1
|
Gao PP, Liu HQ, Ye ZW, Zheng QW, Zou Y, Wei T, Guo LQ, Lin JF. The beneficial potential of protein hydrolysates as prebiotic for probiotics and its biological activity: a review. Crit Rev Food Sci Nutr 2023; 64:13045-13057. [PMID: 37811651 DOI: 10.1080/10408398.2023.2260467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Probiotics are not only a food supplement, but they have shown great potential in their nutritional, health and therapeutic effects. To maximize the beneficial effects of probiotics, it is commonly achieved by adding prebiotics. Prebiotics primarily comprise indigestible carbohydrates, specific peptides, proteins, and lipids, with oligosaccharides being the most extensively studied prebiotics. However, these rapidly fermenting oligosaccharides have many drawbacks and can cause diarrhea and flatulence in the body. Hence, the exploration of new prebiotic is of great interest. Besides oligosaccharides, protein hydrolysates have been demonstrated to enhance the expression of beneficial properties of probiotics. Consequently, this paper outlines the mechanism underlying the action of protein hydrolysates on probiotics, as well as the advantageous impacts of proteins hydrolysates derived from various food sources on probiotics. In addition, this paper also reviews the currently reported biological activities of protein hydrolysates. The aim is a theoretical basis for the development and implementation of novel prebiotics.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Han-Qing Liu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Zhi-Wei Ye
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Qian-Wang Zheng
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Yuan Zou
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| |
Collapse
|
2
|
Chaklader MR, Howieson J, Foysal MJ, Hanif MA, Abdel-Latif HM, Fotedar R. Fish waste to sustainable additives: Fish protein hydrolysates alleviate intestinal dysbiosis and muscle atrophy induced by poultry by-product meal in Lates calcarifer juvenile. Front Nutr 2023; 10:1145068. [PMID: 37057066 PMCID: PMC10086250 DOI: 10.3389/fnut.2023.1145068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Valorising waste from the processing of fishery and aquaculture products into functional additives, and subsequent use in aquafeed as supplements could be a novel approach to promoting sustainability in the aquaculture industry. The present study supplemented 10% of various fish protein hydrolysates (FPHs), obtained from the hydrolysis of kingfish (KH), carp (CH) and tuna (TH) waste, with 90% of poultry by-product meal (PBM) protein to replace fishmeal (FM) completely from the barramundi diet. At the end of the trial, intestinal mucosal barriers damage, quantified by villus area (VA), lamina propria area (LPA), LPA ratio, villus length (VL), villus width (VW), and neutral mucin (NM) in barramundi fed a PBM-based diet was repaired when PBM was supplemented with various FPHs (p < 0.05, 0.01, and 0.001). PBM-TH diet further improved these barrier functions in the intestine of fish (p < 0.05 and 0.001). Similarly, FPHs supplementation suppressed PBM-induced intestinal inflammation by controlling the expression of inflammatory cytokines (tnf-α and il-10; p < 0.05 and 0.001) and a mucin-relevant production gene (i-mucin c; p < 0.001). The 16S rRNA data showed that a PBM-based diet resulted in dysbiosis of intestinal bacteria, supported by a lower abundance of microbial diversity (p < 0.001) aligned with a prevalence of Photobacterium. PBM-FPHs restored intestine homeostasis by enhancing microbial diversity compared to those fed a PBM diet (p < 0.001). PBM-TH improved the diversity (p < 0.001) further by elevating the Firmicutes phylum and the Ruminococcus, Faecalibacterium, and Bacteroides genera. Muscle atrophy, evaluated by fiber density, hyperplasia and hypertrophy and associated genes (igf-1, myf5, and myog), occurred in barramundi fed PBM diet but was repaired after supplementation of FPHs with the PBM (p < 0.05, 0.01, and 0.001). Similarly, creatine kinase, calcium, phosphorous, and haptoglobin were impacted by PBM-based diet (p < 0.05) but were restored in barramundi fed FPHs supplemented diets (p < 0.05 and 0.01). Hence, using circular economy principles, functional FPHs could be recovered from the fish waste applied in aquafeed formulations and could prevent PBM-induced intestinal dysbiosis and muscular atrophy.GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Md Reaz Chaklader
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Department of Primary Industries and Regional Development, Fremantle, WA, Australia
- *Correspondence: Md Reaz Chaklader, ;
| | - Janet Howieson
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Abu Hanif
- Department of Fisheries Science, Chonnam National University, Yeosu, Republic of Korea
| | - Hany M.R. Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
3
|
Dysin AP, Egorov AR, Godzishevskaya AA, Kirichuk AA, Tskhovrebov AG, Kritchenkov AS. Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review. Molecules 2023; 28:molecules28031413. [PMID: 36771079 PMCID: PMC9921933 DOI: 10.3390/molecules28031413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Microorganisms, fermentation processes, and the resultant metabolic products are a key driving force in biotechnology and, in particular, in food biotechnology. The quantity and/or quality of final manufactured food products are directly related to the efficiency of the metabolic processes of producer microorganisms. Food BioTech companies are naturally interested in increasing the productivity of their biotechnological production lines. This could be achieved via either indirect or direct influence on the fundamental mechanisms governing biological processes occurring in microbial cells. This review considers an approach to improve the efficiency of producer microorganisms through the use of several types of substances or complexes affecting the metabolic processes of microbial producers that are of interest for food biotechnology, particularly fermented milk products. A classification of these supplements will be given, depending on their chemical nature (poly- and oligosaccharides; poly- and oligopeptides, individual amino acids; miscellaneous substances, including vitamins and other organic compounds, minerals, and multicomponent supplements), and the approved results of their application will be comprehensively surveyed.
Collapse
Affiliation(s)
- Artem P. Dysin
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R. Egorov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anastasia A. Godzishevskaya
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A. Kirichuk
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Alexander G. Tskhovrebov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence: (A.G.T.); (A.S.K.)
| | - Andreii S. Kritchenkov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Metal Physics Laboratory, Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
- Correspondence: (A.G.T.); (A.S.K.)
| |
Collapse
|
4
|
Food Peptides, Gut Microbiota Modulation, and Antihypertensive Effects. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248806. [PMID: 36557936 PMCID: PMC9788432 DOI: 10.3390/molecules27248806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The gut microbiota is increasingly important in the overall human health and as such, it is a target in the search of novel strategies for the management of metabolic disorders including blood pressure, and cardiovascular diseases. The link between microbiota and hypertension is complex and this review is intended to provide an overview of the mechanism including the production of postbiotics, mitigation of inflammation, and the integration of food biological molecules within this complex system. The focus is on hydrolyzed food proteins and peptides which are less commonly investigated for prebiotic properties. The analysis of available data showed that food peptides are multifunctional and can prevent gut dysbiosis by positively affecting the production of postbiotics or gut metabolites (short-chain fatty acids, polysaccharides, biogenic amines, bile acids). Peptides and the postbiotics then displayed antihypertensive effects via the renin-angiotensin system, the gut barrier, the endothelium, and reduction in inflammation and oxidative stress. Despite the promising antihypertensive effect of the food peptides via the modulation of the gut, there is a lack of human studies as most of the works have been conducted in animal models.
Collapse
|
5
|
Liu G, Chu M, Xu P, Nie S, Xu X, Ren J. Effects of Ilisha elongata proteins on proliferation and adhesion of Lactobacillus plantarum. Food Chem X 2022; 13:100206. [PMID: 35499024 PMCID: PMC9039923 DOI: 10.1016/j.fochx.2022.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022] Open
Abstract
Ilisha elongata proteins promote the growth afnd proliferation of LP45. Probiotic proliferation of Ie-S protein is higher than that of Ie-W protein. Ilisha elongata proteins can promote LP45 adhesion in the intestinal tract.
The effects of aquatic proteins on the proliferation and adhesion of intestinal probiotic bacteria were investigated by in vitro fermentation and mouse in vitrointestinal tissue models. Compared with the control group, the Illisha elongata protein reduced the growth time of Lactobacillus plantarum (LP45) by 34.25% and increased the total number of colonies by 6.61%. The Ilisha elongata salt-solubale protein performed better than water-soluble protein in vitro proliferation of LP45. Ilisha elongata salt-soluble protein significantly increased the number of viable bacteria adhering to intestinal, and caused changes in the amount of polysaccharides, proteins and biofilms in the intestinal tissue model. These results indicate that the Ilisha elongata protein is beneficial to the proliferation and adhesion of probiotics in the intestinal, and can be used as an active protein beneficial to intestinal health.
Collapse
|
6
|
The Functional Interplay between Gut Microbiota, Protein Hydrolysates/Bioactive Peptides, and Obesity: A Critical Review on the Study Advances. Antioxidants (Basel) 2022; 11:antiox11020333. [PMID: 35204214 PMCID: PMC8868115 DOI: 10.3390/antiox11020333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
Diet is an essential factor determining the ratio of pathogenic and beneficial gut microbiota. Hydrolysates and bioactive peptides have been described as crucial ingredients from food protein that potentially impact human health beyond their roles as nutrients. These compounds can exert benefits in the body, including modulation of the gut microbiota, and thus, they can reduce metabolic disorders. This review summarized studies on the interaction between hydrolysates/peptides, gut microbes, and obesity, focusing on how hydrolysates/peptides influence gut microbiota composition and function that improve body weight. Findings revealed that gut microbes could exert anti-obesity effects by controlling the host’s energy balance and food intake. They also exhibit activity against obesity-induced inflammation by changing the expression of inflammatory-related transcription factors. Protein hydrolysates/peptides can suppress the growth of pro-obesity gut bacteria but facilitate the proliferation of those with anti-obesity effects. The compounds provide growth factors to the beneficial gut bacteria and also improve their resistance against extreme pH. Hydrolysates/peptides are good candidates to target obesity and obesity-related complications. Thus, they can allow the development of novel strategies to fight incidences of obesity. Future studies are needed to understand absorption fate, utilization by gut microbes, and stability of hydrolysates/peptides in the gut under obesity.
Collapse
|
7
|
iTRAQ-based proteomic analysis of the differential effects of digested soy peptides and digested soy protein isolates on Lacticaseibacillus rhamnosus. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Metataxonomic analysis of microbiota from Pakistani dromedary camelids milk and characterization of a newly isolated Lactobacillus fermentum strain with probiotic and bio-yogurt starter traits. Folia Microbiol (Praha) 2021; 66:411-428. [PMID: 33566278 DOI: 10.1007/s12223-021-00855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
This study was undertaken to investigate the starter and probiotic potential of lactic acid bacteria isolated from dromedarian camel's milk using both culture-dependent and -independent approaches and metataxonomic analysis. Strains of lactic acid bacteria recovered were examined in vitro for tolerance to gastric acidity, bile, and lysozyme. Bile salt hydrolysis, serum cholesterol-lowering, oxalate degradation, proteolytic activity, exopolysaccharide production, and cell surface characteristics necessary for colonizing intestinal mucosa were also evaluated. A single strain of the species, Lactobacillus fermentum named NPL280, was selected through multivariate analysis as it harbored potential probiotic advantages and fulfilled safety criteria. The strain assimilated cholesterol, degraded oxalate, produced exopolysaccharides, and proved to be a proficient alternate yogurt starter with good viability in stored bio-yogurt. A sensorial analysis of the prepared bio-yogurt was also found to be exemplary. We conclude that the indigenous L. fermentum strain NPL280 has the desired traits of a starter and adjunct probiotic culture for dairy products.
Collapse
|
9
|
Zhang C, Zhang Y, Li H, Liu X. The potential of proteins, hydrolysates and peptides as growth factors forLactobacillusandBifidobacterium: current research and future perspectives. Food Funct 2020; 11:1946-1957. [DOI: 10.1039/c9fo02961c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotics are live microorganisms that provide health benefits to the host when consumed in adequate concentrations.
Collapse
Affiliation(s)
- Chi Zhang
- Beijing Technology and Business University
- China
| | | | - He Li
- Beijing Technology and Business University
- China
| | - Xinqi Liu
- Beijing Technology and Business University
- China
| |
Collapse
|
10
|
Growth kinetics and lactic acid production of Lactobacillus plantarum NRRL B-4496, L. acidophilus NRRL B-4495, and L. reuteri B-14171 in media containing egg white hydrolysates. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Two-step production of anti-inflammatory soluble factor by Lactobacillus reuteri CRL 1098. PLoS One 2018; 13:e0200426. [PMID: 29979794 PMCID: PMC6034873 DOI: 10.1371/journal.pone.0200426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/26/2018] [Indexed: 01/28/2023] Open
Abstract
We have demonstrated previously that a soluble factor (LrS) produced by Lactobacillus (L.) reuteri CRL 1098 modulates the inflammatory response triggered by lipopolysaccharide. In this study, the production of LrS by L. reuteri CRL 1098 was realized through two steps: i) bacterial biomass production, ii) LrS production, where the bacterial biomass was able to live but did not proliferate. Therefore, the simultaneous evaluation of the effect of different factors on the growth and LrS production was performed. Biomass production was found to be dependent mainly on culture medium, while LrS production with anti-inflammatory activity depended on culture conditions of the biomass such as pH, agitation and growth phase. The L. reuteri CRL 1098 biomass and LrS production in the optimized culture media designed for this work reduced the complete process cost by approximately 95%, respectively to laboratory scale cost.
Collapse
|
12
|
Bottari B, Quartieri A, Prandi B, Raimondi S, Leonardi A, Rossi M, Ulrici A, Gatti M, Sforza S, Nocetti M, Amaretti A. Characterization of the peptide fraction from digested Parmigiano Reggiano cheese and its effect on growth of lactobacilli and bifidobacteria. Int J Food Microbiol 2017; 255:32-41. [PMID: 28575713 DOI: 10.1016/j.ijfoodmicro.2017.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/12/2017] [Accepted: 05/21/2017] [Indexed: 12/23/2022]
Abstract
Parmigiano Reggiano (PR) is a raw-milk, hard cooked, long-ripened cheese of high quality and nutritional value. Long ripening times allow for extensive proteolysis of milk proteins to yield a number of peptides, some of which have potential healthy bioactive properties. This study aimed to: i) determine the peptide profile of PR cheese subjected to simulated gastrointestinal transit; ii) evaluate in vitro whether the peptides could support growth of beneficial microbial groups of the gut microbiota. PR samples were subjected to in vitro digestion, simulating oral, gastric, and duodenal transit. Liquid chromatography coupled with tandem mass spectrometry revealed that digestion caused the disappearance of the serum proteins and most of the original peptides, while 71 new peptides were found, all ranging from 2 to 24 residues. The digests were given as sole nitrogen source to pure cultures of Bifidobacterium (27 strains) and Lactobacillus (30 strains), and to bioreactor batch cultures of human gut microbiota. Most of bifidobacteria and lactobacilli grew more abundantly on PR digests than on the control peptone, and exhibited strain- or species-specific peptide preferences, as evidenced by principal component analysis. Bifidobacteria generally consumed a greater amount of peptides than lactobacilli, in terms of both the mean peptide consumption and the number of peptides consumed. For bifidobacteria, peptide preferences were very diverse, but a core of 10 peptides with 4 or 5 residues were consumed by all the strains. Lactobacilli behaved more homogenously and consumed nearly only the same 6 peptides, mostly dipeptides. The peptide preferences of the different groups of bifidobacteria and lactobacilli could not be ascribed to features such as the length of the peptide or the abundance of residues with peculiar properties (hydrophobicity, polarity, charge) and likely depend on specific proteases and/or peptide transporters preferentially recognizing specific sequence motifs. The cultures of human colonic microbiota confirmed that PR digest promoted the growth of commensal bifidobacteria. This study demonstrated that peptides derived from simulated gastrointestinal digestion of PR supported the growth of most lactobacilli and bifidobacteria.
Collapse
Affiliation(s)
| | - Andrea Quartieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | | | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Alan Leonardi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy; Biogest-Siteia, Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari, University of Modena and Reggio Emilia, Italy
| | - Alessandro Ulrici
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy; Biogest-Siteia, Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari, University of Modena and Reggio Emilia, Italy
| | - Monica Gatti
- Department of Food Science, University of Parma, Italy; Multidisciplinary Interdepartmental Dairy Center - MILC, University of Parma, Parma, Italy
| | | | - Marco Nocetti
- Servizio Tecnico Consorzio del Formaggio Parmigiano Reggiano, Reggio Emilia, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy; Biogest-Siteia, Centro per il Miglioramento e la Valorizzazione delle Risorse Biologiche Agro-Alimentari, University of Modena and Reggio Emilia, Italy.
| |
Collapse
|