1
|
Markelova N, Chumak A. Antimicrobial Activity of Bacillus Cyclic Lipopeptides and Their Role in the Host Adaptive Response to Changes in Environmental Conditions. Int J Mol Sci 2025; 26:336. [PMID: 39796193 PMCID: PMC11720072 DOI: 10.3390/ijms26010336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Bacillus cyclic lipopeptides (CLP), part of the three main families-surfactins, iturins, and fengycins-are secondary metabolites with a unique chemical structure that includes both peptide and lipid components. Being amphiphilic compounds, CLPs exhibit antimicrobial activity in vitro, damaging the membranes of microorganisms. However, the concentrations of CLPs used in vitro are difficult to achieve in natural conditions. Therefore, in a natural environment, alternative mechanisms of antimicrobial action by CLPs are more likely, such as inducing apoptosis in fungal cells, preventing microbial adhesion to the substrate, and promoting the death of phytopathogens by stimulating plant immune responses. In addition, CLPs in low concentrations act as signaling molecules of Bacillus's own metabolism, and when environmental conditions change, they form an adaptive response of the host bacterium. Namely, they trigger the differentiation of the bacterial population into various specialized cell types: competent cells, flagellated cells, matrix producers, and spores. In this review, we have summarized the current understanding of the antimicrobial action of Bacillus CLPs under both experimental and natural conditions. We have also shown the relationship between some regulatory pathways involved in CLP biosynthesis and bacterial cell differentiation, as well as the role of CLPs as signaling molecules that determine changes in the physiological state of Bacillus subpopulations in response to shifts in environmental conditions.
Collapse
Affiliation(s)
- Natalia Markelova
- Gause Institute of New Antibiotics, ul. Bolshaya Pirogovskaya, 11, Moscow 119021, Russia;
| | | |
Collapse
|
2
|
Hussain S, Tai B, Ali M, Jahan I, Sakina S, Wang G, Zhang X, Yin Y, Xing F. Antifungal potential of lipopeptides produced by the Bacillus siamensis Sh420 strain against Fusarium graminearum. Microbiol Spectr 2024; 12:e0400823. [PMID: 38451229 PMCID: PMC10986469 DOI: 10.1128/spectrum.04008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Biological control is a more sustainable and environmentally friendly alternative to chemical fungicides for controlling Fusarium spp. infestations. In this work, Bacillus siamensis Sh420 isolated from wheat rhizosphere showed a high antifungal activity against Fusarium graminearum as a secure substitute for fungicides. Sh420 was identified as B. siamensis using phenotypic evaluation and 16S rDNA gene sequence analysis. An in vitro antagonistic study showed that Sh420's lipopeptide (LP) extract exhibited strong antifungal properties and effectively combated F. graminearum. Meanwhile, lipopeptides have the ability to decrease ergosterol content, which has an impact on the overall structure and stability of the plasma membrane. The PCR-based screening revealed the presence of antifungal LP biosynthetic genes in this strain's genomic DNA. In the crude LP extract of Sh420, we were able to discover several LPs such as bacillomycin, iturins, fengycin, and surfactins using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations (fluorescent/transmission electron microscopy) revealed deformities and alterations in the morphology of the phytopathogen upon interaction with LPs. Sh420 LPs have been shown in grape tests to be effective against F. graminearum infection and to stimulate antioxidant activity in fruits by avoiding rust and gray lesions. The overall findings of this study highlight the potential of Sh420 lipopeptides as an effective biological control agent against F. graminearum infestations.IMPORTANCEThis study addresses the potential of lipopeptide (LP) extracts obtained from the strain identified as Bacillus siamensis Sh420. This Sh420 isolate acts as a crucial player in providing a sustainable and environmentally friendly alternative to chemical fungicides for suppressing Fusarium graminearum phytopathogen. Moreover, these LPs can reduce ergosterol content in the phytopathogen influencing the overall structure and stability of its plasma membrane. PCR screening provided confirmation regarding the existence of genes responsible for biosynthesizing antifungal LPs in the genomic DNA of Sh420. Several antibiotic lipopeptide compounds were identified from this bacterial crude extract using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations revealed deformities and alterations in the morphology of F. graminearum upon interaction with LPs. Furthermore, studies on fruit demonstrated the efficacy of Sh420 LPs in mitigating F. graminearum infection and stimulating antioxidant activity in fruits, preventing rust and gray lesions.
Collapse
Affiliation(s)
- Sarfaraz Hussain
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Israt Jahan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suha Sakina
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinlong Zhang
- Shandong Xinfurui Agriculture Science Co., Ltd, Liaocheng, Shandong, China
| | - Yixuan Yin
- Shandong Xinfurui Agriculture Science Co., Ltd, Liaocheng, Shandong, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Yan L, Li G, Liang Y, Tan M, Fang J, Peng J, Li K. Co-production of surfactin and fengycin by Bacillus subtilis BBW1542 isolated from marine sediment: a promising biocontrol agent against foodborne pathogens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:563-572. [PMID: 38327855 PMCID: PMC10844157 DOI: 10.1007/s13197-023-05864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 02/09/2024]
Abstract
Pathogenic bacteria contaminations and related diseases in food industries is an urgent issue to solve. The present study aimed to explore natural food biopreservatives from microorganisms. Using dilution-plate method, a strain BBW1542 with antimicrobial activities against various foodborne pathogenic bacteria was isolated from the seabed silt of Beibu Gulf, which was identified as Bacillus subtilis by the morphological observation and 16S rDNA sequences. The antimicrobial substances of B. subtilis BBW1542 exhibited an excellent stability under cool/heat treatment, UV irradiation, acid/alkali treatment, and protease hydrolysis. The genome sequencing analysis and antiSMASH prediction indicated that B. subtilis BBW1542 contained the gene cluster encoding lipopeptides and bacteriocin subtilosin A. MALDI-TOF-MS analysis showed that the lipopeptides from B. subtilis BBW1542 contained C14 and C15 surfactin homologues, together with fengycin homologues of C18 fengycin A/C16 fengycin B and C19 fengycin A/C17 fengycin B. In silico analysis showed that an eight-gene (sboA-albABCDEFG) operon was involved in the biosynthesis of subtilosin A in B. subtilis BBW1542, and the encoded subtilosin A presented an evident closed-loop structure containing 35 amino acids with a molecular weight of 3425.94 Da. Overall, the antagonistic B. subtilis BBW1542 displayed significant resource value and offered a promising alternative in development of food biopreservation. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05864-3.
Collapse
Affiliation(s)
- Luqi Yan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Ganghui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Yingyin Liang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 China
| | - Jianhao Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Jieying Peng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, 524088 China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034 China
| |
Collapse
|
4
|
Saucedo-Bazalar M, Masias P, Nouchi-Moromizato E, Santos C, Mialhe E, Cedeño V. MALDI mass spectrometry-based identification of antifungal molecules from endophytic Bacillus strains with biocontrol potential of Lasiodiplodia theobromae, a grapevine trunk pathogen in Peru. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100201. [PMID: 37752899 PMCID: PMC10518354 DOI: 10.1016/j.crmicr.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Lasiodiplodia theobromae, a grapevine trunk pathogen, is becoming a significant threat to vineyards worldwide. In Peru, it is responsible for Botryosphaeria dieback in many grapevine-growing areas and it has spread rapidly due to its high transmissibility; hence, control measures are urgent. It is known that some endophytic bacteria are strong inhibitors of phytopathogens because they produce a wide range of antimicrobial molecules. However, studies of antimicrobial features from endophytic bacteria are limited to traditional confrontation methods. In this study, a MALDI mass spectrometry-based approach was performed to identify and characterize the antifungal molecules from Bacillus velezensis M1 and Bacillus amyloliquefaciens M2 grapevine endophytic strains. Solid medium antagonism assays were performed confronting B. velezensis M1 - L. theobromae and B. amyloliquefaciens M2 - L. theobromae for antifungal lipopeptides identification. By a MALDI TOF MS it was possible identify mass spectra for fengycin, iturin and surfactin protoned isoforms. Masses spectrums for mycobacillin and mycosubtilin were also identified. Using MALDI Imaging MS we were able to visualize and relate lipopeptides mass spectra of fengycin (1463.9 m/z) and mycobacillin (1529.6 m/z) in the interaction zone during confrontations. The presence of lipopeptides-synthesis genes was confirmed by PCR. Liquid medium antagonism assays were performed for a proteomic analysis during the confrontation of B. velezensis M1 - L. theobromae. Different peptide sequences corresponding to many antifungal proteins and enzymes were identified by MALDI TOF MS/MS. Oxalate decarboxylase bacisubin and flagellin, reported as antifungal proteins, were identified at 99 % identity through peptide mapping. MALDI mass spectrometry-based identification of antifungal molecules would allow the early selection of endophytic bacteria with antifungal features. This omics tool could lead to measures for prevention of grapevine diseases and other economically important crops in Peru.
Collapse
Affiliation(s)
- Manuel Saucedo-Bazalar
- Departamento de Biología y Bioquímica, Universidad Nacional de Tumbes, Av. Universitaria s/n, Pampa Grande, Tumbes, Peru
- Programa de Maestría en Biotecnología Molecular, Escuela de Posgrado, Universidad Nacional de Tumbes, Av. Universitaria s/n, Pampa Grande, Tumbes, Peru
| | | | - Estefanía Nouchi-Moromizato
- Programa de Maestría en Biotecnología Molecular, Escuela de Posgrado, Universidad Nacional de Tumbes, Av. Universitaria s/n, Pampa Grande, Tumbes, Peru
| | | | - Eric Mialhe
- INCABIOTEC SAC, Jr. Filipinas 212, Tumbes, Peru
| | - Virna Cedeño
- INCABIOTEC SAC, Jr. Filipinas 212, Tumbes, Peru
- CONCEPTO AZUL, Circunvalación Norte, 528 B, Urdesa, Guayaquil, Ecuador
- CEBIOMICS S.A. Calle 28 #2624 y Avenida Flavio Reyes, Manta, Ecuador
| |
Collapse
|
5
|
Niem JM, Billones-Baaijens R, Stodart BJ, Reveglia P, Savocchia S. Biocontrol Potential of an Endophytic Pseudomonas poae Strain against the Grapevine Trunk Disease Pathogen Neofusicoccum luteum and Its Mechanism of Action. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112132. [PMID: 37299111 DOI: 10.3390/plants12112132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Grapevine trunk diseases (GTDs) impact the sustainability of vineyards worldwide and management options are currently limited. Biological control agents (BCAs) may offer a viable alternative for disease control. With an aim to develop an effective biocontrol strategy against the GTD pathogen Neofusicoccum luteum, this study investigated the following: (1) the efficacy of the strains in suppressing the BD pathogen N. luteum in detached canes and potted vines; (2) the ability of a strain of Pseudomonas poae (BCA17) to colonize and persist within grapevine tissues; and (3) the mode of action of BCA17 to antagonize N. luteum. Co-inoculations of the antagonistic bacterial strains with N. luteum revealed that one strain of P. poae (BCA17) suppressed infection by 100% and 80% in detached canes and potted vines, respectively. Stem inoculations of a laboratory-generated rifampicin-resistant strain of BCA17 in potted vines (cv. Shiraz) indicated the bacterial strain could colonize and persist in the grapevine tissues, potentially providing some protection against GTDs for up to 6 months. The bioactive diffusible compounds secreted by BCA17 significantly reduced the spore germination and fungal biomass of N. luteum and the other representative GTD pathogens. Complementary analysis via MALDI-TOF revealed the presence of an unknown cyclic lipopeptide in the bioactive diffusible compounds, which was absent in a non-antagonistic strain of P. poae (JMN13), suggesting this novel lipopeptide may be responsible for the biocontrol activity of the BCA17. Our study provided evidence that P. poae BCA17 is a potential BCA to combat N. luteum, with a potential novel mode of action.
Collapse
Affiliation(s)
- Jennifer Millera Niem
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- UPLB Museum of Natural History, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines
- Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines
| | | | - Benjamin J Stodart
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Pierluigi Reveglia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Institute for Sustainable Agriculture, CSIC, 14004 Córdoba, Spain
| | - Sandra Savocchia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
6
|
Huang LR, Ling XN, Peng SY, Tan MH, Yan LQ, Liang YY, Li GH, Li KT. A marine lipopeptides-producing Bacillus amyloliquefaciens HY2-1 with a broad-spectrum antifungal and antibacterial activity and its fermentation kinetics study. World J Microbiol Biotechnol 2023; 39:196. [PMID: 37183209 DOI: 10.1007/s11274-023-03643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The antagonistic Bacillus amyloliquefaciens HY2-1 was a marine microbiology that was isolated previously from the seabed silt of Beibu Gulf in China by dual culture with Penicillium digitatum. As a continuous study, the present work focused on evaluating the antimicrobial activity, identifying the produced active components, and revealing the fermentation characteristics of B. amyloliquefaciens HY2-1, respectively. It was found that B. amyloliquefaciens HY2-1 exhibited a broad-spectrum antimicrobial activity against the tested seven phytopathogenic fungi and five pathogenic bacteria by producing Bacillus lipopeptides such as fengycin A (C14 to C19 homologues) and surfactin (C14 and C15 homologues). Morphological observation of P. digitatum under light microscope, scanning electron microscopy, transmission electron microscopy, and fluorescence microscope inferred that B. amyloliquefaciens exerted the antagonistic activity by damaging the fungal cell membrane, thus inhibiting the mycelium growth and sporification of phytopathogenic fungi. As a marine microbiology, our results showed that B. amyloliquefaciens could survive and metabolize even at the culture condition with 110 g/L of NaCl concentration, and the produced antimicrobial compounds exhibited excellent thermostability and acid-alkali tolerance. The dynamic models were further constructed to theoretically analyze the fermentation process of B. amyloliquefaciens HY2-1, suggesting that the synthesis of antimicrobial compounds was coupled with both cell growth and cell biomass. In conclusion, the marine lipopeptides-producing B. amyloliquefaciens HY2-1 showed a promising prospect to be explored as a biocontrol agent for plant disease control of crops and postharvest preservation of fruits and vegetables, especially due to its outstanding stress resistance and the broad-spectrum and effective antagonist on various phytopathogenic fungi.
Collapse
Affiliation(s)
- Lin-Ru Huang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiao-Ning Ling
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuai-Ying Peng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Ming-Hui Tan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Lu-Qi Yan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Ying-Yin Liang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Gang-Hui Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Kun-Tai Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang, 524088, China.
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
7
|
Yu C, Liu X, Zhang X, Zhang M, Gu Y, Ali Q, Mohamed MSR, Xu J, Shi J, Gao X, Wu H, Gu Q. Mycosubtilin Produced by Bacillus subtilis ATCC6633 Inhibits Growth and Mycotoxin Biosynthesis of Fusarium graminearum and Fusarium verticillioides. Toxins (Basel) 2021; 13:791. [PMID: 34822575 PMCID: PMC8620035 DOI: 10.3390/toxins13110791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Fusarium graminearum and Fusarium verticillioides are fungal pathogens that cause diseases in cereal crops, such as Fusarium head blight (FHB), seedling blight, and stalk rot. They also produce a variety of mycotoxins that reduce crop yields and threaten human and animal health. Several strategies for controlling these diseases have been developed. However, due to a lack of resistant cultivars and the hazards of chemical fungicides, efforts are now focused on the biocontrol of plant diseases, which is a more sustainable and environmentally friendly approach. In the present study, the lipopeptide mycosubtilin purified from Bacillus subtilis ATCC6633 significantly suppressed the growth of F. graminearum PH-1 and F. verticillioides 7600 in vitro. Mycosubtilin caused the destruction and deformation of plasma membranes and cell walls in F. graminearum hyphae. Additionally, mycosubtilin inhibited conidial spore formation and germination of both fungi in a dose-dependent manner. In planta experiments demonstrated the ability of mycosubtilin to control the adverse effects caused by F. graminearum and F. verticillioides on wheat heads and maize kernels, respectively. Mycosubtilin significantly decreased the production of deoxynivalenol (DON) and B-series fumonisins (FB1, FB2 and FB3) in infected grains, with inhibition rates of 48.92, 48.48, 52.42, and 59.44%, respectively. The qRT-PCR analysis showed that mycosubtilin significantly downregulated genes involved in mycotoxin biosynthesis. In conclusion, mycosubtilin produced by B. subtilis ATCC6633 was shown to have potential as a biological agent to control plant diseases and Fusarium toxin contamination caused by F. graminearum and F. verticillioides.
Collapse
Affiliation(s)
- Chenjie Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (X.L.); (J.X.); (J.S.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyue Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Mengxuan Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Yiying Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - M. Sherif Ramzy Mohamed
- Department of Food Toxicology and Contaminant, National Research Centre of Egypt, Giza 12411, Egypt;
| | - Jianhong Xu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (X.L.); (J.X.); (J.S.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianrong Shi
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; (X.L.); (J.X.); (J.S.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (C.Y.); (X.Z.); (M.Z.); (Y.G.); (Q.A.); (X.G.); (H.W.)
| |
Collapse
|
8
|
Chen L, Zhang H, Zhao S, Xiang B, Yao Z. Lipopeptide production by Bacillus atrophaeus strain B44 and its biocontrol efficacy against cotton rhizoctoniosis. Biotechnol Lett 2021; 43:1183-1193. [PMID: 33738609 DOI: 10.1007/s10529-021-03114-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/06/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES An assay was conducted to show the comparisons the effects of nine metal ions on antagonistic metabolites (lipopeptides, siderophores and gibberellins) by Bacillus atrophaeus strain B44 using well-diffusion assays, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis, chrome azurol S plus mannitol salt agar (CAS-MSA) tests, and reversed-phase high-performance liquid chromatography (RP-HPLC) analysis. This assay is also designed to demonstrate the biocontrol efficacy of B44 against cotton rhizoctoniosis using pot culture tests. RESULTS Both the lipopeptide yield and the antimicrobial activity of B44 increase with the MnSO4, MgSO4, CaCO3, and CuSO4 treatments and either have no effect or decreased lipopeptide yield and antimicrobial activity with the FeSO4, K2HPO4, KCl, KH2PO4 and ZnSO4 treatments. The medium containing MgSO4 has no significant effect on either the lipopeptide yield or antimicrobial activity. MALDI-TOF-MS analysis shows a broad range of m/z peaks, indicating that strain B44 produces a complex mixture of iturin, surfactin, and fengycin lipopeptides. Gibberellin production by strain B44 varies greatly depending on the culture medium, and the siderophore production is not significantly affected by the culture medium. Pot tests show that lipopeptide production affects the disease control efficacy of strain B44. CONCLUSION The biocontrol efficacy of B. atrophaeus strain B44 is related to the lipopeptide yield. Moreover, B. atrophaeus strain B44 significantly increases the size of cotton seedlings, which is related to the GA3 concentration.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization/College of Agriculture, Shihezi University, Shihezi, 832003, China.
| | - Hui Zhang
- Institute of Agricultural Resources and Environment, Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Sifeng Zhao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization/College of Agriculture, Shihezi University, Shihezi, 832003, China.
| | - Benchun Xiang
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization/College of Agriculture, Shihezi University, Shihezi, 832003, China
| | - Zhaoqun Yao
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization/College of Agriculture, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
9
|
Abuduaini X, Aili A, Lin R, Song G, Huang Y, Chen Z, Zhao H, Luo Q, Zhao H. The Lethal Effect of Bacillus subtilis Z15 Secondary Metabolites on Verticillium dahliae. Nat Prod Commun 2021. [DOI: 10.1177/1934578x20986728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bacillus subtilis Z15 (BS-Z15), isolated from cotton rhizosphere soil, inhibits Verticillium dahliae and suppresses cotton Verticillium wilt in pot experiments. We investigated the influence of environmental factors, pH, temperature, ultraviolet light, protease, and incubation time on the stability of BS-Z15 secondary metabolites (SMs), and the mechanism underlying the cytotoxicity of BS-Z15 SMs on V. dahliae. BS-Z15 and its fermentation broth inhibited V. dahliae, and this effect was mediated by its SMs. These were shown to be stable to the influence of the above environmental factors. BS-Z15 SMs decreased the viability of V. dahliae conidia in a time-dependent manner. Scanning electron microscopy showed that BS-Z15 and its SMs resulted in flattened and depressed conidia. BS-Z15 SMs induced morphological abnormalities in the hyphae, which showed rough aberrant structures, reduced conidiophore production, and accelerated aging. Flow cytometry using Hoechst/propidium iodide double staining revealed that BS-Z15 SMs induced necrosis in V. dahliae in a time-dependent manner. Fluorescence microscopy showed that BS-Z15 SMs did not induce apoptotic bodies in the conidia of V. dahliae but caused significant changes in karyotypes, accompanied by nuclear lysis and nucleic-acid diffusion, which may play important roles in necrosis. In addition, 0.3 mg/mL BS-Z15 SMs had no effect on either the mitochondrial membrane potential or the synthesis of proapoptotic proteins, indicating that the SMs did not induce apoptosis in V. dahliae. Their lethal effect on V. dahliae was by inducing necrosis in its conidia and hyphae. BS-Z15 SMs thus have potential as biological pesticides to control Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Xieerwanimu Abuduaini
- Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, P. R. China
| | - Ailina Aili
- Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, P. R. China
| | - Rongrong Lin
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, P. R. China
| | - Ganggang Song
- Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, P. R. China
| | - Yu Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, P. R. China
| | - Zhongyi Chen
- Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, P. R. China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, P. R. China
| | - Heping Zhao
- Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, P. R. China
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, P. R. China
| | - Qin Luo
- Tumor Hospital Affiliated Xinjiang Medical University, Urumqi, Xinjiang, P. R. China
| | - Huixin Zhao
- Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, P. R. China
| |
Collapse
|
10
|
Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041434. [PMID: 32102264 PMCID: PMC7068399 DOI: 10.3390/ijerph17041434] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.
Collapse
|
11
|
Farzand A, Moosa A, Zubair M, Khan AR, Ayaz M, Massawe VC, Gao X. Transcriptional Profiling of Diffusible Lipopeptides and Fungal Virulence Genes During Bacillus amyloliquefaciens EZ1509-Mediated Suppression of Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2020; 110:317-326. [PMID: 31322486 DOI: 10.1094/phyto-05-19-0156-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sclerotinia sclerotiorum is a devastating necrotrophic pathogen that infects multiple crops, and its control is an unremitting challenge. In this work, we attempted to gain insights into the pivotal role of lipopeptides (LPs) in the antifungal activity of Bacillus amyloliquefaciens EZ1509. In a comparative study involving five Bacillus strains, B. amyloliquefaciens EZ1509 harboring four LPs biosynthetic genes (viz. surfactin, iturin, fengycin, and bacilysin) exhibited promising antifungal activity against S. sclerotiorum in a dual-culture assay. Our data demonstrated a remarkable upsurge in LPs biosynthetic gene expression through quantitative reverse transcription PCR during in vitro interaction assay with S. sclerotiorum. Maximum upregulation in LPs biosynthetic genes was observed on the second and third days of in vitro interaction, with iturin and fengycin being the highly expressed genes. Subsequently, Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry analysis confirmed the presence of LPs in the inhibition zone. Scanning electron microscope analysis showed disintegration, shrinkage, plasmolysis, and breakdown of fungal hyphae. During in planta evaluation, S. sclerotiorum previously challenged with EZ1509 showed significant suppression in pathogenicity on detached leaves of tobacco and rapeseed. The oxalic acid synthesis was also significantly reduced in S. sclerotiorum previously confronted with antagonistic bacterium. The expression of major virulence genes of S. sclerotiorum, including endopolygalacturonase-3, oxalic acid hydrolase, and endopolygalacturonase-6, was significantly downregulated during in vitro confrontation with EZ1509.
Collapse
Affiliation(s)
- Ayaz Farzand
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zubair
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | - Abdur Rashid Khan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | - Muhammad Ayaz
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | - Venance Colman Massawe
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| |
Collapse
|
12
|
Zhu M, He Y, Li Y, Ren T, Liu H, Huang J, Jiang D, Hsiang T, Zheng L. Two New Biocontrol Agents Against Clubroot Caused by Plasmodiophora brassicae. Front Microbiol 2020; 10:3099. [PMID: 32038545 PMCID: PMC6986203 DOI: 10.3389/fmicb.2019.03099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/20/2019] [Indexed: 01/26/2023] Open
Abstract
Clubroot disease caused by Plasmodiophora brassicae can lead to serious yield losses in crucifers such as Brassica napus. In this study, 323 bacterial strains were isolated from the rhizosphere of severely diseased B. napus in Dangyang county, Hubei province, China. Antagonistic strains were first identified based on dual culture inhibition zones with Fusarium oxysporum and Magnaporthe oryzae. These were then further screened in germination inhibition and viability assays of resting spores of P. brassicae. Finally, eight of the antagonistic strains were found to significantly reduce the disease severity of clubroot by more than 40% under greenhouse conditions, and two strains, F85 and T113, were found to have efficacy of more than 80%. Root hair infection experiments showed that F85 and T113 can inhibit early infection of root hairs, reduce the differentiation of primary plasmodia of P. brassicae, and inhibit formation of secondary zoosporangia. Based on sequence analysis of 16S rDNA gene, gyrA gene and 22 housekeeping genes as well as carbon source utilization analysis, the F85 was identified as Bacillus velezensis and T113 as Bacillus amyloliquefaciens. Genome analysis, PCR and RT-PCR detection revealed that both F85 and T113 harbor various antibiotic biosynthesis gene clusters required to form peptides with antimicrobial activity. To our knowledge, this is the first report of B. velezensis as a biocontrol agent against clubroot disease.
Collapse
Affiliation(s)
- Manli Zhu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Youwei He
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yi Li
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tirong Ren
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hao Liu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Characterization and Synergistic Antimicrobial Evaluation of Lipopeptides from Bacillus amyloliquefaciens Isolated from Oil-Contaminated Soil. Int J Microbiol 2019; 2019:3704198. [PMID: 30956662 PMCID: PMC6431436 DOI: 10.1155/2019/3704198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/17/2019] [Indexed: 12/02/2022] Open
Abstract
Lipopeptides show great potential for biomedical application. Several lipopeptides exhibit narrow and broad-spectrum inhibition activities. The aim of the study is to characterize the lipopeptides produced by B. amyloliquefaciens strain MD4-12 and evaluate the synergistic antimicrobial activity in combination with a conventional antibiotic against Gram-negative bacteria. B. amyloliquefaciens strain MD4-12 was isolated from oil-contaminated soil. The isolate was cultivated in McKeen medium, and the lipopeptides were isolated by precipitation and extraction with methanol. Characterization of the lipopeptides by ESI-MS gave nine mass ion peaks with m/z 994–1072, resulted from protonating of the main ions in [M + H]+ and [M + Na]+ ion form. These mass ion peaks attributed to surfactin homologs. By tandem mass spectrometry, five variants of surfactin with the same amino acid sequence in peptide moiety could be revealed. The peptide moiety contains seven amino acids identified as Glu-Leu/Ile-Leu-Val-Asp-Leu-Leu/Ile while the fatty acid moiety comprises a different length of chain from C12 to C16. Surfactin showed antibacterial activity against various Gram-positive and Gram-negative bacteria. Combination surfactin with ampicillin showed a synergistic effect against P. aeruginosa ATCC 27853.
Collapse
|
14
|
Xiu P, Liu R, Zhang D, Sun C. Bacterial Aggregation Assay in the Presence of Cyclic Lipopeptides. Bio Protoc 2018; 8:e2686. [PMID: 34179236 DOI: 10.21769/bioprotoc.2686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 11/02/2022] Open
Abstract
Lipopeptides is an important class of biosurfactants having antimicrobial and anti-adhesive activity against pathogenic bacteria. These include surfactin, fengycin, iturin, bacillomycin, mycosubtilin, lichenysin, and pumilacidin ( Arima et al., 1968 ; Naruse et al., 1990 ; Yakimov et al., 1995 ; Steller and Vater, 2000; Roongsawang et al., 2002 ; Vater et al., 2002 ). To date, none of these lipopeptides have been reported to possess any anti-motility activity. We isolated, purified and characterized two novel cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance spectroscopy. CLPs dramatically suppress the motility of pathogenic bacterium Vibrio alginolyticus 178, and promote cellular aggregation without inducing cell death. Cell aggregation assay was performed with the modification according to methods described by Dalili for anti-biofilm assay ( Dalili et al., 2015 ). In future, this assay can be adapted to test both the cell aggregation and anti-biofilm activity of lipopeptide-like active substances derived from bacteria.
Collapse
Affiliation(s)
- Pengyuan Xiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dechao Zhang
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chaomin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus. Appl Environ Microbiol 2017; 83:AEM.00450-17. [PMID: 28389538 DOI: 10.1128/aem.00450-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/03/2017] [Indexed: 01/03/2023] Open
Abstract
Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance.IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote cellular aggregation without inducing cell death. These findings suggest that CLPs hold great promise as potential drug candidates targeting bacterial motility and biofilm formation with a low overall potential for triggering antibiotic resistance.
Collapse
|