1
|
Capobianco CM, Bosch SN, Stacy NI, Wellehan JFX. Lactococcus garvieae-associated septicemia in a central bearded dragon. J Vet Diagn Invest 2024; 36:477-480. [PMID: 38516722 PMCID: PMC11110774 DOI: 10.1177/10406387241239912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Lactococcus garvieae is the causative agent of lactococcosis in fish and an emerging zoonotic pathogen with high levels of antimicrobial resistance. We report a case of L. garvieae-associated septicemia in a central bearded dragon (Pogona vitticeps) confirmed via whole-blood PCR and direct sequencing. Following a 30-d course of ceftazidime (20 mg/kg IM q72h), the animal's clinical condition had not resolved; leukopenia persisted, with heterophil toxic change. Coelomic ultrasound findings were consistent with preovulatory follicular stasis, folliculitis, and coelomitis. Following surgical ovariectomy and an additional 30-d course of ceftazidime, the animal's behavior and appetite returned to normal, the animal tested negative via whole-blood PCR assay, and the CBC was unremarkable. To our knowledge, L. garvieae with L. garvieae-associated clinical disease has not been reported previously in a bearded dragon. We conclude that L. garvieae should be considered as a possible etiologic agent in cases of septicemia in bearded dragons, with the potential for zoonotic transmission warranting further investigation.
Collapse
Affiliation(s)
- Christian M. Capobianco
- Departments of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah N. Bosch
- Departments of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Nicole I. Stacy
- Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - James F. X. Wellehan
- Departments of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Surachat K, Deachamag P, Kantachote D, Wonglapsuwan M, Jeenkeawpiam K, Chukamnerd A. In silico comparative genomics analysis of Lactiplantibacillus plantarum DW12, a potential gamma-aminobutyric acid (GABA)-producing strain. Microbiol Res 2021; 251:126833. [PMID: 34352473 DOI: 10.1016/j.micres.2021.126833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023]
Abstract
Gamma-aminobutyric acid (GABA) is an amino that plays a major role as a neurotransmitter. It iscommonly produced by lactic acid bacteria (LAB) naturally found in fermented food and fruit. Lactiplantibacillus plantarum DW12 is a high potential GABA-producing strain isolated from a fermented beverage. In this study, to highlight its ability to produce GABA, we sequenced the genome of L. plantarum DW12 and then performed comprehensive bioinformatics and meta-analysis to compare the genomic data of previously published genomes. Also, the evolutionary analysis among L. plantarum species was demonstrated using pan-genome analysis against 576 genomes from the database. As a result, the DW12 genome comprises one circular chromosome of 3,217,574 bp. It contains several genes that encode for the production of antimicrobial compounds including plantaricin A, E, F, J, K, and N. The glutamic acid decarboxylase (GAD) operon was found in the DW12 genome, suggests a high potential of producing GABA in this strain. Therefore, L. plantarum DW12 could be a good candidate as a starter culture in the beverage and food industries due to its safety aspects and ability to produce GABA.
Collapse
Affiliation(s)
- Komwit Surachat
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Panchalika Deachamag
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Kongpop Jeenkeawpiam
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Arnon Chukamnerd
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| |
Collapse
|
3
|
Hoai TD, Nishiki I, Fujiwara A, Yoshida T, Nakai T. Comparative genomic analysis of three lytic Lactococcus garvieae phages, novel phages with genome architecture linking the 936 phage species of Lactococcus lactis. Mar Genomics 2019; 48:100696. [PMID: 31301990 DOI: 10.1016/j.margen.2019.100696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 06/16/2019] [Indexed: 12/31/2022]
Abstract
To date, a number of bacteriophages that infect Lactococcus garvieae isolated from marine fish have been identified. However, the evolutionary insight between L. garvieae phages and other viral community have not yet been immersedly investigated. In this study, completed genomic sequence of phage PLgY-30 was obtained, a comparative analysis of three lytic phages, which have been using for phage typing and treatment of L. garvieae infecting marine fish, is conducted. The results revealed that the genomes of lytic phages specific for L. garvieae isolated from diseased marine fish share a high level of homology and almost all proteins are conserved. At genome level, no similarity was detected for either PLgY-30 or PLgY-16, while PLgW-1 shares only very limited homology (1%) with other sequences in Genbank database. In addition, the function of only 35% of ORFs in the PLgY-30 phage genomes could be predicted, demonstrating that it is novel phage. At protein level, lytic phage proteins shared a significant similarity to various proteins of global phage species isolated from dairy fermentation facilities that utilize L. lactis as a primary starter culture, called the 936 phage group. Genome organization and architecture of three lytic phages are also similar to that of the 936 phage group. To our knowledge, this is the first time lytic bacteriophages infecting L. garvieae from marine fish were characterized to genome level.
Collapse
Affiliation(s)
- Truong Dinh Hoai
- Faculty of Agriculture, University of Miyazaki, Gakuen kibanadai nishi 1-1, Miyazaki 889-2192, Japan; Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Viet Nam
| | - Issei Nishiki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan.
| | - Atushi Fujiwara
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Terutoyo Yoshida
- Faculty of Agriculture, University of Miyazaki, Gakuen kibanadai nishi 1-1, Miyazaki 889-2192, Japan
| | - Toshihiro Nakai
- Laboratory of Fish Pathology, Faculty of Applied Biological Science, Hiroshima University, Higashihiroshima 739-8528, Japan
| |
Collapse
|
4
|
Detection of virulence-related genes in Lactococcus garvieae and their expression in response to different conditions. Folia Microbiol (Praha) 2017; 63:291-298. [DOI: 10.1007/s12223-017-0566-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
|
5
|
Waugh L, Ramachandran A, Talent S, Cole G, D'Agostino J. Survey of Aerobic and Anaerobic Blood Cultures in Free-Ranging Western Ratsnakes (Pantherophis obsoletus). ACTA ACUST UNITED AC 2017. [DOI: 10.5818/1529-9651-27.1-2.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Lynnette Waugh
- 1. Oklahoma City Zoo, 2101 NE 50th, Oklahoma City, OK 73111, USA
| | - Akhilesh Ramachandran
- 2. Oklahoma Animal Disease Diagnostic Laboratory, W Farm Road, Stillwater, OK 74078, USA
| | - Scott Talent
- 2. Oklahoma Animal Disease Diagnostic Laboratory, W Farm Road, Stillwater, OK 74078, USA
| | - Gretchen Cole
- 1. Oklahoma City Zoo, 2101 NE 50th, Oklahoma City, OK 73111, USA
| | | |
Collapse
|
6
|
Hoai TD, Yoshida T. Induction and characterization of a lysogenic bacteriophage of Lactococcus garvieae isolated from marine fish species. JOURNAL OF FISH DISEASES 2016; 39:799-808. [PMID: 26471724 DOI: 10.1111/jfd.12410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the presence of prophages in Lactococcus garvieae isolated from several marine fish species in Japan. Representative strains of 16 bacterial genotypes (S1-S16) selected from more than 400 L. garvieae isolates were used to induce lysogenic bacteriophages. These strains were treated with 500 ng mL(-1) freshly prepared mitomycin C. A cross-spotting assay was performed to validate the lysogenic and indicator strains. The lysogenic strains were selected for isolation and concentration of the phages. Phage DNA was digested with EcoRI for biased sinusoidal field gel electrophoresis analysis. Polymerase chain reaction (PCR) was used to detect integrated prophage DNA. Of the 16 representative bacterial genotypes, 12 strains integrated prophages as indicated by the PCR assay, and 10 phages were detected and isolated using two indicator bacterial strains. Analysis of genomic DNA showed that these phages were homologous and named as PLgT-1. Transmission electron microscopy revealed that the morphology of PLgT-1 was consistent with the virus family Siphoviridae. PCR analysis of the prophage DNA revealed that all of the S1 genotype strains were lysogenic (30/30), but none of the S16 genotype strains were lysogenic (0/30). This is the first study to investigate lysogenic bacteriophages from L. garvieae.
Collapse
Affiliation(s)
- T D Hoai
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - T Yoshida
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
7
|
López-Campos G, Aguado-Urda M, Blanco MM, Gibello A, Cutuli MT, López-Alonso V, Martín-Sánchez F, Fernández-Garayzábal JF. Lactococcus garvieae: a small bacteria and a big data world. Health Inf Sci Syst 2015; 3:S5. [PMID: 25960872 PMCID: PMC4416232 DOI: 10.1186/2047-2501-3-s1-s5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To describe the importance of bioinformatics tools to analyze the big data yielded from new "omics" generation-methods, with the aim of unraveling the biology of the pathogen bacteria Lactococcus garvieae. Methods The paper provides the vision of the large volume of data generated from genome sequences, gene expression profiles by microarrays and other experimental methods that require biomedical informatics methods for management and analysis. Results The use of biomedical informatics methods improves the analysis of big data in order to obtain a comprehensive characterization and understanding of the biology of pathogenic organisms, such as L. garvieae. Conclusions The "Big Data" concepts of high volume, veracity and variety are nowadays part of the research in microbiology associated with the use of multiple methods in the "omic" era. The use of biomedical informatics methods is a requisite necessary to improve the analysis of these data.
Collapse
Affiliation(s)
- Guillermo López-Campos
- Health and Biomedical Informatics Centre (HABIC), The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Mónica Aguado-Urda
- Faculty of Veterinary Sciences, Department of Animal Health, Complutense University, Madrid, 28040, Spain
| | - María Mar Blanco
- Faculty of Veterinary Sciences, Department of Animal Health, Complutense University, Madrid, 28040, Spain
| | - Alicia Gibello
- Faculty of Veterinary Sciences, Department of Animal Health, Complutense University, Madrid, 28040, Spain
| | - María Teresa Cutuli
- Faculty of Veterinary Sciences, Department of Animal Health, Complutense University, Madrid, 28040, Spain
| | - Victoria López-Alonso
- Computational Biology Unit, National Institute of Health "Carlos III", Madrid, 28220, Spain
| | - Fernando Martín-Sánchez
- Health and Biomedical Informatics Centre (HABIC), The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | |
Collapse
|
8
|
Insertion sequence elements in Lactococcus garvieae. Gene 2014; 555:291-6. [PMID: 25447909 DOI: 10.1016/j.gene.2014.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 11/20/2022]
Abstract
Insertion sequences are the simplest intracellular Mobile Genetic Elements which can occur in very high numbers in prokaryotic genomes, where they play an important evolutionary role by promoting genome plasticity. As such, the studies on the diversity and distribution of insertion sequences in genomes not yet investigated can contribute to improve the knowledge on a bacterial species and to identify new transposable elements. The present work describes the occurrence of insertion sequences in Lactococcus garvieae, an opportunistic emerging zoonotic and human pathogen, also associated with different food matrices. To date, no insertion elements have been described for L. garvieae in the IS element database. The analysis of the twelve published L. garvieae genomes identified 15 distinct insertion sequences that are members of the IS3, IS982, IS6, IS21 and IS256 families, including five new elements. Most of the insertion sequences in L. garvieae show substantial homology to the Lactococcus lactis elements, suggesting the movement of IS between these two species phylogenetically closely related. ISLL6 elements belonging to IS3 family were most abundant, with several copies distributed in 9 of the 12 genomes analyzed. An alignment analysis of two complete genomes carrying multi-copies of this insertion sequence indicates a possible involvement of ISLL6 in chromosomal rearrangement.
Collapse
|