1
|
Ghosh N, Biswas AR, Chakraborty A, Ganguli A. Mixed-species Pseudomonas biofilms: a novel and sustainable strategy for malachite green dye decolorization and detoxification. Folia Microbiol (Praha) 2025:10.1007/s12223-024-01238-0. [PMID: 39747794 DOI: 10.1007/s12223-024-01238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
This study investigated the application of mixed biofilms formed by two Pseudomonas strains (NAA22 and NAA23) for bio-decolorization of malachite green (MG) dye. The isolated strains displayed biofilm formation and MG decolorization capabilities. Mixed biofilms exhibited significantly greater biofilm formation and MG decolorization (94.3%) compared to individual strains, suggesting synergistic interactions. This decolorization efficiency surpassed previously reported values for single strain decolorization. The mixed biofilms tolerated a broad range of temperatures (20-40 °C) and pH (5-9), with optimal decolorization at neutral or slightly acidic conditions (pH7.0). Enzyme analysis revealed laccase, NADH-DCIP reductase, and azoreductase as key contributors to MG decolorization, with significantly higher activity in mixed biofilms. Importantly, the bio-decolorization process transformed MG into non-phytotoxic compounds, demonstrated by seed germination and growth assays. These findings propose a promising and environmentally safe approach for MG bioremediation using mixed Pseudomonas biofilms.
Collapse
Affiliation(s)
- Nabanita Ghosh
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Arup Ratan Biswas
- Department of Chemistry, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Arindam Chakraborty
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
2
|
Hussain M, Naseem S, Latif AA, Ali A, Aftab MN, Ali S, Ara C, Liaqat I, Ali NM, Afzaal M, Khalid A, Yang GJ, Liaqat I. Antibiofilm and Antiquorum Sensing Potential of Pheretima posthum. J Oleo Sci 2025; 74:61-73. [PMID: 39756993 DOI: 10.5650/jos.ess24210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Antibiotic resistance is a world wide problem mainly in developing countries. In this work, coelomic fluid (PCF) and paste (PBP) of Pheretima posthuma was assessed for its potential as antibiofilm and anti-quorum sensing (QS) agent against pathogenic bacterial biofilms. PCF and PBP were extracted and biofilm formation time kinetics was examined using crystal violet staining method by utilizing four bacterial isolates in bispecies biofilm (06 combinations; MH5-MH10) and multi species biofilms (05 combinations; MH11-MH15). QS study was performed by determining pyocyanin formation time kinetics using 03 P. aeruginosa strains at various time periods (0, 24, 48, 72, 96 and 120 hours). Following next, anti- QS effect was analyzed by measuring pyocyanin concentrations. Results showed that among bispecies bacterial biofilms, MH5-MH7 combinations showed significantly higher biofilm (p < 0.05) after 72 hours while other three (MH8-MH10) produced maximum biofilm after 48 to 72 hours. Likewise, for multispecies biofilms, maximum biofilm was noted after 48-72 hours. QS analysis revealed that PA1 strain synthesized highly significant (p < 0.001) pyocyanin (20 µg/mL) after 96 hours compared to PA2 and PA3 strains, which formed significant pyocyanin (18 µg/mL) after 72 hours. Also, 100-150 µg/mL of both PCF and PBP exhibited a significant (p < 0.05) reduction in biofilm while 200 µg/mL concentration showed highest QS against all selected strains. To our knowledge, this is the first assessment of its kind on the potential application of earthworm PCF and PBP for its antibiofilm and anti-QS potential. The study recommends precise chemistry of bioactive agents and their probable mechanism(s) of actions for the observed interference. Also, new pharmaceutical drugs synthesized using bioactive agents from PCF and PCB may surely have the potential to manage different infection problems caused by bacterial biofilms.
Collapse
Affiliation(s)
- Mudassar Hussain
- Microbiology Lab, Department of Zoology, Government College University
| | - Sajida Naseem
- Department of Zoology, University of Education, Lower Mall Campus
| | | | - Abid Ali
- Department of Zoology, Abdul Wali Khan University
| | | | - Sikander Ali
- Ikram ul Haq Institute of Industrial Biotechnology, Government College University
| | - Chaman Ara
- Department of Zoology, University of the Punjab
| | - Irfana Liaqat
- Microbiology Lab, Department of Zoology, Government College University
| | - Nazish Mazhar Ali
- Microbiology Lab, Department of Zoology, Government College University
| | - Muhammad Afzaal
- Sustainable Development Study Centre, Government College University
| | - Awais Khalid
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University
| | | | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University
| |
Collapse
|
3
|
Dor S, Nudel K, Eagan JL, Cohen R, Hull CM, Keller NP, Prusky D, Afriat-Jurnou L. Bacterial-fungal crosstalk is defined by a fungal lactone mycotoxin and its degradation by a bacterial lactonase. Appl Environ Microbiol 2024; 90:e0029924. [PMID: 38786360 PMCID: PMC11218642 DOI: 10.1128/aem.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Bacteria, fungi, and mammals contain lactonases that can degrade the Gram-negative bacterial quorum sensing (QS) molecules N-acyl homoserine lactones (AHLs). AHLs are critical for bacteria to coordinate gene expression and pathogenicity with population density. However, AHL-degrading lactonases present variable substrate ranges, including degradation of the Pencillium expansum lactone mycotoxin patulin. We selected Erwinia spp. as our model bacteria to further investigate this interaction. We find both native apple microbiome Erwinia spp. and the fruit tree pathogen Erwinia amylovora to be inhibited by patulin. At patulin concentrations that inhibited E. amylovora growth, expression of E. amylovora lactonase encoded by EaaiiA was increased. EaAiiA demonstrated the ability to degrade patulin in vitro, as well, as in vivo where it reduced apple disease and patulin production by P. expansum. Fungal-bacterial co-cultures revealed that the E. amylovora Δeaaiia strain failed to protect apples from P. expansum infections, which contained significant amounts of patulin. Our results suggest that bacterial lactonase production can modulate the pathogenicity of P. expansum in response to the secretion of toxic patulin. IMPORTANCE Chemical signaling in the microbial world facilitates the regulation of gene expression as a function of cell population density. This is especially true for the Gram-negative bacterial signal N-acyl homoserine lactone (AHL). Lactonases that deactivate AHLs have attracted a lot of attention because of their antibacterial potential. However, the involvement of these enzymes in inhibiting fungal pathogens and the potential role of these enzymes in bacterial-fungal interactions are unknown. Here, we find that a bacterial enzyme involved in the degradation of AHLs is also induced by and degrades the fungal lactone mycotoxin, patulin. This work supports the potential use of bacterial enzymes and/or the producing bacteria in controlling the post-harvest fruit disease caused by the patulin-producing fungus Penicillium expansum.
Collapse
Affiliation(s)
- Shlomit Dor
- Department of Molecular and Computational Biosciences and Biotechnology, Migal-Galilee Research Institute, Kiryat Shmona, Israel
| | - Keren Nudel
- Department of Molecular and Computational Biosciences and Biotechnology, Migal-Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Justin L. Eagan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rami Cohen
- Department of Molecular and Computational Biosciences and Biotechnology, Migal-Galilee Research Institute, Kiryat Shmona, Israel
| | - Christina M. Hull
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Livnat Afriat-Jurnou
- Department of Molecular and Computational Biosciences and Biotechnology, Migal-Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
4
|
Liaqat I, Khalid A, Rubab S, Rashid F, Latif AA, Naseem S, Bibi A, Khan BN, Ansar W, Javed A, Afzaal M, Summer M, Majid S, Ali S, Aftab MN. In Vitro Biofilm-Mediated Biodegradation of Pesticides and Dye-Contaminated Effluents Using Bacterial Biofilms. Microorganisms 2023; 11:2163. [PMID: 37764007 PMCID: PMC10535849 DOI: 10.3390/microorganisms11092163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Overuse of pesticides in agricultural soil and dye-polluted effluents severely contaminates the environment and is toxic to animals and humans making their removal from the environment essential. The present study aimed to assess the biodegradation of pesticides (cypermethrin (CYP) and imidacloprid (IMI)), and dyes (malachite green (MG) and Congo red (CR)) using biofilms of bacteria isolated from pesticide-contaminated soil and dye effluents. Biofilms of indigenous bacteria, i.e., Bacillus thuringiensis 2A (OP554568), Enterobacter hormaechei 4A (OP723332), Bacillus sp. 5A (OP586601), and Bacillus cereus 6B (OP586602) individually and in mixed culture were tested against CYP and IMI. Biofilms of indigenous bacteria i.e., Lysinibacillus sphaericus AF1 (OP589134), Bacillus sp. CF3 (OP589135) and Bacillus sp. DF4 (OP589136) individually and in mixed culture were tested for their ability to degrade dyes. The biofilm of a mixed culture of B. thuringiensis + Bacillus sp. (P7) showed 46.2% degradation of CYP compared to the biofilm of a mixed culture of B. thuringiensis + E. hormaechei + Bacillus sp. + B. cereus (P11), which showed significantly high degradation (70.0%) of IMI. Regarding dye biodegradation, a mixed culture biofilm of Bacillus sp. + Bacillus sp. (D6) showed 86.76% degradation of MG, which was significantly high compared to a mixed culture biofilm of L. sphaericus + Bacillus sp. (D4) that degraded only 30.78% of CR. UV-VIS spectroscopy revealed major peaks at 224 nm, 263 nm, 581 nm and 436 nm for CYP, IMI, MG and CR, respectively, which completely disappeared after treatment with bacterial biofilms. Fourier transform infrared (FTIR) analysis showed the appearance of new peaks in degraded metabolites and disappearance of a peak in the control spectrum after biofilm treatment. Thin layer chromatography (TLC) analysis also confirmed the degradation of CYP, IMI, MG and CR into several metabolites compared to the control. The present study demonstrates the biodegradation potential of biofilm-forming bacteria isolated from pesticide-polluted soil and dye effluents against pesticides and dyes. This is the first report demonstrating biofilm-mediated bio-degradation of CYP, IMI, MG and CR utilizing soil and effluent bacterial flora from Multan and Sheikhupura, Punjab, Pakistan.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Laboratory, Department of Zoology, Government College University, Lahore 54000, Pakistan; (W.A.); (M.S.); (S.M.)
| | - Awais Khalid
- Department of Physics, Hazara University, Mansehra 21300, Pakistan;
| | - Saima Rubab
- Department of Pharmacognosy, Lahore Pharmacy College, Lahore Medical & Dental College, Lahore 53400, Pakistan;
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan; (F.R.); (A.A.L.)
| | - Asma Abdul Latif
- Department of Zoology, Lahore College for Women University, Lahore 54000, Pakistan; (F.R.); (A.A.L.)
| | - Sajida Naseem
- Department of Zoology, University of Education, Lower Mall Campus, Lahore 54000, Pakistan
| | - Asia Bibi
- Department of Zoology, The Women University, Multan 66000, Pakistan;
| | - Bushra Nisar Khan
- Institute of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Waiza Ansar
- Microbiology Laboratory, Department of Zoology, Government College University, Lahore 54000, Pakistan; (W.A.); (M.S.); (S.M.)
| | - Arshad Javed
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Pattoki 55300, Pakistan;
| | - Muhammad Afzaal
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan;
| | - Muhammad Summer
- Microbiology Laboratory, Department of Zoology, Government College University, Lahore 54000, Pakistan; (W.A.); (M.S.); (S.M.)
| | - Samia Majid
- Microbiology Laboratory, Department of Zoology, Government College University, Lahore 54000, Pakistan; (W.A.); (M.S.); (S.M.)
| | - Sikander Ali
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan (M.N.A.)
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan (M.N.A.)
| |
Collapse
|
5
|
Gauhar SJ, Qurashi AW, Liaqat I, Zafar U, Virk MA, Ara C, Faheem M, Mubin M. Halotolerant bacterial biofilms for desalination and water treatment: a pilot study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27411-5. [PMID: 37171730 DOI: 10.1007/s11356-023-27411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
Salinity has a significant impact on the water quality and crop yield. Physical desalination techniques were once thought to be expensive and time-consuming. Among biological techniques, halotolerant bacteria were thought to be the fastest and most effective way to reduce the salt content in brackish saltwater water. In the current study, halotolerant bacterial biofilms were used to desalinate saline water on abiotic substrates (such as sand, pebbles, glass beads, and plastic beads), and studied subsequently for the effects on Zea mays germination. Briefly, salt samples (SLT7 and SLT8) from the Khewra site in Punjab, Pakistan, as well as seawater and sea sand samples (USW1, USW3, USW6, DSW1, DSW4, SS1, and SS3) from Karachi, Sindh, Pakistan's Arabian Sea, were collected. Halotolerant bacteria were isolated and characterized. Crystal violet ring assays and capsule staining were used to estimate extracellular polymeric substance (EPS) and biofilm development, respectively. All halotolerant bacterial strains were spore formers and produced EPS and formed biofilms well. 16S rRNA gene sequencing of the best halotolerant bacteria, USW6, showed the closest (100%) similarity to Bacillus aerius strain G-07 (a novel species) (accession number ON202984). A pilot-scale experiment for desalinating the artificial water (supplemented with 1 M NaCl) using biofilm adhered abiotic beads showed declined level of NaCl from 1 M to 0.00003 M after 15 days in treated water. Also, Zea mays germination was observed in the plants using treated water compared to no growth in the non-treated saline water. Estimations of chlorophyll, total soluble sugar, and protein revealed that plants cultivated using elute collected from a desalinated pilot scale setup contained less chlorophyll (i.e., 5.994 and 116.76). Likewise, plants grown with elute had a total soluble protein and sugar content of 1.45 mg/ml and 1.3 mg/ml, respectively. Overall, in treated water plants, a minor drop in chlorophyll content, a slight increase in total soluble sugar content, and a slight increase in protein content were noted. The study concluded that biofilm-treated desalt water has the potential to significantly reduce the effects of droughts, soil salinization, and economic and environmental issues associated with agricultural drainage. The results specified the application of halotolerant bacteria biofilms (Bacillus aerius, a novel species, USW6) for water desalination to overcome the problem of water scarcity caused by global warming and the increased salinity.
Collapse
Affiliation(s)
- Sadaf Jahan Gauhar
- Department of Biology, Faculty of Basic Sciences, Lahore Garrison University, Lahore, Pakistan
| | - Aisha Waheed Qurashi
- Department of Biology, Faculty of Basic Sciences, Lahore Garrison University, Lahore, Pakistan
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Urooj Zafar
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Muhammad Arshad Virk
- CVAS, University of Veterinary and Animal Sciences Lahore, Jhang Campus, Jhang, Pakistan
| | - Chaman Ara
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Mehwish Faheem
- Microbiology Lab, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Liaqat I, Gulab B, Hanif U, Sultan A, Sadiqa A, Zafar U, Afzaal M, Naseem S, Akram S, Saleem G. Honey Potential as Antibiofilm, Antiquorum Sensing and Dispersal Agent against Multispecies Bacterial Biofilm. J Oleo Sci 2022; 71:425-434. [DOI: 10.5650/jos.ess21199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, GC University
| | - Babar Gulab
- Microbiology Lab, Department of Zoology, GC University
| | | | | | - Ayesha Sadiqa
- Department of Chemistry, University of Engineering and Technology
| | - Urooj Zafar
- Department of Microbiology, University of Karachi
| | | | - Sajida Naseem
- Department of Zoology, University of Education, Lower Mall Campu
| | - Sumia Akram
- Division of Science and Technology, University of Education
| | - Gulbeena Saleem
- Department of Pathology, University of Veterinary and Animal Sciences
| |
Collapse
|
7
|
Vieira G, Khalil ZG, Capon RJ, Sette LD, Ferreira H, Sass DC. Isolation and agricultural potential of penicillic acid against citrus canker. J Appl Microbiol 2021; 132:3081-3088. [PMID: 34927315 DOI: 10.1111/jam.15413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
AIMS The control of Xanthomonas citri subsp. citri (X. citri), causal agent of citrus canker, relies heavily in integrated agricultural practices involving the use of copper-based chemicals. Considering the need for alternatives to control this disease and the potential of fungi from extreme regions as producers of bioactive metabolites, we isolated and identified a bioactive compound from Penicillium sp. CRM 1540 isolated from Antarctica marine sediment. METHODS AND RESULTS The compound potential as an antibacterial agent against X. citri was assessed through in vitro and greenhouse experiments. Molecular taxonomy indicates this fungus is a possible new species of Penicillium. The results revealed 90% inhibition at 25 µg mL-1 in vitro and a decrease in symptoms emergency for the in vivo experiment in Citrus sinensis (L.) Osbeck leaves. The number of lesions per cm² for the treatment with the isolated compound was 75.31% smaller and significantly different (p <0.05) from the untreated control. The structure of the active agent was identified as penicillic acid based on detailed spectroscopic analysis. CONCLUSION Penicillic acid can be an alternative against citrus canker. SIGNIFICANCE AND IMPACT OF STUDY Research on extremophile microorganisms can lead to molecules with biotechnological potential and alternatives to current agriculture practices.
Collapse
Affiliation(s)
- Gabrielle Vieira
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Zeinab G Khalil
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD, Australia
| | - Robert J Capon
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD, Australia
| | - Lara Durães Sette
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Henrique Ferreira
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| | - Daiane Cristina Sass
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Avenue 24 A, 1515, Rio Claro, SP, Brazil
| |
Collapse
|
8
|
Afonso TB, Simões LC, Lima N. Effect of quorum sensing and quenching molecules on inter-kingdom biofilm formation by Penicillium expansum and bacteria. BIOFOULING 2020; 36:965-976. [PMID: 33078624 DOI: 10.1080/08927014.2020.1836162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The ecology of a biofilm is a complex function of different factors, including the presence of microbial metabolites excreted by the inhabitants of the biofilm. This study aimed to assess the effect of patulin, and N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) on inter-kingdom biofilm formation between a filamentous fungus and bacteria isolated from drinking water. The filamentous fungus Penicillium expansum and the bacteria Acinetobacter calcoaceticus and Methylobacterium oryzae were used as model species. M. oryzae biofilm formation and development was more susceptible to the presence of the quenching molecules than A. calcoaceticus biofilms. Patulin reduced M. oryzae biofilm growth while 3-oxo-C12-HSL caused an increase after 48 h. The presence of P. expansum had a detrimental effect on M. oryzae cell numbers, while an advantageous effect was observed with A. calcoaceticus. The overall results reveal that quorum sensing and quenching molecules have a significant effect on inter-kingdom biofilm formation, especially on bacterial numbers.
Collapse
Affiliation(s)
| | | | - Nelson Lima
- CEB, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
9
|
Torres M, Dessaux Y, Llamas I. Saline Environments as a Source of Potential Quorum Sensing Disruptors to Control Bacterial Infections: A Review. Mar Drugs 2019; 17:md17030191. [PMID: 30934619 PMCID: PMC6471967 DOI: 10.3390/md17030191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Saline environments, such as marine and hypersaline habitats, are widely distributed around the world. They include sea waters, saline lakes, solar salterns, or hypersaline soils. The bacteria that live in these habitats produce and develop unique bioactive molecules and physiological pathways to cope with the stress conditions generated by these environments. They have been described to produce compounds with properties that differ from those found in non-saline habitats. In the last decades, the ability to disrupt quorum-sensing (QS) intercellular communication systems has been identified in many marine organisms, including bacteria. The two main mechanisms of QS interference, i.e., quorum sensing inhibition (QSI) and quorum quenching (QQ), appear to be a more frequent phenomenon in marine aquatic environments than in soils. However, data concerning bacteria from hypersaline habitats is scarce. Salt-tolerant QSI compounds and QQ enzymes may be of interest to interfere with QS-regulated bacterial functions, including virulence, in sectors such as aquaculture or agriculture where salinity is a serious environmental issue. This review provides a global overview of the main works related to QS interruption in saline environments as well as the derived biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
10
|
Antunes J, Pereira S, Ribeiro T, Plowman JE, Thomas A, Clerens S, Campos A, Vasconcelos V, Almeida JR. A Multi-Bioassay Integrated Approach to Assess the Antifouling Potential of the Cyanobacterial Metabolites Portoamides. Mar Drugs 2019; 17:E111. [PMID: 30759807 PMCID: PMC6410096 DOI: 10.3390/md17020111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
The cyclic peptides portoamides produced by the cyanobacterium Phormidium sp. LEGE 05292 were previously isolated and their ability to condition microcommunities by allelopathic effect was described. These interesting bioactive properties are, however, still underexplored as their biotechnological applications may be vast. This study aims to investigate the antifouling potential of portoamides, given that a challenge in the search for new environmentally friendly antifouling products is to find non-toxic natural alternatives with the ability to prevent colonization of different biofouling species, from bacteria to macroinvertebrates. A multi-bioassay approach was applied to assess portoamides antifouling properties, marine ecotoxicity and molecular mode of action. Results showed high effectiveness in the prevention of mussel larvae settlement (EC50 = 3.16 µM), and also bioactivity towards growth and biofilm disruption of marine biofouling bacterial strains, while not showing toxicity towards both target and non-target species. Antifouling molecular targets in mussel larvae include energy metabolism modifications (failure in proton-transporting ATPases activity), structural alterations of the gills and protein and gene regulatory mechanisms. Overall, portoamides reveal a broad-spectrum bioactivity towards diverse biofouling species, including a non-toxic and reversible effect towards mussel larvae, showing potential to be incorporated as an active ingredient in antifouling coatings.
Collapse
Affiliation(s)
- Jorge Antunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal.
| | - Sandra Pereira
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Tiago Ribeiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | | | - Ancy Thomas
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand.
| | - Stefan Clerens
- AgResearch Ltd., 1365 Springs Rd, Lincoln 7674, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch P 8140, New Zealand.
- Riddet Institute, Massey University, Palmerston North P 4442, New Zealand.
| | - Alexandre Campos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Vitor Vasconcelos
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, P 4069-007 Porto, Portugal.
| | - Joana R Almeida
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
11
|
Pang R, Xie T, Wu Q, Li Y, Lei T, Zhang J, Ding Y, Wang J, Xue L, Chen M, Wei X, Zhang Y, Zhang S, Yang X. Comparative Genomic Analysis Reveals the Potential Risk of Vibrio parahaemolyticus Isolated From Ready-To-Eat Foods in China. Front Microbiol 2019; 10:186. [PMID: 30792709 PMCID: PMC6374323 DOI: 10.3389/fmicb.2019.00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen associated with the consumption of aquatic products. The presence of this bacterium in ready-to-eat (RTE) foods has recently been reported. However, the genomic features and potential risks of V. parahaemolyticus isolated from RTE foods are poorly understood. To help understand the genome-wide characteristics of RTE food isolates, the complete genomes of 27 RTE food isolates were sequenced and compared to those of 20 clinical and 19 other environmental (e.g., water and aquatic product source) isolates using a comparative genomics approach. Analysis revealed that V. parahaemolyticus RTE food isolates had higher numbers of genes on average and possessed more accessory genes than isolates from other sources. Most RTE food isolates were positive for some known virulence-associated genes and pathogenicity islands (PAIs), and some of these isolates were genetically homologous to clinical isolates. Genome-wide association analysis revealed 79 accessory genes and 78 missense single-nucleotide polymorphisms that affected 11 protein-coding genes were significantly associated with RTE food sources. These genes were mostly involved in defense mechanisms and energy production and conversion according to functional annotation in the COG database. KEGG Pathway analysis showed that these genes mainly affected the biofilm formation of V. parahaemolyticus, and subsequent experiments confirmed that nearly all RTE food isolates possessed the ability to form biofilm. The biofilm formation can facilitate the persistence of V. parahaemolyticus in RTE foods, and the presence of virulence-associated genes poses a pathogenic potential to humans. Our findings highlight the potential risk of V. parahaemolyticus in Chinese RTE foods and illustrate the genomic basis for the persistence of these isolates. This study will aid in re-evaluating the food safety threats conferred by this bacterium.
Collapse
Affiliation(s)
- Rui Pang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Tengfei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yanping Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Liang Xue
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xianhu Wei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Youxiong Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shuhong Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiaojuan Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
12
|
Sivakumar K, Scarascia G, Zaouri N, Wang T, Kaksonen AH, Hong PY. Salinity-Mediated Increment in Sulfate Reduction, Biofilm Formation, and Quorum Sensing: A Potential Connection Between Quorum Sensing and Sulfate Reduction? Front Microbiol 2019; 10:188. [PMID: 30787924 PMCID: PMC6373464 DOI: 10.3389/fmicb.2019.00188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/23/2019] [Indexed: 11/30/2022] Open
Abstract
Biocorrosion in marine environment is often associated with biofilms of sulfate reducing bacteria (SRB). However, not much information is available on the mechanism underlying exacerbated rates of SRB-mediated biocorrosion under saline conditions. Using Desulfovibrio (D.) vulgaris and Desulfobacterium (Db.) corrodens as model SRBs, the enhancement effects of salinity on sulfate reduction, N-acyl homoserine lactone (AHL) production and biofilm formation by SRBs were demonstrated. Under saline conditions, D. vulgaris and Db. corrodens exhibited significantly higher specific sulfate reduction and specific AHL production rates as well as elevated rates of biofilm formation compared to freshwater medium. Salinity-induced enhancement traits were also confirmed at transcript level through reverse transcription quantitative polymerase chain reaction (RT-qPCR) approach, which showed salinity-influenced increase in the expression of genes associated with carbon metabolism, sulfate reduction, biofilm formation and histidine kinase signal transduction. In addition, by deploying quorum sensing (QS) inhibitors, a potential connection between sulfate reduction and AHL production under saline conditions was demonstrated, which is most significant during early stages of sulfate metabolism. The findings collectively revealed the interconnection between QS, sulfate reduction and biofilm formation among SRBs, and implied the potential of deploying quorum quenching approaches to control SRB-based biocorrosion in saline conditions.
Collapse
Affiliation(s)
- Krishnakumar Sivakumar
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Giantommaso Scarascia
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Noor Zaouri
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tiannyu Wang
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna H Kaksonen
- Land and Water, Commonwealth Scientific and Industrial Research Organization, Floreat, WA, Australia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
13
|
Liao J, Xu G, Mevers EE, Clardy J, Watnick PI. A high-throughput, whole cell assay to identify compounds active against carbapenem-resistant Klebsiella pneumoniae. PLoS One 2018; 13:e0209389. [PMID: 30576339 PMCID: PMC6303040 DOI: 10.1371/journal.pone.0209389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/05/2022] Open
Abstract
Enteric Gram-negative rods (GNR), which are frequent causes of community-acquired and nosocomial infections, are increasingly resistant to the antibiotics in our current armamentarium. One solution to this medical dilemma is the development of novel classes of antimicrobial compounds. Here we report the development of a robust, whole cell-based, high-throughput metabolic assay that detects compounds with activity against carbapenem-resistant Klebsiella pneumoniae. We have used this assay to screen approximately 8,000 fungal extracts and 50,000 synthetic compounds with the goal of identifying extracts and compounds active against a highly resistant strain of Klebsiella pneumoniae. The primary screen identified 43 active fungal extracts and 144 active synthetic compounds. Patulin, a known fungal metabolite and inhibitor of bacterial quorum sensing and alanine racemase, was identified as the active component in the most potent fungal extracts. We did not study patulin further due to previously published evidence of toxicity. Three synthetic compounds termed O06, C17, and N08 were chosen for further study. Compound O06 did not have significant antibacterial activity but rather interfered with sugar metabolism, while compound C17 had only moderate activity against GNRs. Compound N08 was active against several resistant GNRs and showed minimal toxicity to mammalian cells. Preliminary studies suggested that it interferes with protein expression. However, its direct application may be limited by susceptibility to efflux and a tendency to form aggregates in aqueous media. Rapid screening of 58,000 test samples with identification of several compounds that act on CR-K. pneumoniae demonstrates the utility of this screen for the discovery of drugs active against this highly resistant GNR.
Collapse
Affiliation(s)
- Julie Liao
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - George Xu
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emily E. Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula I. Watnick
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Liu J, Fu K, Wu C, Qin K, Li F, Zhou L. "In-Group" Communication in Marine Vibrio: A Review of N-Acyl Homoserine Lactones-Driven Quorum Sensing. Front Cell Infect Microbiol 2018; 8:139. [PMID: 29868495 PMCID: PMC5952220 DOI: 10.3389/fcimb.2018.00139] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
N-Acyl Homoserine Lactones (N-AHLs) are an important group of small quorum-sensing molecules generated and released into the surroundings by Gram-negative bacteria. N-AHLs play a crucial role in various infection-related biological processes of marine Vibrio species, including survival, colonization, invasion, and pathogenesis. With the increasing problem of antibiotic abuse and subsequently the emergence of drug-resistant bacteria, studies on AHLs are therefore expected to bring potential new breakthroughs for the prevention and treatment of Vibrio infections. This article starts from AHLs generation in marine Vibrio, and then discusses the advantages, disadvantages, and trends in the future development of various detection methods for AHLs characterization. In addition to a detailed classification of the various marine Vibrio-derived AHL types that have been reported over the years, the regulatory mechanisms of AHLs and their roles in marine Vibrio biofilms, pathogenicity and interaction with host cells are also highlighted. Intervention measures for AHLs in different stages are systematically reviewed, and the prospects of their future development and application are examined.
Collapse
Affiliation(s)
- Jianfei Liu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kaifei Fu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Chenglin Wu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kewei Qin
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Fei Li
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
15
|
Wang TN, Kaksonen A, Hong PY. Evaluation of two autoinducer-2 quantification methods for application in marine environments. J Appl Microbiol 2018; 124:1469-1479. [DOI: 10.1111/jam.13725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/28/2017] [Accepted: 02/02/2018] [Indexed: 12/25/2022]
Affiliation(s)
- T.-N. Wang
- Division of Biological and Environmental Science and Engineering (BESE); Water Desalination and Reuse Center (WDRC); King Abdullah University of Science and Technology (KAUST); Thuwal Saudi Arabia
| | | | - P.-Y. Hong
- Division of Biological and Environmental Science and Engineering (BESE); Water Desalination and Reuse Center (WDRC); King Abdullah University of Science and Technology (KAUST); Thuwal Saudi Arabia
| |
Collapse
|
16
|
Different activated methyl cycle pathways affect the pathogenicity of avian pathogenic Escherichia coli. Vet Microbiol 2017; 211:160-168. [DOI: 10.1016/j.vetmic.2017.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023]
|
17
|
Chen L, Qian PY. Review on Molecular Mechanisms of Antifouling Compounds: An Update since 2012. Mar Drugs 2017; 15:md15090264. [PMID: 28846624 PMCID: PMC5618403 DOI: 10.3390/md15090264] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/23/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Better understanding of the mechanisms of antifouling compounds is recognized to be of high value in establishing sensitive biomarkers, allowing the targeted optimization of antifouling compounds and guaranteeing environmental safety. Despite vigorous efforts to find new antifouling compounds, information about the mechanisms of antifouling is still scarce. This review summarizes the progress into understanding the molecular mechanisms underlying antifouling activity since 2012. Non-toxic mechanisms aimed at specific targets, including inhibitors of transmembrane transport, quorum sensing inhibitors, neurotransmission blockers, adhesive production/release inhibitors and enzyme/protein inhibitors, are put forward for natural antifouling products or shelf-stable chemicals. Several molecular targets show good potential for use as biomarkers in future mechanistic screening, such as acetylcholine esterase for neurotransmission, phenoloxidase/tyrosinase for the formation of adhesive plaques, N-acyl homoserine lactone for quorum sensing and intracellular Ca2+ levels as second messenger. The studies on overall responses to challenges by antifoulants can be categorized as general targets, including protein expression/metabolic activity regulators, oxidative stress inducers, neurotransmission blockers, surface modifiers, biofilm inhibitors, adhesive production/release inhibitors and toxic killing. Given the current situation and the knowledge gaps regarding the development of alternative antifoulants, a basic workflow is proposed that covers the indispensable steps, including preliminary mechanism- or bioassay-guided screening, evaluation of environmental risks, field antifouling performance, clarification of antifouling mechanisms and the establishment of sensitive biomarkers, which are combined to construct a positive feedback loop.
Collapse
Affiliation(s)
- Lianguo Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
18
|
Paytubi S, de La Cruz M, Tormo JR, Martín J, González I, González-Menendez V, Genilloud O, Reyes F, Vicente F, Madrid C, Balsalobre C. A High-Throughput Screening Platform of Microbial Natural Products for the Discovery of Molecules with Antibiofilm Properties against Salmonella. Front Microbiol 2017; 8:326. [PMID: 28303128 PMCID: PMC5332434 DOI: 10.3389/fmicb.2017.00326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/16/2017] [Indexed: 01/07/2023] Open
Abstract
In this report, we describe a High-Throughput Screening (HTS) to identify compounds that inhibit biofilm formation or cause the disintegration of an already formed biofilm using the Salmonella Enteritidis 3934 strain. Initially, we developed a new methodology for growing Salmonella biofilms suitable for HTS platforms. The biomass associated with biofilm at the solid-liquid interface was quantified by staining both with resazurin and crystal violet, to detect living cells and total biofilm mass, respectively. For a pilot project, a subset of 1120 extracts from the Fundación MEDINA's collection was examined to identify molecules with antibiofilm activity. This is the first validated HTS assay of microbial natural product extracts which allows for the detection of four types of activities which are not mutually exclusive: inhibition of biofilm formation, detachment of the preformed biofilm and antimicrobial activity against planktonic cells or biofilm embedded cells. Currently, several extracts have been selected for further fractionation and purification of the active compounds. In one of the natural extracts patulin has been identified as a potent molecule with antimicrobial activity against both, planktonic cells and cells within the biofilm. These findings provide a proof of concept that the developed HTS can lead to the discovery of new natural compounds with antibiofilm activity against Salmonella and its possible use as an alternative to antimicrobial therapies and traditional disinfectants.
Collapse
Affiliation(s)
- Sonia Paytubi
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| | | | - Jose R. Tormo
- Fundación MEDINA, Parque Tecnológico de Ciencias de la SaludGranada, Spain
| | - Jesús Martín
- Fundación MEDINA, Parque Tecnológico de Ciencias de la SaludGranada, Spain
| | - Ignacio González
- Fundación MEDINA, Parque Tecnológico de Ciencias de la SaludGranada, Spain
| | | | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de Ciencias de la SaludGranada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de Ciencias de la SaludGranada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de Ciencias de la SaludGranada, Spain
| | - Cristina Madrid
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| | - Carlos Balsalobre
- Department de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
19
|
Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria. Antibiotics (Basel) 2016; 5:antibiotics5040039. [PMID: 27983678 PMCID: PMC5187520 DOI: 10.3390/antibiotics5040039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.
Collapse
|
20
|
Monzon O, Yang Y, Li Q, Alvarez PJ. Quorum sensing autoinducers enhance biofilm formation and power production in a hypersaline microbial fuel cell. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Ghali I, Shinkai T, Mitsumori M. Mining of luxS genes from rumen microbial consortia by metagenomic and metatranscriptomic approaches. Anim Sci J 2015; 87:666-73. [PMID: 26277986 DOI: 10.1111/asj.12476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/27/2015] [Indexed: 11/27/2022]
Abstract
Although rumen bacterial communities vary depending on many factors such as diet, age and physiological conditions, a core microbiota exists within the rumen. In many natural environments, some bacteria use a quorum-sensing (QS) system to regulate their physiological activities. However, very limited information is available about QS systems in rumen. To investigate the autoinducer 2 (AI-2)-mediated QS system in rumen, we detected genes (luxS) encoding the AI-2 synthase (LuxS), from three datasets embedded in metagenomics RAST server (MG-RAST) and from a metatranscriptome dataset. We collected 135 luxS genes from the metagenomic datasets, which were presumed to originate from Bacteroidetes, Firmicutes, Fusobacteria and Actinobacteria, and 34 luxS genes from the metatranscriptome dataset, which probably originated from Bacteroidetes, Firmicutes and Spirochaetes. Because the essential amino acids for LuxS activity were conserved in the LuxS homologues predicted from luxS gene sequences from both datasets, the LuxS homologues probably function in the rumen. Since the largest number of sequences of luxS genes were collected from the genera Prevotella, Ruminococcus and Eubacterium, which include many fibrolytic bacteria and constituent members of biofilm on feed particles, an AI-2-mediated QS system is likely involved in biofilm formation and fibrolytic activity in the rumen.
Collapse
Affiliation(s)
- Ines Ghali
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takumi Shinkai
- NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Makoto Mitsumori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,NARO Institute of Livestock and Grassland Science, Tsukuba, Japan
| |
Collapse
|
22
|
Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X. Antimicrobial peptides in 2014. Pharmaceuticals (Basel) 2015; 8:123-50. [PMID: 25806720 PMCID: PMC4381204 DOI: 10.3390/ph8010123] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| | - Biswajit Mishra
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Kyle Lau
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Tamara Lushnikova
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Radha Golla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Xiuqing Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
- Institute of Clinical Laboratory, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|