1
|
Thimmappa BC, Salhi LN, Forget L, Sarrasin M, Bustamante Villalobos P, Henrissat B, Lang BF, Burger G. A biofertilizing fungal endophyte of cranberry plants suppresses the plant pathogen Diaporthe. Front Microbiol 2024; 15:1327392. [PMID: 38371935 PMCID: PMC10869595 DOI: 10.3389/fmicb.2024.1327392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Fungi colonizing plants are gaining attention because of their ability to promote plant growth and suppress pathogens. While most studies focus on endosymbionts from grasses and legumes, the large and diverse group of ericaceous plants has been much neglected. We recently described one of the very few fungal endophytes promoting the growth of the Ericaceae Vaccinium macrocarpon (American cranberry), notably the Codinaeella isolate EC4. Here, we show that EC4 also suppresses fungal pathogens, which makes it a promising endophyte for sustainable cranberry cultivation. By dual-culture assays on agar plates, we tested the potential growth suppression (or biocontrol) of EC4 on other microbes, notably 12 pathogenic fungi and one oomycete reported to infect not only cranberry but also blueberry, strawberry, tomato plants, rose bushes and olive trees. Under greenhouse conditions, EC4 protects cranberry plantlets infected with one of the most notorious cranberry-plant pathogens, Diaporthe vaccinii, known to cause upright dieback and berry rot. The nuclear genome sequence of EC4 revealed a large arsenal of genes potentially involved in biocontrol. About ∼60 distinct clusters of genes are homologs of secondary metabolite gene clusters, some of which were shown in other fungi to synthesize nonribosomal peptides and polyketides, but in most cases, the exact compounds these clusters may produce are unknown. The EC4 genome also encodes numerous homologs of hydrolytic enzymes known to degrade fungal cell walls. About half of the nearly 250 distinct glucanases and chitinases are likely involved in biocontrol because they are predicted to be secreted outside the cell. Transcriptome analysis shows that the expression of about a quarter of the predicted secondary-metabolite gene clusters and glucan and chitin-degrading genes of EC4 is stimulated when it is co-cultured with D. vaccinii. Some of the differentially expressed EC4 genes are alternatively spliced exclusively in the presence of the pathogen, altering the proteins' domain content and subcellular localization signal, thus adding a second level of proteome adaptation in response to habitat competition. To our knowledge, this is the first report of Diaporthe-induced alternative splicing of biocontrol genes.
Collapse
Affiliation(s)
- Bhagya C. Thimmappa
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Lila Naouelle Salhi
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Lise Forget
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Matt Sarrasin
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Peniel Bustamante Villalobos
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - B. Franz Lang
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| | - Gertraud Burger
- Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Das S, Chowdhury C, Kumar SP, Roy D, Gosavi SW, Sen R. Microbial production of N-acetyl-D-glucosamine (GlcNAc) for versatile applications: Biotechnological strategies for green process development. Carbohydr Res 2024; 536:109039. [PMID: 38277719 DOI: 10.1016/j.carres.2024.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
N-acetyl-d-glucosamine (GlcNAc) is a commercially important amino sugar for its wide range of applications in pharmaceutical, food, cosmetics and biofuel industries. In nature, GlcNAc is polymerised into chitin biopolymer, which is one of the major constituents of fungal cell wall and outer shells of crustaceans. Sea food processing industries generate a large volume of chitin as biopolymeric waste. Because of its high abundance, chitinaceous shellfish wastes have been exploited as one of the major precursor substrates of GlcNAc production, both in chemical and enzymatic means. Nevertheless, the current process of GlcNAc extraction from shellfish wastes generates poor turnover and attracts environmental hazards. Moreover, GlcNAc isolated from shellfish could not be prescribed to certain groups of people because of the allergic nature of shell components. Therefore, an alternative route of GlcNAc production is advocated. With the advancement of metabolic construction and synthetic biology, microbial synthesis of GlcNAc is gaining much attention nowadays. Several new and cutting-edge technologies like substrate co-utilization strategy, promoter engineering, and CRISPR interference system were proposed in this fascinating area. The study would put forward the potential application of microbial engineering in the production of important pharmaceuticals. Very recently, autotrophic fermentation of GlcNAc synthesis has been proposed. The metabolic engineering approaches would offer great promise to mitigate the issues of low yield and high production cost, which are major challenges in microbial bio-processes industries. Further process optimization, optimising metabolic flux, and efficient recovery of GlcNAc from culture broth, should be investigated in order to achieve a high product titer. The current study presents a comprehensive review on microbe-based eco-friendly green methods that would pave the way towards the development of future research directions in this field for the designing of a cost-effective fermentation process on an industrial setup.
Collapse
Affiliation(s)
- Sancharini Das
- Department of Environmental Science, Savitribai Phule Pune University, Pune, MH, 411007, India; Department of Biotechnology, Indian Institute of Technology Kharagpur, WB, 721302, India.
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - S Pavan Kumar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN, 600 036, India
| | - Debasis Roy
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, WB, 721302, India
| | - Suresh W Gosavi
- Department of Environmental Science, Savitribai Phule Pune University, Pune, MH, 411007, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, WB, 721302, India
| |
Collapse
|
3
|
Xiao Z, Zhao Q, Li W, Gao L, Liu G. Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: Strategies and prospects. Front Microbiol 2023; 14:1146210. [PMID: 37125207 PMCID: PMC10134904 DOI: 10.3389/fmicb.2023.1146210] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
In the control of plant diseases, biocontrol has the advantages of being efficient and safe for human health and the environment. The filamentous fungus Trichoderma harzianum and its closely related species can inhibit the growth of many phytopathogenic fungi, and have been developed as commercial biocontrol agents for decades. In this review, we summarize studies on T. harzianum species complex from the perspective of strain improvement. To elevate the biocontrol ability, the production of extracellular proteins and compounds with antimicrobial or plant immunity-eliciting activities need to be enhanced. In addition, resistance to various environmental stressors should be strengthened. Engineering the gene regulatory system has the potential to modulate a variety of biological processes related to biocontrol. With the rapidly developing technologies for fungal genetic engineering, T. harzianum strains with increased biocontrol activities are expected to be constructed to promote the sustainable development of agriculture.
Collapse
Affiliation(s)
- Ziyang Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Li
- Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd., Beijing, China
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Baklouti Z, Delattre C, Pierre G, Gardarin C, Abdelkafi S, Michaud P, Dubessay P. Biochemical Characterization of a Bifunctional Enzyme Constructed by the Fusion of a Glucuronan Lyase and a Chitinase from Trichoderma sp. Life (Basel) 2020; 10:life10100234. [PMID: 33049934 PMCID: PMC7601620 DOI: 10.3390/life10100234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
Bifunctional enzymes created by the fusion of a glucuronan lyase (TrGL) and a chitinase (ThCHIT42) from Trichoderma sp. have been constructed with the aim to validate a proof of concept regarding the potential of the chimera lyase/hydrolase by analyzing the functionality and the efficiency of the chimeric constructions compared to parental enzymes. All the chimeric enzymes, including or nor linker (GGGGS), were shown functional with activities equivalent or higher to native enzymes. The velocity of glucuronan lyase was considerably increased for chimeras, and may involved structural modifications at the active site. The fusion has induced a slightly decrease of the thermostability of glucuronan lyase, without modifying its catalytic activity regarding pH variations ranging from 5 to 8. The biochemical properties of chitinase seemed to be more disparate between the different fusion constructions suggesting an impact of the linkers or structural interactions with the linked glucuronan lyase. The chimeric enzymes displayed a decreased stability to temperature and pH variations, compared to parental one. Overall, TrGL-ThCHIT42 offered the better compromise in terms of biochemical stability and enhanced activity, and could be a promising candidate for further experiments in the field of fungi Cell Wall-Degrading Enzymes (CWDEs).
Collapse
Affiliation(s)
- Zeineb Baklouti
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
- Département Génie Biologique, Université de Sfax, Unité de Biotechnologie des Algues, Ecole National d’Ingénieurs de Sfax, 3018 Sfax, Tunisia;
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Guillaume Pierre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
| | - Christine Gardarin
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
| | - Slim Abdelkafi
- Département Génie Biologique, Université de Sfax, Unité de Biotechnologie des Algues, Ecole National d’Ingénieurs de Sfax, 3018 Sfax, Tunisia;
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
| | - Pascal Dubessay
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont-Auvergne, FS-63000 Clermont-Ferrand, France; (Z.B.); (C.D.); (G.P.); (C.G.); (P.M.)
- Correspondence:
| |
Collapse
|
5
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
6
|
Sharma S, Singh R, Kaur R. In Silico Characterization of a Unique Plant-Like “Loopful” GH19 Chitinase from Newly Isolated Chitinophaga sp. YS-16. Curr Microbiol 2020; 77:2248-2257. [DOI: 10.1007/s00284-020-02022-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/07/2020] [Indexed: 11/28/2022]
|
7
|
Zhou Q, Fu M, Xu M, Chen X, Qiu J, Wang F, Yan R, Wang J, Zhao S, Xin X, Chen L. Application of antagonist Bacillus amyloliquefaciens NCPSJ7 against Botrytis cinerea in postharvest Red Globe grapes. Food Sci Nutr 2020; 8:1499-1508. [PMID: 32180959 PMCID: PMC7063376 DOI: 10.1002/fsn3.1434] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 12/18/2022] Open
Abstract
We investigated the effects and possible mechanisms of Bacillus amyloliquefaciens NCPSJ7 against the gray mold caused by Botrytis cinerea in the postharvest Red Globe grapes. The disease incidence, lesion diameter, decay index, and some resistance‐related enzymes were evaluated. The antioxidant capacity of grape treated with 1 × 104 CFU/ml B. cinerea alone and combined with 1 × 107 CFU/ml NCPSJ7 was also determined. The results showed that NCPSJ7 + B. cinerea reduced the disease incidence, lesion diameter, and decay index of postharvest grapes and enhanced the activities of polyphenol oxidase, peroxidase, chitinase, and β‐1,3‐glucanase during different storage periods. Furthermore, the oxidative resistance, demonstrated by an escalating trend in the total phenolic content, DPPH free radical clearance rate, reducing power, and superoxide anion clearance rate after lesion presence, was improved. However, NCPSJ7 showed an inhibitory effect on gray mold, but resulted in the reduced antioxidant capacity in the grapes.
Collapse
Affiliation(s)
- Qingxin Zhou
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China.,College of Life Science Shandong Normal University Jinan China
| | - Maorun Fu
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Minhui Xu
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Xiangyan Chen
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| | - Jiying Qiu
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| | - Fengli Wang
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China.,College of Life Science Shandong Normal University Jinan China
| | - Ran Yan
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Junhua Wang
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| | - Shuangzhi Zhao
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| | - Xue Xin
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| | - Leilei Chen
- Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing Ministry of Agriculture Jinan China
| |
Collapse
|
8
|
Arnold ND, Brück WM, Garbe D, Brück TB. Enzymatic Modification of Native Chitin and Conversion to Specialty Chemical Products. Mar Drugs 2020; 18:E93. [PMID: 32019265 PMCID: PMC7073968 DOI: 10.3390/md18020093] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
: Chitin is one of the most abundant biomolecules on earth, occurring in crustacean shells and cell walls of fungi. While the polysaccharide is threatening to pollute coastal ecosystems in the form of accumulating shell-waste, it has the potential to be converted into highly profitable derivatives with applications in medicine, biotechnology, and wastewater treatment, among others. Traditionally this is still mostly done by the employment of aggressive chemicals, yielding low quality while producing toxic by-products. In the last decades, the enzymatic conversion of chitin has been on the rise, albeit still not on the same level of cost-effectiveness compared to the traditional methods due to its multi-step character. Another severe drawback of the biotechnological approach is the highly ordered structure of chitin, which renders it nigh impossible for most glycosidic hydrolases to act upon. So far, only the Auxiliary Activity 10 family (AA10), including lytic polysaccharide monooxygenases (LPMOs), is known to hydrolyse native recalcitrant chitin, which spares the expensive first step of chemical or mechanical pre-treatment to enlarge the substrate surface. The main advantages of enzymatic conversion of chitin over conventional chemical methods are the biocompability and, more strikingly, the higher product specificity, product quality, and yield of the process. Products with a higher Mw due to no unspecific depolymerisation besides an exactly defined degree and pattern of acetylation can be yielded. This provides a new toolset of thousands of new chitin and chitosan derivatives, as the physio-chemical properties can be modified according to the desired application. This review aims to provide an overview of the biotechnological tools currently at hand, as well as challenges and crucial steps to achieve the long-term goal of enzymatic conversion of native chitin into specialty chemical products.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| | - Wolfram M. Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion 2, Switzerland;
| | - Daniel Garbe
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| | - Thomas B. Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany; (N.D.A.); (D.G.)
| |
Collapse
|
9
|
Ji S, Liu Z, Liu B, Wang Y. Comparative analysis of biocontrol agent Trichoderma asperellum ACCC30536 transcriptome during its interaction with Populus davidiana × P. alba var. pyramidalis. Microbiol Res 2019; 227:126294. [PMID: 31421718 DOI: 10.1016/j.micres.2019.126294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
After exposure to with Populus davidiana × P. alba var. pyramidalis, the expression of genes in Trichoderma asperellum were compared in four transcriptomes. The top 20 high expression genes included six heat shock proteins and three hydrophobins, indicating that Trichoderma can rapidly adapt to environment stresses and elicit a plant defense response. The genes, involved in the interaction between Trichoderma and plant, showed an increasing expression level, for example sugar transporters, EPL1s, endoxylanases, pectin lyases, and nitrilases. Interestingly, sugar transporters also showed high expression when T. asperellum was cultured on medium lacking a carbon substrate, which would contribute to T. asperellum's survival and domination in ecological niche competition. And the genes related to mycoparasitism were expressed abundantly following T. asperellum's interaction with PdPap, indicating the PdPap induction could enhance the mycoparasitic ability of T. asperellum. Twelve chitinases and five glucanases showed higher expression in transcriptome Cs, indicating that T. asperellum secretes both types of enzyme before interacting with pathogens, allowing T. asperellum to implement mycoparasitism and obtain more energy. Many novel transcripts were obtained in each transcriptome, which may play important roles in the biocontrol process of T. asperellum. Interestingly, T. asperellum undergo constitutive alternative splicing in the biocontrol process: Seven biocontrol genes were alternative spliced via intron retention. qRT-PCR analysis proved that intron retention is negatively associated with the expression of chitinase, oligopeptide transporters, and beta-lactamase. However, the percentage of MAPK intron retention was quite low, suggesting that intron retention has little effect on the function of MAPK.
Collapse
Affiliation(s)
- Shida Ji
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Zhihua Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China
| | - Bin Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China.
| |
Collapse
|
10
|
Sierra-Gómez Y, Rodríguez-Hernández A, Cano-Sánchez P, Gómez-Velasco H, Hernández-Santoyo A, Siliqi D, Rodríguez-Romero A. A biophysical and structural study of two chitinases from Agave tequilana and their potential role as defense proteins. FEBS J 2019; 286:4778-4796. [PMID: 31291689 DOI: 10.1111/febs.14993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/04/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
Plant chitinases are enzymes that have several functions, including providing protection against pathogens. Agave tequilana is an economically important plant that is poorly studied. Here, we identified a chitinase from short reads of the A. tequilana transcriptome (AtChi1). A second chitinase, differing by only six residues from the first, was isolated from total RNA of plants infected with Fusarium oxysporum (AtChi2). Both enzymes were overexpressed in Escherichia coli and analysis of their sequences indicated that they belong to the class I glycoside hydrolase family19, whose members exhibit two domains: a carbohydrate-binding module and a catalytic domain, connected by a flexible linker. Activity assays and thermal shift experiments demonstrated that the recombinant Agave enzymes are highly thermostable acidic endochitinases with Tm values of 75 °C and 71 °C. Both exhibit a molecular mass close to 32 kDa, as determined by MALDI-TOF, and experimental pIs of 3.7 and 3.9. Coupling small-angle x-ray scattering information with homology modeling and docking simulations allowed us to structurally characterize both chitinases, which notably show different interactions in the binding groove. Even when the six different amino acids are all exposed to solvent in the loops located near the linker and opposite to the binding site, they confer distinct kinetic parameters against colloidal chitin and similar affinity for (GlnNAc)6, as shown by isothermal titration calorimetry. Interestingly, binding is more enthalpy-driven for AtChi2. Whereas the physiological role of these chitinases remains unknown, we demonstrate that they exhibit important antifungal activity against chitin-rich fungi such as Aspergillus sp. DATABASE: SAXS structural data are available in the SASBDB database with accession numbers SASDDE7 and SASDDA6. ENZYMES: Chitinases (EC3.2.1.14).
Collapse
Affiliation(s)
- Yusvel Sierra-Gómez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Homero Gómez-Velasco
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Bari, Italy
| | | |
Collapse
|
11
|
Yang J, Zhang KQ. Chitin Synthesis and Degradation in Fungi: Biology and Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:153-167. [PMID: 31102246 DOI: 10.1007/978-981-13-7318-3_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitin is one of the most important carbohydrates of the fungal cell wall, and is synthesized by chitin synthases. Chitin can be degraded by chitinases, which are important virulence factors in pathogenic fungi. Knowledge about the biosynthesis and degradation of chitin, and the enzymes responsible, has accumulated in recent years. In this review, we analyze the amino acid sequences of chitin synthases from several typical fungi. These enzymes can be divided into seven groups. While the different chitin synthases from a single fungus share a low degree of similarity, the same type of chitin synthase from different fungi shows high similarity. The number of chitinase genes in fungi display wide variation, from a single gene in Schizosaccharomyces pombe, to 36 genes in Trichoderma virens. Chitinases from different fungi can be divided into four groups. The functions of chitin synthases and chitinases in several typical fungi are summarized, and the crystal structures of chitinases and chitinase modification are also discussed.
Collapse
Affiliation(s)
- Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, 650091, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, 650091, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Oyeleye A, Normi YM. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Biosci Rep 2018; 38:BSR2018032300. [PMID: 30042170 PMCID: PMC6131217 DOI: 10.1042/bsr20180323] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023] Open
Abstract
Chitinases catalyze the degradation of chitin, a ubiquitous polymer generated from the cell walls of fungi, shells of crustaceans, and cuticles of insects. They are gaining increasing attention in medicine, agriculture, food and drug industries, and environmental management. Their roles in the degradation of chitin for the production of industrially useful products and in the control of fungal pathogens and insect pests render them attractive for such purposes. However, chitinases have diverse sources, characteristics, and mechanisms of action that seem to restrain optimization procedures and render standardization techniques for enhanced practical applications complex. Hence, results of laboratory trials are not usually consistent with real-life applications. With the growing field of protein engineering, these complexities can be overcome by modifying or redesigning chitinases to enhance specific features required for specific applications. In this review, the variations in features and mechanisms of chitinases that limit their exploitation in biotechnological applications are compiled. Recent attempts to engineer chitinases for improved efficiency are also highlighted.
Collapse
Affiliation(s)
- Ayokunmi Oyeleye
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
13
|
Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnol Adv 2018; 36:818-838. [DOI: 10.1016/j.biotechadv.2018.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023]
|
14
|
Kidibule PE, Santos-Moriano P, Jiménez-Ortega E, Ramírez-Escudero M, Limón MC, Remacha M, Plou FJ, Sanz-Aparicio J, Fernández-Lobato M. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity. Microb Cell Fact 2018; 17:47. [PMID: 29566690 PMCID: PMC5863366 DOI: 10.1186/s12934-018-0895-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/17/2018] [Indexed: 11/30/2022] Open
Abstract
Background Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of three N-acetyl-d-glucosamine (GlcNAc) units. Gene chit42 was previously characterized, and according to its sequence, the encoded protein included in the structural Glycoside Hydrolase family GH18. Results Chit42 was expressed in Pichia pastoris using fed-batch fermentation to about 3 g/L. Protein heterologously expressed showed similar biochemical properties to those expressed by the natural producer (42 kDa, optima pH 5.5–6.5 and 30–40 °C). In addition to hydrolyse colloidal chitin, this enzyme released reducing sugars from commercial chitosan of different sizes and acetylation degrees. Chit42 hydrolysed colloidal chitin at least 10-times more efficiently (defined by the kcat/Km ratio) than any of the assayed chitosan. Production of partially acetylated chitooligosaccharides was confirmed in reaction mixtures using HPAEC-PAD chromatography and mass spectrometry. Masses corresponding to (d-glucosamine)1–8-GlcNAc were identified from the hydrolysis of different substrates. Crystals from Chit42 were grown and the 3D structure determined at 1.8 Å resolution, showing the expected folding described for other GH18 chitinases, and a characteristic groove shaped substrate-binding site, able to accommodate at least six sugar units. Detailed structural analysis allows depicting the features of the Chit42 specificity, and explains the chemical nature of the partially acetylated molecules obtained from analysed substrates. Conclusions Chitinase Chit42 was expressed in a heterologous system to levels never before achieved. The enzyme produced small partially acetylated chitooligosaccharides, which have enormous biotechnological potential in medicine and food. Chit42 3D structure was characterized and analysed. Production and understanding of how the enzymes generating bioactive chito-oligomers work is essential for their biotechnological application, and paves the way for future work to take advantage of chitinolytic activities. Electronic supplementary material The online version of this article (10.1186/s12934-018-0895-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter Elias Kidibule
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1, Cantoblanco, 28049, Madrid, Spain
| | - Paloma Santos-Moriano
- Institute of Catalysis and Petrochemistry, CSIC, C/ Marie Curie, 2, Cantoblanco, 28049, Madrid, Spain
| | - Elena Jiménez-Ortega
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano (CSIC), C/ Serrano, 119, 28006, Madrid, Spain
| | - Mercedes Ramírez-Escudero
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano (CSIC), C/ Serrano, 119, 28006, Madrid, Spain
| | - M Carmen Limón
- Department of Genetic, University of Sevilla, Avenida Reina Mercedes s/n, 41012, Seville, Spain
| | - Miguel Remacha
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1, Cantoblanco, 28049, Madrid, Spain
| | - Francisco José Plou
- Institute of Catalysis and Petrochemistry, CSIC, C/ Marie Curie, 2, Cantoblanco, 28049, Madrid, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano (CSIC), C/ Serrano, 119, 28006, Madrid, Spain
| | - María Fernández-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
15
|
Konstantinovas C, de Oliveira Mendes TA, Vannier-Santos MA, Lima-Santos J. Modulation of Human Immune Response by Fungal Biocontrol Agents. Front Microbiol 2017; 8:39. [PMID: 28217107 PMCID: PMC5289975 DOI: 10.3389/fmicb.2017.00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/06/2017] [Indexed: 01/29/2023] Open
Abstract
Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses.
Collapse
Affiliation(s)
- Cibele Konstantinovas
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz Ilhéus, Brazil
| | | | - Marcos A Vannier-Santos
- Biologia Celular Parasitária, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz Salvador, Brazil
| | - Jane Lima-Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz Ilhéus, Brazil
| |
Collapse
|
16
|
|
17
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts. Biotechnol Adv 2015; 33:435-56. [DOI: 10.1016/j.biotechadv.2015.03.006] [Citation(s) in RCA: 481] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/06/2023]
|