1
|
Kumar S, Lee G, Kumar V, Bodkhe GA, Oh Y, Deka G, Park PH, Kim M. Black rice bioactive with multifunctional health promotional activities: A special reference to wound healing activity with polyhydroxybutyrate composite. Food Chem 2025; 466:142161. [PMID: 39612834 DOI: 10.1016/j.foodchem.2024.142161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Black rice (BR) extract contains several functional food bioactive components that are health-promoting. This study assessed the multifunctional bioactivities of various BR extracts (methanol, ethanol, acetone, and aqueous). These BR extracts revealed significant antioxidant and antibacterial activity against various bacterial strains. Acetone extract exhibited high cytotoxicity against gastric adenocarcinoma cells (AGS), while ethanol extract was cytotoxic against pancreatic cancer cells (PANC-1). Moreover, the acetone extract induced 33.6 % and 16.5 % apoptosis in PANC-1 and AGS cells, respectively. Acetone extract showed significant anti-inflammatory action, reducing 76 % production of nitric oxide in the RAW 264.7 (murine macrophage). Furthermore, all BR extracts inhibited PANC-1 and AGS migration and promoted RAW 264.7 migration. Field emission scanning electron microscope, Fourier-transform infrared spectroscopy, and X-ray diffraction analysis of the BR-polyhydroxybutyrate composite revealed successful deposition for BR extracts. This study highlights the potential of BR extracts to develop multifunctional activity-based strips for rapid wound healing.
Collapse
Affiliation(s)
- Subhash Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Gwanjo Lee
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Gajanan A Bodkhe
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Youngsook Oh
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Gitima Deka
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Pil-Hoon Park
- Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea; College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea.
| |
Collapse
|
2
|
Hou J, Cheng L, Zhang S, Zhang X, Zheng X, Zhang Q. Production of polyhydroxyalkanoate from new isolated bacteria of Acidovorax diaphorobacter ZCH-15 using orange peel and its underlying metabolic mechanisms. BIORESOURCE TECHNOLOGY 2024; 418:131949. [PMID: 39643061 DOI: 10.1016/j.biortech.2024.131949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Polyhydroxyalkanoate (PHA) is considered a sustainable alternative to traditional petroleum-based plastics due to its biodegradability and biocompatibility. In this study, Acidovorax diaphorobacter ZCH-15, an efficient PHA-producing strain, was isolated from activated sludge. Using food waste-derived orange peel as a substrate, the strain initially achieved a PHA concentration of 0.39 g/L. Under optimal fermentation conditions (30℃, pH 8, 2 % inoculum concentration, and 30 g/L carbon source), the PHA concentration increased by 138 % to reach a maximum of 0.93 g/L. Proton nuclear magnetic resonance spectroscopy and gas chromatography analyses identified the PHA composition as poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which exhibited high crystallinity and structural stability. Metabolomic analysis indicated that the tricarboxylic acid cycle and pentose phosphate pathway were involved in producing succinyl-CoA, a precursor required for PHA synthesis. This study demonstrates the potential for cost-effective industrial PHA production while enabling the high-value utilization of food waste.
Collapse
Affiliation(s)
- Jinju Hou
- Institute of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lei Cheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xilong Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, China.
| |
Collapse
|
3
|
Lee J, Saparbayeva A, Hlaing SP, Kwak D, Kim H, Kim J, Lee EH, Yoo JW. Cupriavidus necator-Produced Polyhydroxybutyrate/Eudragit FS Hybrid Nanoparticles Mitigates Ulcerative Colitis via Colon-Targeted Delivery of Cyclosporine A. Pharmaceutics 2022; 14:pharmaceutics14122811. [PMID: 36559305 PMCID: PMC9787777 DOI: 10.3390/pharmaceutics14122811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Polyhydroxybutyrate (PHB) has emerged as a novel material for replacing various plastics used in the medical field. However, its application as a drug-delivery carrier for colitis-targeted delivery has not been explored. In this study, we used biosynthesized PHB combined with Eudragit FS (EFS) and cyclosporine A (CSA) to develop pH-responsive controlled CSA-releasing nanoparticles (CSA-PENPs) for colitis-targeted drug delivery and demonstrated its enhanced therapeutic efficacy in a dextran sulfate sodium (DSS)-induced murine colitis model. PHB was successfully biosynthesized in the bacterium Cupriavidus necator, as demonstrated by 1H-NMR and FT-IR analyses. CSA-PENPs were fabricated via the oil-in-water emulsion solvent evaporation method. Owing to the potent pH-responsive and sustained drug release properties provided by PHB and EFS, CSA-PENPs could deliver a sufficient amount of CSA to inflamed tissues in the distal colon; in contrast, CSA-loaded EFS nanoparticles displayed premature burst release before reaching the target site. Due to enhanced CSA delivery to colitis tissues, CSA-PENPs exhibited potent anti-inflammatory effects in the DSS-induced murine colitis model. Overall, CSA-PENPs could be a promising drug-delivery system for treating ulcerative colitis.
Collapse
Affiliation(s)
- Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Aruzhan Saparbayeva
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dongmin Kwak
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunwoo Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Jihyun Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Hee Lee
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.: +82-51-510-2807
| |
Collapse
|
4
|
Mohammed S, Ray L. Polyhydroxyalkanoate recovery from newly screened Bacillus sp. LPPI-18 using various methods of extraction from Loktak Lake sediment sample. J Genet Eng Biotechnol 2022; 20:115. [PMID: 35932435 PMCID: PMC9357249 DOI: 10.1186/s43141-022-00392-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nowadays, the conventional plastic wastes are very challenging to environments and its production cost also creates an economic crisis due to petrochemical-based plastic. In order to solve this problem, the current studies were aimed at screening and characterizing these polyhydroxyalkanoate (PHA)-producing isolates and evaluating the suitability of some carbon source for newly screened PHA-producing isolates. MATERIAL AND METHODS Some carbon sources such as D-fructose, glucose, molasses, D-ribose and sucrose were evaluated for PHA production. Data were analyzed using SPSS version 20. The 16SrRNA gene sequence of these isolates was performed. These newly isolated taxa were related to Bacillus species. It was designated as Bacillus sp. LPPI-18 and affiliated Bacillus cereus ATCC 14577T (AE01687) (99.10%). Paenibacillus sp. 172 (AF273740.1) was used as an outgroup. RESULTS Bacillus sp. LPPI-18 is a gram-positive, rod-shaped, endospore former, and citrate test positive. This isolate showed positive for amylase, catalase, pectinase, and protease test. They produced intracellular PHA granules when this isolate was stained with Sudan Black B (SBB) and Nile blue A (NBA) preliminary and specific staining dyes, respectively. Both temperature and pH used to affect polyhydroxyalkanoates (PHA) productivity. Bacteria are able to reserve PHA in the form of granules during stress conditions. This isolate produces only when supplied with carbon sources. More PHA contents (PCs) were obtained from glucose, molasses, and D-fructose. In this regard, the maximum mean value of PC was obtained from glucose (40.55±0.7%) and the minimum was obtained from D-ribose (12.4±1.4%). Great variations (P≤0.05) of PCs were observed among glucose and sucrose, molasses and sucrose, and D-fructose and sucrose carbon sources for PHA productivity (PP) of cell dry weight (CDW) g/L. After extraction, PHA film was produced for this typical isolate using glucose as a sole carbon source. Fourier transform infrared spectrum was performed for this isolate and showed the feature of polyester at 1719.64 to 1721.16 wavelengths for these extracted samples. The peak of fingerprinting (band of carboxylic acid group) at this wavelength is a characteristic feature of polyhydroxybutyrate (PHB) and corresponds to the ester functional group (C=O). CONCLUSION In this study, newly identified Bacillus sp. LPPI-18 is found to be producing biodegradable polymers that are used to replace highly pollutant conventional plastic polymers. This isolate is also used to employ certain cost-effective carbon sources for the production of PHA polymers.
Collapse
Affiliation(s)
- Seid Mohammed
- Department of Applied Biology, SoANS, Adama Science and Technology University, Oromia, Ethiopia. .,School of Law, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Lopamudra Ray
- School of Law, KIIT University, Bhubaneswar, Odisha, 751024, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
5
|
Defatted Chlorella biomass as a renewable carbon source for polyhydroxyalkanoates and carotenoids co-production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Wang P, Chen XT, Qiu YQ, Liang XF, Cheng MM, Wang YJ, Ren LH. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Biotechnol Appl Biochem 2019; 67:307-316. [PMID: 31702835 DOI: 10.1002/bab.1848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022]
Abstract
In this study, a halotolerant strain was isolated from high salinity leachate and identified as Bacillus cereus NT-3. It can produce a high concentration of polyhydroxyalkanoates (PHAs) with no significant changes when NaCl concentration is up to 50 g/L. FTIR and NMR spectra of PHAs synthesized by Bacillus cereus NT-3 were similar to the standard or previous results. Effluent from acidogenic fermentation of food waste and pure volatile fatty acids (VFAs) mixture was used as carbon source to check the effect of non-VFAs compounds of the effluent on PHAs production. The maximum PHAs production was 0.42 g/L for effluent fermentation, whereas it was 0.34 g/L for pure VFAs fermentation, indicating that bacteria could use actual effluent in a better way. Furthermore, a mathematical model was established for describing kinetic behavior of bacteria using different carbon sources. These results provided a promising approach for PHAs biosynthesis with a low-cost carbon source.
Collapse
Affiliation(s)
- Pan Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xi Teng Chen
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Yin Quan Qiu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Municipal Solid Waste and Chemical Management Center, Beijing, China
| | - Xiao Fei Liang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Meng Meng Cheng
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Yong Jing Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Lian Hai Ren
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Wang J, Tan H, Li K, Yin H. Two‐stage fermentation optimization for poly‐3‐hydroxybutyrate production from methanol by a new Methylobacterium isolate from oil fields. J Appl Microbiol 2019; 128:171-181. [DOI: 10.1111/jam.14463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023]
Affiliation(s)
- J. Wang
- Liaoning Provincial Key Laboratory of Carbohydrates Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
- College of Fisheries and Life Science Dalian Ocean University Dalian China
| | - H. Tan
- Liaoning Provincial Key Laboratory of Carbohydrates Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - K. Li
- Liaoning Provincial Key Laboratory of Carbohydrates Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - H. Yin
- Liaoning Provincial Key Laboratory of Carbohydrates Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| |
Collapse
|
8
|
An investigation for recovery of polyhydroxyalkanoates (PHA) from Bacillus sp. BPPI-14 and Bacillus sp. BPPI-19 isolated from plastic waste landfill. Int J Biol Macromol 2019; 134:1085-1096. [DOI: 10.1016/j.ijbiomac.2019.05.155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/01/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022]
|
9
|
Sawant SS, Salunke BK, Kim BS. Consolidated bioprocessing for production of polyhydroxyalkanotes from red algae Gelidium amansii. Int J Biol Macromol 2018; 109:1012-1018. [DOI: 10.1016/j.ijbiomac.2017.11.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022]
|
10
|
Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering (Basel) 2017; 4:bioengineering4020055. [PMID: 28952534 PMCID: PMC5590474 DOI: 10.3390/bioengineering4020055] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/22/2022] Open
Abstract
Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processing.
Collapse
|
11
|
Sawant SS, Tran TK, Salunke BK, Kim BS. Potential of Saccharophagus degradans for production of polyhydroxyalkanoates using cellulose. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Enhanced Agarose and Xylan Degradation for Production of Polyhydroxyalkanoates by Co-Culture of Marine Bacterium, Saccharophagus degradans and Its Contaminant, Bacillus cereus. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Sawant SS, Salunke BK, Tran TK, Kim BS. Lignocellulosic and marine biomass as resource for production of polyhydroxyalkanoates. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0019-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Wecker P, Moppert X, Simon-Colin C, Costa B, Berteaux-Lecellier V. Discovery of a mcl-PHA with unexpected biotechnical properties: the marine environment of French Polynesia as a source for PHA-producing bacteria. AMB Express 2015; 5:74. [PMID: 26606919 PMCID: PMC4659796 DOI: 10.1186/s13568-015-0163-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/12/2015] [Indexed: 01/28/2023] Open
Abstract
A library of microorganisms
originating from various marine environments in French Polynesia was screened for polyhydroxyalkanoate producing bacteria. No significant connection was found between the geo-ecological source of bacteria and their ability to produce polyhydroxyalkanoate. A bacterial strain designated as Enterobacter FAK 1384 was isolated from a shark jaw. When grown on coprah oil, this bacterium produces a PHA constituting of 62 mol % 3-hydroxydecanoate and lower amount of 12 mol % 3-hydroxydodecenoate and of 7.6 mol % 3-hydroxydodecanoate. These interesting properties make this mcl-PHA a good candidate for further exploitations in many industrial sectors, as in film and coating manufacturing, as well as for biomedical applications.
Collapse
|
15
|
A rapid, sensitive, simple plate assay for detection of microbial alginate lyase activity. Enzyme Microb Technol 2015; 77:8-13. [DOI: 10.1016/j.enzmictec.2015.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 11/17/2022]
|
16
|
Salunke BK, Sawant SS, Lee SI, Kim BS. Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2015; 99:5419-27. [PMID: 25846336 DOI: 10.1007/s00253-015-6559-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 11/28/2022]
Abstract
Microorganisms are one of the most attractive and simple sources for the synthesis of different types of metal nanoparticles. The synthesis of manganese dioxide nanoparticles (MnO2 NPs) by microorganisms from reducing potassium permanganate was investigated for the first time in the present study. The microbial supernatants of the bacterium Saccharophagus degradans ATCC 43961 (Sde 2-40) and of the yeast Saccharomyces cerevisiae showed positive reactions to the synthesis of MnO2 NPs by displaying a change of color in the permanganate solution from purple to yellow. KMnO4-specific peaks also disappeared and MnO2-specific peaks emerged at an absorption maximum of 365 nm in UV-visible spectrophotometry. The washed Sde 2-40 cells did not show any ability to synthesize MnO2 NPs. The medium and medium constituents of Sde 2-40 showed similar positive reactions as supernatants, which indicate the role of the Sde 2-40 medium constituents in the synthesis of MnO2 NPs. This suggests that microorganisms without nanoparticle synthesis ability can be misreported for their abilities to synthesize nanoparticles. S. cerevisiae washed cells showed an ability to synthesize MnO2 NPs. The strategies of keeping yeast cells in tea bags and dialysis membranes showed positive tests for the synthesis of MnO2 NPs. A Fourier transform-infrared spectroscopy study suggested roles for the proteins, alcoholic compounds, and cell walls of S. cerevisiae cells in the synthesis of MnO2 NPs. Electron-dispersive X-ray spectroscopy analyses confirmed the presence of Mn and O in the sample. X-ray photoelectron spectroscopy revealed characteristic binding energies for MnO2 NPs. Transmission electron microscopy micrographs revealed the presence of uniformly dispersed hexagonal- and spherical-shaped particles with an average size of 34.4 nm. The synthesis approach using yeast is possible by a simple reaction at low temperature without any need for catalysts, templates, or expensive and precise equipment. Therefore, this study will be useful for the easy, cost-effective, reliable, and eco-friendly production of nanomaterials.
Collapse
Affiliation(s)
- Bipinchandra K Salunke
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea
| | | | | | | |
Collapse
|