Gene Ontology classification system, and analyzed for differential in silico expression. Expression profiles revealed vector life stage differences and differential gene expression associated with Liberibacter infection of the psyllid host, including invasion, immune system modulation, nutrition, and development.
Collapse
Affiliation(s)
- Tonja W Fisher
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Meenal Vyas
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | - Joseph M Cicero
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Mark Willer
- BIO5, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ryan Kim
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - Robin Kramer
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - Greg A May
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - John A Crow
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | | | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
36
|
Montagna M, Chouaia B, Sacchi L, Porretta D, Martin E, Giorgi A, Lozzia GC, Epis S. A new strain of Wolbachia in an alpine population of the viviparous Oreina cacaliae (Coleoptera: Chrysomelidae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:913-922. [PMID: 25182613 DOI: 10.1603/en13228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microbial symbionts played a central role in insect evolution. Oreina cacaliae (Schrank, 1785) (Coleoptera: Chrysomelidae) is a rare example of a viviparous insect, able to feed on toxic plants and sequester toxic compounds. In the current study, the microbiota associated with O. cacaliae was characterized using a culture-independent approach, targeting the 16S rRNA bacterial gene. The obtained 16S rRNA gene sequences were analyzed and identified at different taxonomic levels. Wolbachia was the dominant bacterium, both in male and female (100 and 91.9%, respectively) individuals; the detected Wolbachia was described as a new sequence type based on multilocus sequence typing (Wolbachia ST375 Ocac_A_wVdO). After phylogenetic analyses, Wolbachia ST375 Ocac_A_wVdO was attributed to the supergroup A. Immunofluorescence assays and electron microscopy confirmed the presence of Wolbachia within O. cacaliae oocytes, confirming its transovarial transmission in this species. Representatives of six species of Oreina were tested for the presence of Wolbachia through specific polymerase chain reaction, and a dendrogram was generated for these species based on coxI gene sequences. The Wolbachia harbored by different species of Oreina were characterized by multilocus sequence typing. Five out of the six examined Oreina species were positive for Wolbachia, with four of these harboring the same sequence type.
Collapse
Affiliation(s)
- Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ibanez F, Levy J, Tamborindeguy C. Transcriptome analysis of "Candidatus Liberibacter solanacearum" in its psyllid vector, Bactericera cockerelli. PLoS One 2014; 9:e100955. [PMID: 24992557 PMCID: PMC4081026 DOI: 10.1371/journal.pone.0100955] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022] Open
Abstract
"Candidatus Liberibacter solanacearum" (Lso) is an emergent pathogen of carrots in Europe and solanaceous plants in North and Central America and New Zealand. This bacterium is closely related to other pathogenic Candidatus Liberibacter spp., all vectored by psyllids. In order to understand the molecular interaction of this pathogen and its psyllid vector, Bactericera cockerelli, Illumina sequencing of psyllid harboring Lso was performed to determine if this approach could be used to assess the bacterial transcriptome in this association. Prior to sequencing, psyllid RNA was purified and insect and bacterial rRNA were removed. Mapping of reads to Lso genome revealed that over 92% of the bacterial genes were expressed in the vector, and that the COG categories Translation and Post-translational modification, protein turnover, chaperone functions were the most expressed functional categories. Expression levels of selected Lso genes were confirmed by RT-qPCR. The transcriptomic analysis also helped correct Lso genome annotation by identifying the expression of genes that were not predicted in the genome sequencing effort.
Collapse
Affiliation(s)
- Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
38
|
Arp A, Munyaneza JE, Crosslin JM, Trumble J, Bextine B. A global comparison of Bactericera cockerelli (Hemiptera: Triozidae) microbial communities. ENVIRONMENTAL ENTOMOLOGY 2014; 43:344-52. [PMID: 24517908 DOI: 10.1603/en13256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The potato psyllid (Bactericera cockerelli Sulc) is an economically important insect pest of solanaceous crops such as potato, tomato, pepper, and tobacco. Historically, the potato psyllid's range included central United States, Mexico, and California; more recently, populations of this insect have been reported in Central America, the Pacific Northwest, and New Zealand. Like most phytophagous insects, potato psyllids require symbiotic bacteria to compensate for nutritional deficiencies in their diet. Potato psyllids harbor the primary symbiont, Candidatus Carsonella ruddii, and may also harbor many secondary symbionts such as Wolbachia sp., Sodalis sp., Pseudomonas sp., and others. These secondary symbionts can have an effect on reproduction, nutrition, immune response, and resistances to heat or pesticides. To identify regional differences in potato psyllid bacterial symbionts, 454 pyrosequencing was performed using generic 16S rRNA gene primers. Analysis was performed using the Qiime 1.6.0 software suite, ARB Silva, and R. Operational taxonomic units were then grouped at 97% identity. Representative sequences were classified to genus using the ARB SILVA database. Potato psyllids collected in California contained a less diverse microbial community than those collected in the central United States and Central America. The crop variety, collection year, and haplotype did not seem to affect the microbial community in potato psyllids. The primary difference between psyllids in different regions was the presence and overall bacterial community composition of Candidatus Carsonella ruddii and Wolbachia.
Collapse
Affiliation(s)
- Alex Arp
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | | | | | | | | |
Collapse
|
39
|
Bansal R, Mian MAR, Michel AP. Microbiome diversity of Aphis glycines with extensive superinfection in native and invasive populations. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:57-69. [PMID: 24596263 DOI: 10.1111/1758-2229.12108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/13/2013] [Indexed: 06/03/2023]
Abstract
Associations among insects and microbes can lead to beneficial or parasitic interactions. Using 454 sequencing of 16S RNA genes, we compared microbiome diversity and abundance among field-collected (F) and laboratory-reared (L) populations of the invasive soybean aphid (Aphis glycines), a pest of soybean. Additionally, we screened A. glycines populations from native (Japan, South Korea and China) and invasive regions (North America) to broadly determine the microbiome diversity. Our results suggested that Arsenophonus (relative abundance of 54.6%), Buchnera (38.7%) and Wolbachia (3.7%) were the major bacteria associated with A. glycines. Arsenophonus was the most abundant in F populations but was significantly reduced in L populations; additional bacteria species also had lower relative abundances in L populations. Native and invasive populations were largely similar in bacteria communities and revealed substantial superinfection of Arsenophonus and Wolbachia. The lone exception was a lack of Arsenophonus in A. glycines from Japan. Divergent selection pressures among natural and laboratory populations were inferred as factors driving the differential bacterial communities observed. Our results will allow for improved comparative aphid-symbiont research and broaden our understanding of the interactions among insects, endosymbionts and their environments.
Collapse
Affiliation(s)
- Raman Bansal
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | | | | |
Collapse
|
40
|
Nachappa P, Levy J, Pierson E, Tamborindeguy C. Correlation between "Candidatus Liberibacter solanacearum" infection levels and fecundity in its psyllid vector. J Invertebr Pathol 2013; 115:55-61. [PMID: 24211673 DOI: 10.1016/j.jip.2013.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/14/2013] [Accepted: 10/20/2013] [Indexed: 11/28/2022]
Abstract
The potato/tomato psyllid, Bactericera cockerelli (Šulc) transmits the bacterium, "Candidatus (Ca.) Liberibacter solanacearum" (Lso), also known as "Ca. Liberibacter psyllaurous", which causes zebra chip disease in potato and other solanaceous crops. The authors previously showed that fecundity and nymph survival is significantly reduced in Lso-infected psyllids compared to uninfected psyllids on tomato. However, it is not known whether the level of the pathogen is correlated with concomitant reduction in fitness of the psyllid vector. Using quantitative PCR assays, Lso levels were determined in adult female founders of isofemale lines for whom several life history traits were previously recorded. Analysis of psyllid isofemale lines revealed that Lso infection levels in founders or mothers was negatively correlated with 7-day fecundity, nymph survival percentage, and number of F1 progeny including eggs, nymphs and adults. There was a significant negative density-dependent relationship between Lso level and fecundity. That is, psyllids experienced decreasing levels in fecundity with increasing bacterial titer. There was no apparent negative density-dependent relationship between Lso copies and number of nymphs, nymph survival percentage and number of adults. The negative effect of Lso on psyllid fecundity is likely due to direct effects of the bacteria on the insect host and not via the host plant. Taken together, these findings suggest that the level of Lso in its psyllid vector correlates with reduction in psyllid fitness.
Collapse
Affiliation(s)
- Punya Nachappa
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, TX 77843, United States
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, 202 HSF Building, College Station, TX 77843, United States
| | - Elizabeth Pierson
- Department of Horticultural Sciences, Texas A&M University, 202 HSF Building, College Station, TX 77843, United States
| | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, TX 77843, United States.
| |
Collapse
|
41
|
Arp AP, Chapman R, Crosslin JM, Bextine B. Low-level detection of candidatus Liberibacter solanacearum in Bactericera cockerelli (Hemiptera: Triozidae) by 16s rRNA Pyrosequencing. ENVIRONMENTAL ENTOMOLOGY 2013; 42:868-873. [PMID: 24331599 DOI: 10.1603/en12260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Accurate detection and quantification of Candidatus Liberibacter solanacearum (CLs), the putative causal agent of zebra chip disease of potato (Solanum tuberosum L.), in the potato psyllid, Bactericera cockerelli (Sulc), has become necessary to better understand the biology of the disease cycle. Studies on the transmission efficiency of potato psyllids have shown inconsistencies with field surveys. There have also been reports of laboratory colonies inexplicably losing and regaining CLs infection as detected by polymerase chain reaction (PCR). Until now, DNA primers were used to detect CLs in potato psyllid tissue using conventional polymerase chain reaction (PCR) and gel electrophoresis or by real-time quantitative PCR. In this study, CLs was detected using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) at levels identifiable by PCR, and low levels, including samples with only one cell of CLs. Potato psyllids with <300 pyrosequencing reads did not show positive using conventional PCR. These results indicate that the currently accepted PCR diagnostic technique produces false negatives due to detection limits higher than what is generally present in field collected psyllids, and also provides an explanation as to why laboratory colonies seem to lose and regain CLs infection.
Collapse
Affiliation(s)
- Alex P Arp
- Department of Biology, University of Texas at Tyler, 3900 University Blvd., Tyler, TX 75799, USA
| | | | | | | |
Collapse
|
42
|
Kumsa B, Socolovschi C, Parola P, Rolain JM, Raoult D. Molecular detection of Acinetobacter species in lice and keds of domestic animals in Oromia Regional State, Ethiopia. PLoS One 2012; 7:e52377. [PMID: 23285015 PMCID: PMC3524130 DOI: 10.1371/journal.pone.0052377] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/12/2012] [Indexed: 11/19/2022] Open
Abstract
This study was conducted to determine the presence of Acinetobacter and Rickettsia species DNA in lice and Melophagus ovinus (sheep ked) of animals from Oromia Regional State in Ethiopia. From September through November 2011, a total of 207 cattle, 85 sheep, 47 dogs and 16 cats were examined for ectoparasites. Results of morphological identification revealed several species of ectoparasites: Linognathus vituli (L. vituli), Bovicola bovis (B. bovis) and Solenopotes capillatus (S. capillatus) on cattle; B. ovis and Melophagus ovinus (M. ovinus) on sheep; and Heterodoxus spiniger (H. spiniger) on dogs. There was a significantly (p≤0.0001) higher prevalence of L. vituli observed in cattle than both S. capillatus and B. bovis. Molecular identification of lice using an 18S rRNA gene analysis confirms the identified lice species by morphological methods. We detected different Acinetobacter species among lice (11.1%) and keds (86.4%) including A. soli in L. vituli of cattle, A. lowffii in M. ovinus of sheep, A. pittii in H. spiniger of dogs, 1 new Acinetobacter spp. in M. ovinus and 2 new Acinetobacter spp. in H. spiniger of dogs using partial rpoB gene sequence analysis. There was a significantly higher prevalence of Acinetobacter spp. in keds than in lice (p≤0.00001). Higher percentage of Acinetobacter spp. DNA was detected in H. spiniger than in both B. ovis and L. vituli (p≤0.00001). Carbapenemase resistance encoding genes for blaOXA-23, blaOXA-24, blaOXA-58, blaNDM-1 and blaOXA-51 were not found in any lice and keds. These findings suggest that synanthropic animals and their ectoparasites might increase the risk of human exposure to zoonotic pathogens and could be a source for Acinetobacter spp. infections in humans. However, additional epidemiological data are required to determine whether ectoparasites of animals can act as environmental reservoirs and play a role in spreading these bacteria to both animal and human hosts.
Collapse
Affiliation(s)
- Bersissa Kumsa
- Department of Parasitology, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Cristina Socolovschi
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Philippe Parola
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
- * E-mail:
| |
Collapse
|
43
|
Saha S, Hunter WB, Reese J, Morgan JK, Marutani-Hert M, Huang H, Lindeberg M. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome. PLoS One 2012; 7:e50067. [PMID: 23166822 PMCID: PMC3500351 DOI: 10.1371/journal.pone.0050067] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/17/2012] [Indexed: 02/03/2023] Open
Abstract
Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.
Collapse
Affiliation(s)
- Surya Saha
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Justin Reese
- Genformatic, LLC., Alpharetta, Georgia, United States of America
| | - J. Kent Morgan
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Mizuri Marutani-Hert
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Hong Huang
- School of Information, University of South Florida, Tampa, Florida, United States of America
| | - Magdalen Lindeberg
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
44
|
Nachappa P, Levy J, Tamborindeguy C. Transcriptome analyses of Bactericera cockerelli adults in response to "Candidatus Liberibacter solanacearum" infection. Mol Genet Genomics 2012; 287:803-17. [PMID: 22945464 DOI: 10.1007/s00438-012-0713-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/20/2012] [Indexed: 11/29/2022]
Abstract
The potato/tomato psyllid, Bactericera cockerelli (Šulc) is an economically important crop pest that not only causes damage through its feeding but also transmits the bacterium, "Candidatus Liberibacter solanacearum" (CLs), which causes zebra chip disease in potato. There is some information about the phenotypic effects of phytopathogenic bacteria on their insect vectors; however, there are no published reports of the molecular mechanisms underlying phytopathogenic bacteria-insect vector interaction. In order to investigate the effects of CLs infection on B. cockerelli, transcriptomic analyses of CLs-infected and uninfected adult psyllids that were reared on potato were performed. De novo assembly of cDNA sequences generated 136,518 and 109,983 contigs for infected and uninfected insect libraries with an average contig length of 514 bp. BlastX analysis against the NCBI-nr database revealed that 33.33 % had significant matches. Gene ontology data illustrated that the majority of the expressed psyllid genes are involved in metabolic process, biological regulation, binding and catalytic activity. The psyllid transcriptome had an abundance of genes such as vitellogenin, heat shock protein, ejaculatory bulb-specific protein, ferritin, and cytochrome oxidase. Notably absent in the psyllid transcriptome were innate immunity genes induced in response to Gram-negative bacteria (IMD pathway). Several functionally diverse contigs related to symbiotic bacteria including the primary endosymbiont Carsonella ruddii, Wolbachia, and CLs in the psyllid transcriptome were identified. A total of 247 contigs showed differential expression in response to CLs infection including immune and stress-related genes and vitellogenins. Expression analyses of selected psyllid genes were performed on psyllids that were exclusively reared on potato (host of the insects used for RNAseq) and psyllids exclusively reared on tomato (alternative host of psyllids). These genes showed similar expression patterns irrespective of the host plant on which the psyllids were reared, which suggests that host-plant association may not modulate expression of these genes. Our findings suggest that the impact of CLs on psyllid transcriptome was to a large extent on genes involved in metabolic processes and to a small extent on immune and stress response genes. This study is the first description of transcriptomic changes in an insect vector in response to infection with a naturally occurring bacterial plant pathogen. Data from this study provide new sequence and gene expression resources for functional genomics of potato psyllids.
Collapse
Affiliation(s)
- Punya Nachappa
- Department of Entomology, 412 Heep Center, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
45
|
Ravindran A, Levy J, Pierson E, Gross DC. Development of a loop-mediated isothermal amplification procedure as a sensitive and rapid method for detection of 'candidatus Liberibacter solanacearum' in potatoes and Psyllids. PHYTOPATHOLOGY 2012; 102:899-907. [PMID: 22881872 DOI: 10.1094/phyto-03-12-0055-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study reports the development of a loop-mediated isothermal amplification procedure (LAMP) for polymerase chain reaction (PCR)-based detection of 'Candidatus Liberibacter solanacearum', the bacterial causal agent of potato zebra chip (ZC) disease. The 16S rDNA gene of 'Ca. Liberibacter solanacearum' was used to design a set of six primers for LAMP PCR detection of the bacterial pathogen in potato plants and the psyllid vector. The advantage of the LAMP method is that it does not require a thermocycler for amplification or agarose gel electrophoresis for resolution. Positive LAMP results can be visualized directly as a precipitate. The LAMP strategy reported here reliably detected 'Ca. Liberibacter solanacearum' and the closely related species 'Ca. Liberibacter asiaticus', the causative agent of huanglongbing disease of citrus, in plant DNA extracts. Although not as sensitive as quantitative real-time PCR, LAMP detection was equivalent to conventional PCR in tests of ZC-infected potato plants from the field. Thus, the LAMP method shows strong promise as a reliable, rapid, and cost-effective method of detecting 'Ca. Liberibacter' pathogens in psyllids and field-grown potato plants and tubers.
Collapse
Affiliation(s)
- Aravind Ravindran
- Department of Palnt Pathology and Microbiology, Texas A&M University, College Station 77843, USA
| | | | | | | |
Collapse
|
46
|
Alvarado VY, Odokonyero D, Duncan O, Mirkov TE, Scholthof HB. Molecular and physiological properties associated with zebra complex disease in potatoes and its relation with Candidatus Liberibacter contents in psyllid vectors. PLoS One 2012; 7:e37345. [PMID: 22615987 PMCID: PMC3355140 DOI: 10.1371/journal.pone.0037345] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 04/20/2012] [Indexed: 12/02/2022] Open
Abstract
Zebra complex (ZC) disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs), an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc). The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin) and tuber storage proteins (e.g., patatins), indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants.
Collapse
Affiliation(s)
- Veria Y Alvarado
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | |
Collapse
|
47
|
Casteel CL, Hansen AK, Walling LL, Paine TD. Manipulation of plant defense responses by the tomato psyllid (Bactericerca cockerelli) and its associated endosymbiont Candidatus Liberibacter psyllaurous. PLoS One 2012; 7:e35191. [PMID: 22539959 PMCID: PMC3335145 DOI: 10.1371/journal.pone.0035191] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 03/09/2012] [Indexed: 12/27/2022] Open
Abstract
Some plant pathogens form obligate relationships with their insect vector and are vertically transmitted via eggs analogous to insect endosymbionts. Whether insect endosymbionts manipulate plant defenses to benefit their insect host remains unclear. The tomato psyllid, Bactericerca cockerelli (Sulc), vectors the endosymbiont "Candidatus Liberibacter psyllaurous" (Lps) during feeding on tomato (Solanum lycopersicum L.). Lps titer in psyllids varied relative to the psyllid developmental stage with younger psyllids harboring smaller Lps populations compared to older psyllids. In the present study, feeding by different life stages of B. cockerelli infected with Lps, resulted in distinct tomato transcript profiles. Feeding by young psyllid nymphs, with lower Lps levels, induced tomato genes regulated by jasmonic acid (JA) and salicylic acid (SA) (Allene oxide synthase, Proteinase inhibitor 2, Phenylalanine ammonia-lyase 5, Pathogenesis-related protein 1) compared to feeding by older nymphs and adults, where higher Lps titers were found. In addition, inoculation of Lps without insect hosts suppressed accumulation of these defense transcripts. Collectively, these data suggest that the endosymbiont-like pathogen Lps manipulates plant signaling and defensive responses to benefit themselves and the success of their obligate insect vector on their host plant.
Collapse
Affiliation(s)
- Clare L Casteel
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America.
| | | | | | | |
Collapse
|
48
|
Butler CD, Trumble JT. The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. ACTA ACUST UNITED AC 2012. [DOI: 10.1163/187498312x634266] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potato/tomato psyllid,Bactericera cockerelli(Sulc) (Hemiptera: Triozidae) has been a major pest of solanaceous crops for decades. This pest can cause damage to crop plants by direct feeding and, as has been recently discovered, by transmitting the bacterial pathogenCandidatusLiberibacter psyllaurous (a.k.a.Ca.L. solanacearum). Many studies have been conducted to determine the relationship of this pest to plant injury and to develop management strategies to alleviate the damage caused by this pest in a wide variety of solanaceous plants. Studies in the past decade have documented substantial genetic variability in this invasive species, enhanced our rapidly-evolving understanding of the interactions between the insect and the pathogen it carries, and improved our appreciation of the invasive potential of the pest. This review seeks to provide a comprehensive update toB. cockerellilife history, relationship to plant diseases, and the current state of management strategies againstB. cockerelli.
Collapse
Affiliation(s)
| | - John T. Trumble
- 1Department of Entomology, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA, e-mails: ; Received on December 5, 2011. Accepted on December 29, 2011
| |
Collapse
|
49
|
Nachappa P, Shapiro AA, Tamborindeguy C. Effect of 'Candidatus Liberibacter solanacearum' on fitness of its insect vector, Bactericera cockerelli (Hemiptera: Triozidae), on tomato. PHYTOPATHOLOGY 2012; 102:41-46. [PMID: 21899387 DOI: 10.1094/phyto-03-11-0084] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The potato/tomato psyllid, Bactericera cockerelli transmits the bacterium 'Candidatus Liberibacter solanacearum', also known as 'Ca. L. psyllaurous', which causes zebra chip disease in solanaceous crops. There have been no studies addressing the effect of the bacterial plant pathogen on the biology of its insect vector. We examined several life-history traits, including 7-day fecundity, hatching percentage, incubation time, nymphal survival percentage, nymphal development time, total development time, and sex-ratio of 'Ca. L. solanacearum'-positive and -negative psyllid isofemale lines on tomato, as well as adult mortality index of 'Ca. L. solanacearum'-positive and -negative insects. The only two life-history traits that differed between the 'Ca. L. solanacearum'-positive and -negative psyllid isofemale lines were 7-day fecundity and nymphal survival percentage, which were significantly lower in 'Ca. L. solanacearum'- positive lines. The symbiotic bacteria associated with both psyllid isofemale lines were similar, with the exception of 'Ca. L. solanacearum', which showed 100% infection in the 'Ca. L. solanacearum'-positive lines and was not detected in the negative psyllid lines. These results suggest that 'Ca. L. solanacearum' has a negative effect on population growth rate of its insect vector on tomato.
Collapse
Affiliation(s)
- Punya Nachappa
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | | | | |
Collapse
|
50
|
Levy J, Ravindran A, Gross D, Tamborindeguy C, Pierson E. Translocation of 'Candidatus Liberibacter solanacearum', the Zebra Chip pathogen, in potato and tomato. PHYTOPATHOLOGY 2011; 101:1285-91. [PMID: 21770778 DOI: 10.1094/phyto-04-11-0121] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Zebra Chip disease is a serious threat to potato production. The pathogen, the phloem-limited bacterium 'Candidatus Liberibacter solanacearum,' is vectored by the potato and tomato psyllid Bactericerca cockerelli to potato and tomato. Patterns of pathogen translocation through phloem in potato and tomato plants were examined to determine whether rate or direction of translocation vary by host species or potato cultivars. Two insects were given a 7-day inoculation access period on a single leaf. Weekly, leaves from upper-, middle-, and lower-tier branches were tested for the presence of 'Ca. L. solanacearum' by polymerase chain reaction (PCR). In tomato and potato, 'Ca. L. solanacearum' was detected 2 to 3 weeks after infestation, most frequently in upper- and middle-tier leaves. In potato, the pathogen was detected in leaves on a second, noninfested stem when the stems remained joined via the tuber. Although rates of pathogen movement were similar among potato cultivars, symptoms developed earlier in more susceptible cultivars. Quantitative PCR indicated that bacterial titers were frequently low in tomato and potato samples (<20 genome units per nanogram of DNA). Results establish that, for improved detection, samples should include newly developing leaves and consider that, under low insect pressure, the pathogen may be undetectable by PCR until 3 weeks after infestation.
Collapse
Affiliation(s)
- Julien Levy
- Department of Horticultural Services, Texas A&M University, College Station, TX, USA
| | | | | | | | | |
Collapse
|