1
|
Pongen YL, Thirumurugan D, Ramasubburayan R, Prakash S. Harnessing actinobacteria potential for cancer prevention and treatment. Microb Pathog 2023; 183:106324. [PMID: 37633504 DOI: 10.1016/j.micpath.2023.106324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Actinobacteria are gram-positive bacteria with high G:C ratio in their genetic makeup. They have been noted and studied for their capacity to produce bioactive substances with a range of uses in human health, and they also exhibit a unique property of adapting to extreme environments quite well. Actinobacteria may play an essential role in cancer prevention and treatment due to their synthesis of anticancer compounds, as indicated by recent studies. The aim of this review is to give a summary of what is currently known about the connection between actinobacteria and different types of cancer. This paper delineates the diverse array of actinobacterial bioactive compounds possessing anticancer properties, elucidates their mechanisms of action and explores potential applications in cancer treatment. Furthermore, this review highlights how the microbiome influences the onset and progression of cancer, as well as the discussing the potential benefits that actinobacteria may bring in terms of controlling the microbiome and contributing to the regulation of the tumour microenvironment to cure or prevent cancer.
Collapse
Affiliation(s)
- Yimtar L Pongen
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600 077, Tamil Nadu, India
| | - Santhiyagu Prakash
- Marine Biotechnology Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, (OMR Campus), Tamilnadu Dr. J. Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai - 603 103, Tamil Nadu, India.
| |
Collapse
|
2
|
Wang H, Wu C, Zhang H, Xiao M, Ge T, Zhou Z, Liu Y, Peng S, Peng P, Chen J. Characterization of the belowground microbial community and co-occurrence networks of tobacco plants infected with bacterial wilt disease. World J Microbiol Biotechnol 2022; 38:155. [PMID: 35796795 DOI: 10.1007/s11274-022-03347-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Characterizing the microbial communities associated with soil-borne disease incidence is a key approach in understanding the potential role of microbes in protecting crops from pathogens. In this study, we compared the soil properties and microbial composition of the rhizosphere soil and roots of healthy and bacterial wilt-infected tobacco plants to assess their potential influence on plant health. Our results revealed that the relative abundance of pathogens was higher in diseased plants than in healthy plants. Moreover, compared with healthy plants, there was a significantly higher microbial alpha diversity in the roots and rhizosphere soil of diseased plants. In addition, we detected a lower abundance of certain plant microbiota, including species in the genera Penicillium, Trichoderma, and Burkholderia in the rhizosphere of diseased plants, which were found to be significantly negatively associated with the relative abundance of Ralstonia. Indeed, compared with healthy plants, the co-occurrence networks of diseased plants included a larger number of associations linked to plant health. Furthermore, structural equation modeling revealed that these specific microbes were correlated with disease suppression, thereby implying that they may play important roles in maintaining plant health. In conclusion, our findings provide important insights into the relationships between soil-borne disease incidence and changes in the belowground microbial community. These findings will serve as a basis for further research investigating the use of specific plant-associated genera to inhibit soil-borne diseases.
Collapse
Affiliation(s)
- Haiting Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, 410004, Hunan, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Chuanfa Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Haoqing Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Mouliang Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Tida Ge
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, 410004, Hunan, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China
| | - Zhicheng Zhou
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Yongjun Liu
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Shuguang Peng
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Peiqin Peng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, 410004, Hunan, China.
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 818 Fenghua Road, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
3
|
Anguita-Maeso M, Trapero-Casas JL, Olivares-García C, Ruano-Rosa D, Palomo-Ríos E, Jiménez-Díaz RM, Navas-Cortés JA, Landa BB. Verticillium dahliae Inoculation and in vitro Propagation Modify the Xylem Microbiome and Disease Reaction to Verticillium Wilt in a Wild Olive Genotype. FRONTIERS IN PLANT SCIENCE 2021; 12:632689. [PMID: 33747012 PMCID: PMC7966730 DOI: 10.3389/fpls.2021.632689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 05/13/2023]
Abstract
Host resistance is the most practical, long-term, and economically efficient disease control measure for Verticillium wilt in olive caused by the xylem-invading fungus Verticillium dahliae (Vd), and it is at the core of the integrated disease management. Plant's microbiome at the site of infection may have an influence on the host reaction to pathogens; however, the role of xylem microbial communities in the olive resistance to Vd has been overlooked and remains unexplored to date. This research was focused on elucidating whether in vitro olive propagation may alter the diversity and composition of the xylem-inhabiting microbiome and if those changes may modify the resistance response that a wild olive clone shows to the highly virulent defoliating (D) pathotype of Vd. Results indicated that although there were differences in microbial communities among the different propagation methodologies, most substantial changes occurred when plants were inoculated with Vd, regardless of whether the infection process took place, with a significant increase in the diversity of bacterial communities when the pathogen was present in the soil. Furthermore, it was noticeable that olive plants multiplied under in vitro conditions developed a susceptible reaction to D Vd, characterized by severe wilting symptoms and 100% vascular infection. Moreover, those in vitro propagated plants showed an altered xylem microbiome with a decrease in total OTU numbers as compared to that of plants multiplied under non-aseptic conditions. Overall, 10 keystone bacterial genera were detected in olive xylem regardless of infection by Vd and the propagation procedure of plants (in vitro vs nursery), with Cutibacterium (36.85%), Pseudomonas (20.93%), Anoxybacillus (6.28%), Staphylococcus (4.95%), Methylobacterium-Methylorubrum (3.91%), and Bradyrhizobium (3.54%) being the most abundant. Pseudomonas spp. appeared as the most predominant bacterial group in micropropagated plants and Anoxybacillus appeared as a keystone bacterium in Vd-inoculated plants irrespective of their propagation process. Our results are the first to show a breakdown of resistance to Vd in a wild olive that potentially may be related to a modification of its xylem microbiome and will help to expand our knowledge of the role of indigenous xylem microbiome on host resistance, which can be of use to fight against main vascular diseases of olive.
Collapse
Affiliation(s)
- Manuel Anguita-Maeso
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - José Luis Trapero-Casas
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Concepción Olivares-García
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - David Ruano-Rosa
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Elena Palomo-Ríos
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-UMA-Consejo Superior de Investigaciones Científicas), Department of Botany and Plant Physiology, University of Malaga, Málaga, Spain
| | - Rafael M. Jiménez-Díaz
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
- Agronomy Department, University of Córdoba, Córdoba, Spain
| | - Juan A. Navas-Cortés
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
| | - Blanca B. Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (Consejo Superior de Investigaciones Científicas), Córdoba, Spain
- *Correspondence: Blanca B. Landa,
| |
Collapse
|
4
|
Almeida E, Dias TV, Ferraz G, Carvalho MF, Lage OM. Culturable bacteria from two Portuguese salterns: diversity and bioactive potential. Antonie van Leeuwenhoek 2019; 113:459-475. [PMID: 31720916 DOI: 10.1007/s10482-019-01356-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022]
Abstract
Salterns are extreme environments, where the high salt concentration is the main limitation to microbial growth, along with solar radiation, temperature and pH. These selective pressures might lead to the acquisition of unique genetic adaptations that can manifest in the production of interesting natural products. The present study aimed at obtaining the culturable microbial diversity from two Portuguese salterns located in different geographic regions. A total of 190 isolates were retrieved and identified as belonging to 30 genera distributed among 4 phyla-Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. Specifically, members of the genus Bacillus were the most frequently isolated from both salterns and all actinobacterial isolates belong to the rare members of this group. The molecular screening of NRPS and PKS-I genes allowed the detection of 38 isolates presenting PKS-I, 25 isolates presenting NRPS and 23 isolates presenting both types of biosynthetic genes. Sequencing of randomly selected amplicons revealed similarity with known PKS-I and NRPS genes or non-annotated hypothetical proteins. This study is the first contribution on the culturable bacterial diversity of Portuguese salterns and on their bioactive potential. Ultimately, these findings provide a novel contribution to improve the understanding on the microbial diversity of salterns.
Collapse
Affiliation(s)
- Eduarda Almeida
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal. .,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Porto, Portugal.
| | - Teresa Vale Dias
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gonçalo Ferraz
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Porto, Portugal
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Porto, Portugal
| |
Collapse
|
5
|
Production and Characterization of Extremophilic Proteinases From a New Enzyme Source, Barrientosiimonas sp. V9. Appl Biochem Biotechnol 2019; 190:1060-1073. [PMID: 31667755 DOI: 10.1007/s12010-019-03140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
Abstract
Microbial proteases are widely used as commercial enzymes, which have an active role in several industrial processes. The aim of this study was to investigate the production and properties of extracellular proteases from Barrientosiimonas sp. strain V9. The cultivation conditions for protease production were studied using different carbon and nitrogen sources. Maximum protease production was obtained in medium containing 25 g L-1 sucrose, 7 g L-1 KNO3, and initial pH 7.0 at 35 °C and 150 rpm during 72 h. Under these conditions, maximum proteolytic activity reached 1200 U mL-1. The enzyme extract showed optimum activity at 60 °C, pH 9.0, and was stable from 30 to 50 °C within a pH range from 4.0 to 10.0 and NaCl concentration up to 2.5 M. The enzyme was stable in the presence of EDTA, urea, Triton X-100 and laundry detergent (sodium lauryl sulfate as main component). The addition of 1% sodium dodecyl sulfate, Tween-80, or Tween-20 increased the activity by 183% and 119% respectively, while 2-mercaptoethanol reduced the activity to 71%. Casein zymogram analysis revealed three hydrolysis zones suggesting that Barrientosiimonas sp. V9 expresses proteases with molecular weights about 60, 45, and 35 kDa, which were inhibited in the presence of phenylmethylsulfonyl fluoride. Barrientosiimonas sp. V9 produces halotolerant serine proteases with great biotechnological potential.
Collapse
|
6
|
Santos JD, Vitorino I, De la Cruz M, Díaz C, Cautain B, Annang F, Pérez-Moreno G, Gonzalez Martinez I, Tormo JR, Martín JM, Urbatzka R, Vicente FM, Lage OM. Bioactivities and Extract Dereplication of Actinomycetales Isolated From Marine Sponges. Front Microbiol 2019; 10:727. [PMID: 31024503 PMCID: PMC6467163 DOI: 10.3389/fmicb.2019.00727] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
In the beginning of the twenty-first century, humanity faces great challenges regarding diseases and health-related quality of life. A drastic rise in bacterial antibiotic resistance, in the number of cancer patients, in the obesity epidemics and in chronic diseases due to life expectation extension are some of these challenges. The discovery of novel therapeutics is fundamental and it may come from underexplored environments, like marine habitats, and microbial origin. Actinobacteria are well-known as treasure chests for the discovery of novel natural compounds. In this study, eighteen Actinomycetales isolated from marine sponges of three Erylus genera collected in Portuguese waters were tested for bioactivities with the main goal of isolating and characterizing the responsible bioactive metabolites. The screening comprehended antimicrobial, anti-fungal, anti-parasitic, anti-cancer and anti-obesity properties. Fermentations of the selected strains were prepared using ten different culturing media. Several bioactivities against the fungus Aspergillus fumigatus, the bacteria Staphylococcus aureus methicillin-resistant (MRSA) and the human liver cancer cell line HepG2 were obtained in small volume cultures. Screening in higher volumes showed consistent anti-fungal activity by strain Dermacoccus sp. #91-17 and Micrococcus luteus Berg02-26. Gordonia sp. Berg02-22.2 showed anti-parasitic (Trypanosoma cruzi) and anti-cancer activity against several cell lines (melanoma A2058, liver HepG2, colon HT29, breast MCF7 and pancreatic MiaPaca). For the anti-obesity assay, Microbacterium foliorum #91-29 and #91-40 induced lipid reduction on the larvae of zebrafish (Danio rerio). Dereplication of the extracts from several bacteria showed the existence of a variety of secondary metabolites, with some undiscovered molecules. This work showed that Actinomycetales are indeed good candidates for drug discovery.
Collapse
Affiliation(s)
- José D Santos
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Inês Vitorino
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Mercedes De la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Bastien Cautain
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Frederick Annang
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Ignacio Gonzalez Martinez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Jose R Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Jesús M Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Francisca M Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| |
Collapse
|
7
|
Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 2018; 103:1179-1188. [PMID: 30594952 PMCID: PMC6394478 DOI: 10.1007/s00253-018-09577-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
With the impending increase of the world population by 2050, more activities have been directed toward the improvement of crop yield and a safe environment. The need for chemical-free agricultural practices is becoming eminent due to the effects of these chemicals on the environment and human health. Actinomycetes constitute a significant percentage of the soil microbial community. The Streptomyces genus, which is the most abundant and arguably the most important actinomycetes, is a good source of bioactive compounds, antibiotics, and extracellular enzymes. These genera have shown over time great potential in improving the future of agriculture. This review highlights and buttresses the agricultural importance of Streptomyces through its biocontrol and plant growth-promoting activities. These activities are highlighted and discussed in this review. Some biocontrol products from this genus are already being marketed while work is still ongoing on this productive genus. Compared to more focus on its biocontrol ability, less work has been done on it as a biofertilizer until recently. This genus is as efficient as a biofertilizer as it is as a biocontrol.
Collapse
|
8
|
Dahal RH, Shim DS, Kim JY, Kim J. Calidifontibacter terrae sp. nov., an actinomycete isolated from soil, with potential applications in cosmetics. Int J Syst Evol Microbiol 2017. [PMID: 28629492 DOI: 10.1099/ijsem.0.001893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, Gram-stain-positive, oxidase- and catalase-positive, non-motile, non-spore-forming, coccoid, creamish-white-coloured bacterium, designated strain R161T, was isolated from soil in Hwaseong, South Korea. The cell-wall peptidoglycan contained glycine, glutamic acid, alanine, aspartic acid, serine and lysine, and whole-cell sugars were galactose, rhamnose, glucose and ribose. Strain R161T showed antibacterial and enzyme inhibitory activities. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain R161T formed a lineage within the family Dermacoccaceae, and showed highest sequence similarity with type strains of Calidifontibacter indicus PC IW02T (97.71 % sequence similarity) and Yimella lutea YIM 45900T (97.58 %). The sequence similarity of strain R161T with type strains of members of the genus Dermacoccus was less than 96.5 %. The major menaquinone was MK-8(H4). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major cellular fatty acids were iso-C16 : 0, anteiso-C17 : 0, iso-C16 : 1 H, anteiso-C17 : 1ω9c, summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl) and iso-C15 : 0. The DNA G+C content of strain R161T was 73.9 mol%. The DNA-DNA hybridization value between strain R161T and C. indicus JCM 16038T was 52.1 %. On the basis of phenotypic, genotypic, chemotaxonomic and phylogenetic analysis, strain R161T represents a novel species of genus Calidifontibacter, for which the name Calidifontibacter terrae sp. nov. is proposed. The type strain of Calidifontibacter terrae sp. nov. is R161T (=KEMB 9005-404T=KACC 18906T=JCM 31558T).
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Dong Seop Shim
- Innogene, Co., #301 Woolim E-biz Center1, 28, Digital-ro 33-gil, Guro-gu, Seoul 08337, Republic of Korea
| | - Joon Young Kim
- Division of Creative Liberal Arts, Hoseo University, 20 Hoseoro 79 beongil, Baebangeup, Asan, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| |
Collapse
|
9
|
Igartua C, Davenport ER, Gilad Y, Nicolae DL, Pinto J, Ober C. Host genetic variation in mucosal immunity pathways influences the upper airway microbiome. MICROBIOME 2017; 5:16. [PMID: 28143570 PMCID: PMC5286564 DOI: 10.1186/s40168-016-0227-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/25/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND The degree to which host genetic variation can modulate microbial communities in humans remains an open question. Here, we performed a genetic mapping study of the microbiome in two accessible upper airway sites, the nasopharynx and the nasal vestibule, during two seasons in 144 adult members of a founder population of European decent. RESULTS We estimated the relative abundances (RAs) of genus level bacteria from 16S rRNA gene sequences and examined associations with 148,653 genetic variants (linkage disequilibrium [LD] r 2 < 0.5) selected from among all common variants discovered in genome sequences in this population. We identified 37 microbiome quantitative trait loci (mbQTLs) that showed evidence of association with the RAs of 22 genera (q < 0.05) and were enriched for genes in mucosal immunity pathways. The most significant association was between the RA of Dermacoccus (phylum Actinobacteria) and a variant 8 kb upstream of TINCR (rs117042385; p = 1.61 × 10-8; q = 0.002), a long non-coding RNA that binds to peptidoglycan recognition protein 3 (PGLYRP3) mRNA, a gene encoding a known antimicrobial protein. A second association was between a missense variant in PGLYRP4 (rs3006458) and the RA of an unclassified genus of family Micrococcaceae (phylum Actinobacteria) (p = 5.10 × 10-7; q = 0.032). CONCLUSIONS Our findings provide evidence of host genetic influences on upper airway microbial composition in humans and implicate mucosal immunity genes in this relationship.
Collapse
Affiliation(s)
- Catherine Igartua
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Emily R Davenport
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Dan L Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Department of Statistics, University of Chicago, Chicago, IL, 60637, USA
| | - Jayant Pinto
- Section of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Chicago, Chicago, IL, 60637, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|