1
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Motility of Acinetobacter baumannii: regulatory systems and controlling strategies. Appl Microbiol Biotechnol 2024; 108:3. [PMID: 38159120 DOI: 10.1007/s00253-023-12975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic zoonotic pathogenic bacterium that causes nosocomial infections ranging from minor to life-threatening. The clinical importance of this zoonotic pathogen is rapidly increasing due to the development of multiple resistance mechanisms and the synthesis of numerous virulence factors. Although no flagellum-mediated motility exists, it may move through twitching or surface-associated motility. Twitching motility is a coordinated multicellular movement caused by the extension, attachment, and retraction of type IV pili, which are involved in surface adherence and biofilm formation. Surface-associated motility is a kind of movement that does not need appendages and is most likely driven by the release of extra polymeric molecules. This kind of motility is linked to the production of 1,3-diaminopropane, lipooligosaccharide formation, natural competence, and efflux pump proteins. Since A. baumannii's virulence qualities are directly tied to motility, it is possible that its motility may be used as a specialized preventative or therapeutic measure. The current review detailed the signaling mechanism and involvement of various proteins in controlling A. baumannii motility. As a result, we have thoroughly addressed the role of natural and synthetic compounds that impede A. baumannii motility, as well as the underlying action mechanisms. Understanding the regulatory mechanisms behind A. baumannii's motility features will aid in the development of therapeutic drugs to control its infection. KEY POINTS: • Acinetobacter baumannii exhibits multiple resistance mechanisms. • A. baumannii can move owing to twitching and surface-associated motility. • Natural and synthetic compounds can attenuate A. baumannii motility.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Zhang D, Gao W, Cui X, Qiao R, Li C. Caffeic Acid and Cyclen-Based Hydrogel for Synergistic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44493-44503. [PMID: 39143929 DOI: 10.1021/acsami.4c09037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Caffeic acid is a natural product that contains both phenolic and acrylic functional groups and has been widely employed as an alternative drug to combat chronic infections induced by microbes such as bacteria, fungi, and viruses. Several strategies, including derivatization and nanoformulation, have been applied in order to overcome the issues of water insolubility, poor stability, and the bioavailability of caffeic acid. Here, caffeic acid and cyclen-Zn(II) are incorporated into a G4-assembly by using a phenylborate linker to form the mixed supramolecular prodrug GB-CA/Cy-Zn(II) hydrogel. The delivery system is expected to enhance antibacterial and anti-inflammatory properties during the wound healing process through the synergistic effect of caffeic acid and cyclen-Zn(II). The preparation and physicochemical and mechanical properties of the hydrogel were investigated by NMR, CD, TEM, and rheological assays. The typical inflammatory cytokines and in vitro antibacterial experiments indicated that inflammation and infection can be significant suppressed by the hydrogel treatment. An in vivo infected wound model treated by the hydrogel showed rapid wound healing capacity and biosafety. The current work depicts a simple method to prepare a caffeic acid hydrogel carrier, which facilitates synergistic treatment for inflammation and bacterial infections at the wound site.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Wei Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xu Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
3
|
Zhang K, Chen J, Liang L, Wang Z, Xiong Q, Yu H, Du H. Lcn2 deficiency accelerates the infection of Escherichia coli O157:H7 by disrupting the intestinal barrier function. Microb Pathog 2023; 185:106435. [PMID: 37931825 DOI: 10.1016/j.micpath.2023.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Bacterial infections result in intestinal inflammation and injury, which affects gut health and nutrient absorption. Lipocalin 2 (Lcn2) is a protein that reacts to microbial invasion, inflammatory responses, and tissue damage. However, it remains unclear whether Lcn2 has a protective effect against bacterial induced intestinal inflammation. Therefore, this study endeavors to investigate the involvement of Lcn2 in the intestinal inflammation of mice infected with Enterohemorrhagic Escherichia coli O157:H7 (E. coli O157:H7). Lcn2 knockout (Lcn2-/-) mice were used to evaluate the changes of inflammatory responses. Lcn2 deficiency significantly exacerbated clinical symptoms of E. coli O157:H7 infection by reducing body weight and encouraging bacterial colonization of. Compared to infected wild type mice, infected Lcn2-/- mice had significantly elevated levels of pro-inflammatory cytokines in serum and ileum, including interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), as well as severe villi destruction in the jejunum. Furthermore, Lcn2 deficiency aggravated intestinal barrier degradation by significantly reducing the expression of tight junction proteins occludin and claudin 1, the content of myeloperoxidase (MPO) in the ileum, and the number of goblet cells in the colon. Our findings indicated that Lcn2 could alleviate inflammatory damage caused by E. coli O157:H7 infection in mice by enhancing intestinal barrier function.
Collapse
Affiliation(s)
- Kang Zhang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jianjun Chen
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Liang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhenjie Wang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Xiong
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hong Yu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), College of Animal Sciences, Zhejiang University, Hangzhou, China; Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Abbas N, Song S, Chang MS, Chun MS. Point-of-Care Diagnostic Devices for Detection of Escherichia coli O157:H7 Using Microfluidic Systems: A Focused Review. BIOSENSORS 2023; 13:741. [PMID: 37504139 PMCID: PMC10377133 DOI: 10.3390/bios13070741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Bacterial infections represent a serious and global threat in modern medicine; thus, it is very important to rapidly detect pathogenic bacteria, such as Escherichia coli (E. coli) O157:H7. Once treatments are delayed after the commencement of symptoms, the patient's health quickly deteriorates. Hence, real-time detection and monitoring of infectious agents are highly critical in early diagnosis for correct treatment and safeguarding public health. To detect these pathogenic bacteria, many approaches have been applied by the biosensors community, for example, widely-used polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), culture-based method, and adenosine triphosphate (ATP) bioluminescence. However, these approaches have drawbacks, such as time-consumption, expensive equipment, and being labor-intensive, making it critical to develop ultra-sensitive and highly selective detection. The microfluidic platform based on surface plasmon resonance (SPR), electrochemical sensing, and rolling circle amplification (RCA) offers proper alternatives capable of supplementing the technological gap for pathogen detection. Note that the microfluidic biochip allows to develop rapid, sensitive, portable, and point-of-care (POC) diagnostic tools. This review focuses on recent studies regarding accurate and rapid detection of E. coli O157:H7, with an emphasis on POC methods and devices that complement microfluidic systems. We also examine the efficient whole-body detection by employing antimicrobial peptides (AMPs), which has attracted growing attention in many applications.
Collapse
Affiliation(s)
- Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sehyeon Song
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy & Dental Research Institute, Seoul National University School of Dentistry, Jongno-gu, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mi-Sook Chang
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy & Dental Research Institute, Seoul National University School of Dentistry, Jongno-gu, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Myung-Suk Chun
- Sensor System Research Center, Advanced Materials Research Division, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 02792, Republic of Korea
- Biomedical Engineering Division, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
5
|
Yin L, Gou Y, Dai Y, Wang T, Gu K, Tang T, Hussain S, Huang X, He C, Liang X, Shu G, Xu F, Ouyang P. Cinnamaldehyde Restores Ceftriaxone Susceptibility against Multidrug-Resistant Salmonella. Int J Mol Sci 2023; 24:ijms24119288. [PMID: 37298240 DOI: 10.3390/ijms24119288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, infections caused by multidrug-resistant (MDR) bacteria have greatly threatened human health and imposed a burden on global public health. To overcome this crisis, there is an urgent need to seek effective alternatives to single antibiotic therapy to circumvent drug resistance and prevent MDR bacteria. According to previous reports, cinnamaldehyde exerts antibacterial activity against drug-resistant Salmonella spp. This study was conducted to investigate whether cinnamaldehyde has a synergistic effect on antibiotics when used in combination, we found that cinnamaldehyde enhanced the antibacterial activity of ceftriaxone sodium against MDR Salmonella in vitro by significantly reduced the expression of extended-spectrum beta-lactamase, inhibiting the development of drug resistance under ceftriaxone selective pressure in vitro, damaging the cell membrane, and affecting its basic metabolism. In addition, it restored the activity of ceftriaxone sodium against MDR Salmonella in vivo and inhibited peritonitis caused by ceftriaxone resistant strain of Salmonella in mice. Collectively, these results revealed that cinnamaldehyde can be used as a novel ceftriaxone adjuvant to prevent and treat infections caused by MDR Salmonella, mitigating the possibility of producing further mutant strains.
Collapse
Affiliation(s)
- Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Yuhong Gou
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Yuyun Dai
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Tao Wang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Kexin Gu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Ting Tang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Sajjad Hussain
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Xiaoli Huang
- College of Animal Science and Technology, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Funeng Xu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Lu 211, Chengdu 611130, China
| |
Collapse
|
6
|
He X, Ding H, Gao Z, Zhang X, Wu R, Li K. Variations in the motility and biofilm formation abilities of Escherichia coli O157:H7 during noodle processing. Food Res Int 2023; 168:112670. [PMID: 37120241 DOI: 10.1016/j.foodres.2023.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Motility and biofilm formation help to protect bacteria from host immune responses and facilitate tolerance of environmental stimuli to improve their adaptability. However, few reports have investigated the adaptability of bacteria that live in food substrates undergoing food processing-induced stress. In this study, variations in the surface morphology, bacterial count, motility, and biofilm formation abilities of Escherichia coli O157:H7 NCTC12900 were investigated during noodle processing, including the kneading, squeezing, resting, and sheeting phases. The results showed that bacterial surface morphology, count, and motility were impaired in the squeezing phase, whereas biofilm biomass continuously increased across all processing phases. Twenty-one genes and sRNAs were measured using RT-qPCR to reveal the mechanisms underlying these changes. Of these, the genes adrA, csrA, flgM, flhD, fliM, ydaM, and the sRNA McaS were significantly upregulated, whereas the genes fliA, fliG, and the sRNAs CsrC, DsrA, GcvB, and OxyS were evidently repressed. According to the correlation matrix results based on the reference gene adrA, we found that csrA, GcvB, McaS, and OxyS were the most relevant genes and sRNAs for biofilm formation and motility. For each of them, their overexpressions was found to inhibit bacterial motility and biofilm formation to varying degrees during noodle processing. Among these, 12900/pcsrA had the highest inhibitory potential against motility, yielding a minimum of 11.2 mm motility diameter in the resting phase. Furthermore, 12900/pOxyS showed the most significant inhibitory effect against biofilm formation, yielding a minimum biofilm formation value of 5% of that exhibited the wild strain in the sheeting phase. Therefore, we prospect to find an effective and feasible novel approach to weaken bacterial survival during food processing by regulating the genes or sRNAs related to motility and biofilm formation.
Collapse
|
7
|
Memariani H, Memariani M. Antibiofilm properties of cathelicidin LL-37: an in-depth review. World J Microbiol Biotechnol 2023; 39:99. [PMID: 36781570 DOI: 10.1007/s11274-023-03545-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
Notwithstanding ceaseless endeavors toward developing effective antibiofilm chemotherapeutics, biofilm-associated infections continue to be one of the most perplexing challenges confronting medicine today. Endogenous host defense peptides, such as the human cathelicidin LL-37, are being propounded as promising options for treating such infectious diseases. Over the past decennium, LL-37 has duly received tremendous research attention by virtue of its broad-spectrum antimicrobial activity and immunomodulatory properties. No attempt has hitherto been made, as far as we are aware, to comprehensively review the antibiofilm effects of LL-37. Accordingly, the intent in this paper is to provide a fairly all-embracing review of the literature available on the subject. Accumulating evidence suggests that LL-37 is able to prevent biofilm establishment by different bacterial pathogens such as Acinetobacter baumannii, Aggregatibacter actinomycetemcomitans, Bacteroides fragilis, Burkholderia thailandensis, Cutibacterium acnes, Escherichia coli, Francisella tularensis, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes. Inhibition of bacterial adhesion, downregulation of biofilm-associated genes, suppression of quorum-sensing pathways, degradation of biofilm matrix, and eradication of biofilm-residing cells are the major mechanisms responsible for antibiofilm properties of LL-37. In terms of its efficacy and safety in vivo, there are still many questions to be answered. Undoubtedly, LL-37 can open up new windows of opportunity to prevent and treat obstinate biofilm-mediated infections.
Collapse
Affiliation(s)
- Hamed Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Memariani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Bahrami A, Delshadi R, Cacciotti I, Faridi Esfanjani A, Rezaei A, Tarhan O, Lee CC, Assadpour E, Tomas M, Vahapoglu B, Capanoglu Guven E, Williams L, Jafari SM. Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Adv Colloid Interface Sci 2022; 302:102622. [PMID: 35248971 DOI: 10.1016/j.cis.2022.102622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023]
Abstract
The incorporation of antibiotics and bioactive compounds into non-toxic nanoparticles has been popularly used to produce effective antimicrobial nanocarriers against foodborne pathogens. These systems can protect antimicrobials against harsh environments, control their release, and increase their antimicrobial activities; however, their functions can be decreased by some major barriers. Intracellular localization of bacteria protects them from the host immune system and antimicrobial agents. Also, bacteria can cause constant infection by nestling in professional phagocytic cells. In the last years, surface functionalization of nanocarriers by passive and active modification methods has been applied for their protection against clearance from the blood, increasing both circulation time and uptake by target cells. For achieving this objective, different functional agents such as specifically targeted peptides internalize ligands, saccharide ligands, or even therapeutic molecules (e.g., antibodies or enzymes) are used. In this review, techniques for functionalizing the surface of antimicrobial-loaded nanocarriers have been described. This article offers a comprehensive review of the potential of functional nanoparticles to increase the performance of antimicrobials against foodborne pathogens through targeting delivery.
Collapse
|
9
|
Yan D, Li Y, Liu Y, Li N, Zhang X, Yan C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021; 26:7136. [PMID: 34885715 PMCID: PMC8659174 DOI: 10.3390/molecules26237136] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotics played an important role in controlling the development of enteric infection. However, the emergence of antibiotic resistance and gut dysbiosis led to a growing interest in the use of natural antimicrobial agents as alternatives for therapy and disinfection. Chitosan is a nontoxic natural antimicrobial polymer and is approved by GRAS (Generally Recognized as Safe by the United States Food and Drug Administration). Chitosan and chitosan derivatives can kill microbes by neutralizing negative charges on the microbial surface. Besides, chemical modifications give chitosan derivatives better water solubility and antimicrobial property. This review gives an overview of the preparation of chitosan, its derivatives, and the conjugates with other polymers and nanoparticles with better antimicrobial properties, explains the direct and indirect mechanisms of action of chitosan, and summarizes current treatment for enteric infections as well as the role of chitosan and chitosan derivatives in the antimicrobial agents in enteric infections. Finally, we suggested future directions for further research to improve the treatment of enteric infections and to develop more useful chitosan derivatives and conjugates.
Collapse
Affiliation(s)
| | | | | | | | | | - Chen Yan
- The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; (D.Y.); (Y.L.); (Y.L.); (N.L.); (X.Z.)
| |
Collapse
|
10
|
Formation and development of biofilm- an alarming concern in food safety perspectives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Bamunuarachchi NI, Khan F, Kim YM. Combination Therapy for Bacterial Pathogens: Naturally Derived Antimicrobial Drugs Augmented with Ulva lactuca Extract. Infect Disord Drug Targets 2021; 22:e230821195790. [PMID: 34425745 DOI: 10.2174/1871526521666210823164842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND With the growing incidence of microbial pathogenesis, several alternative strategies have been developed. The number of treatments using naturally (e.g., plants, algae, fungi, bacteria, and animals) derived compounds has increased. Importantly, marine-derived products have become a promising and effective approach to combat the antibiotic resistance properties developed by bacterial pathogens. Furthermore, augmenting the sub-inhibitory concentration of the naturally-derived antimicrobial compounds (e.g., hydroxycinnamic acids, terpenes, marine-derived polysaccharides, phenolic compounds) into the naturally derived extracts as a combination therapy to treat the bacterial infection has not been well studied. OBJECTIVE The present study was aimed to prepare green algae Ulva lactuca extract and evaluate its antibacterial activity towards Gram-positive and Gram-negative human pathogenic bacteria. Also, revitalize the antibacterial efficiency of the naturally-derived antimicrobial drugs and conventional antibiotics by augmenting their sub-MIC to the U. lactuca extracts. METHODS Extraction was done using a different organic solvent, and its antibacterial activity was tested towards Gram-positive and Gram-negative pathogens. The minimum inhibitory concentration (MIC) of U. lactuca extracts has been determined towards pathogenic bacteria using the micro broth dilution method. The viable cell counting method was used to determine the minimum bactericidal concentration (MBC). The fractional inhibitory concentration (FIC) assay was utilized to examine the combinatorial impact of sub-MIC of two antibacterial drugs using the micro broth dilution method. The chemical components of the extract were analyzed by GC-MS analysis. RESULTS Among all the extracts, n-hexane extract was found to show effective antibacterial activity towards tested pathogens with the lowest MIC and MBC value. Furthermore, the n-hexane extracts have also been used to enhance the efficacy of the naturally-derived (derived from plants and marine organisms) compounds and conventional antibiotics at their sub-inhibitory concentrations. Most of the tested antibiotics and natural drugs at their sub-MIC were found to exhibit synergistic and additive antibacterial activity towards the tested bacterial pathogens. CONCLUSIONS The augmenting of U. lactuca n-hexane extracts resulted in synergistic and additive bactericidal effects on Gram-positive and Gram-negative human pathogenic bacteria. The present study shows a new alternative strategy to revitalize the antimicrobial activity of naturally derived compounds for treating human bacterial pathogens.
Collapse
Affiliation(s)
| | - Fazlurrahman Khan
- Research Center Marine Integrated Bionics technology, Pukyong National University, Busan 48513. South Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513. South Korea
| |
Collapse
|
12
|
Cisneros L, Cattelan N, Villalba MI, Rodriguez C, Serra DO, Yantorno O, Fadda S. Lactic acid bacteria biofilms and their ability to mitigate Escherichia coli O157:H7 surface colonization. Lett Appl Microbiol 2021; 73:247-256. [PMID: 34008189 DOI: 10.1111/lam.13509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Lactic acid bacteria (LAB) exert antagonistic activities against diverse microorganisms, including pathogens. In this work, we aimed to investigate the ability of LAB strains isolated from food to produce biofilms and to inhibit growth and surface colonization of Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 at 10°C. The ability of 100 isolated LAB to inhibit EHEC O157:H7 NCTC12900 growth was evaluated in agar diffusion assays. Thirty-seven LAB strains showed strong growth inhibitory effect on EHEC. The highest inhibitory activities corresponded to LAB strains belonging to Lactiplantibacillus plantarum, Pediococcus acidilactici and Pediococcus pentosaceus species. Eighteen out of the 37 strains that showed growth inhibitory effects on EHEC also had the ability to form biofilms on polystyrene surfaces at 10°C and 30°C. Pre-established biofilms on polystyrene of four of these LAB strains were able to reduce significantly surface colonization by EHEC at low temperature (10°C). Among these four strains, Lact. plantarum CRL 1075 not only inhibited EHEC but also was able to grow in the presence of the enteric pathogen. Therefore, this strain proved to be a good candidate for further technological studies oriented to its application in food-processing environments to mitigate undesirable surface contaminations of E. coli.
Collapse
Affiliation(s)
- L Cisneros
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Tucumán, Argentina
| | - N Cattelan
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET), Facultad de Ciencias Exactas, UNLP, Buenos Aires, Argentina.,Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - M I Villalba
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET), Facultad de Ciencias Exactas, UNLP, Buenos Aires, Argentina
| | - C Rodriguez
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Tucumán, Argentina
| | - D O Serra
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET, UNR), Predio CONICET Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
| | - O Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET), Facultad de Ciencias Exactas, UNLP, Buenos Aires, Argentina
| | - S Fadda
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Tucumán, Argentina
| |
Collapse
|
13
|
Khan F, Bamunuarachchi NI, Tabassum N, Kim YM. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2979-3004. [PMID: 33656341 DOI: 10.1021/acs.jafc.0c07579] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Caffeic acid is a plant-derived compound that is classified as hydroxycinnamic acid which contains both phenolic and acrylic functional groups. Caffeic acid has been greatly employed as an alternative strategy to combat microbial pathogenesis and chronic infection induced by microbes such as bacteria, fungi, and viruses. Similarly, several derivatives of caffeic acid such as sugar esters, organic esters, glycosides, and amides have been chemically synthesized or naturally isolated as potential antimicrobial agents. To overcome the issue of water insolubility and poor stability, caffeic acid and its derivative have been utilized either in conjugation with other bioactive molecules or in nanoformulation. Besides, caffeic acid and its derivatives have also been applied in combination with antibiotics or photoirradiation to achieve a synergistic mode of action. The present review describes the antimicrobial roles of caffeic acid and its derivatives exploited either in free form or in combination or in nanoformulation to kill a diverse range of microbial pathogens along with their mode of action. The chemistry employed for the synthesis of the caffeic acid derivatives has been discussed in detail as well.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle 82200, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan 48513, South Korea
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
14
|
Ma A, Neumann N, Chui L. Phenotypic and Genetic Determination of Biofilm Formation in Heat Resistant Escherichia coli Possessing the Locus of Heat Resistance. Microorganisms 2021; 9:microorganisms9020403. [PMID: 33672009 PMCID: PMC7919257 DOI: 10.3390/microorganisms9020403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/03/2023] Open
Abstract
Despite the effectiveness of thermal inactivation processes, Escherichiacoli biofilms continue to be a persistent source of contamination in food processing environments. E. coli strains possessing the locus of heat resistance are a novel food safety threat and raises the question of whether these strains can also form biofilms. The objectives of this study were to determine biofilm formation in heat resistant E. coli isolates from clinical and environmental origins using an in-house, two-component apparatus and to characterize biofilm formation-associated genes in the isolates using whole genome sequencing. Optimal conditions for biofilm formation in each of the heat resistant isolates were determined by manipulating inoculum size, nutrient concentration, and temperature conditions. Biofilm formation in the heat resistant isolates was detected at temperatures of 24 °C and 37 °C but not at 4 °C. Furthermore, biofilm formation was observed in all environmental isolates but only one clinical isolate despite shared profiles in biofilm formation-associated genes encoded by the isolates from both sources. The circulation of heat resistant E. coli isolates with multi-stress tolerance capabilities in environments related to food processing signify that such strains may be a serious food safety and public health risk.
Collapse
Affiliation(s)
- Angela Ma
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Norman Neumann
- School of Public Health, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Alberta Precision Laboratories—Provincial Laboratory for Public Health, Edmonton, AB T6G 2J2, Canada
- Correspondence: ; Tel.: +1-780-407-8951
| |
Collapse
|
15
|
Multiple Drug-Induced Stress Responses Inhibit Formation of Escherichia coli Biofilms. Appl Environ Microbiol 2020; 86:AEM.01113-20. [PMID: 32826218 PMCID: PMC7580552 DOI: 10.1128/aem.01113-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention of bacterial biofilm formation is one of the major current challenges in microbiology. Here, by systematically screening a large number of approved drugs for their ability to suppress biofilm formation by Escherichia coli, we identified a number of prospective antibiofilm compounds. We further demonstrated different mechanisms of action for individual compounds, from induction of replicative stress to disbalance of cation homeostasis to inhibition of bacterial attachment to the surface. Our work demonstrates the potential of drug repurposing for the prevention of bacterial biofilm formation and suggests that also for other bacteria, the activity spectrum of antibiofilm compounds is likely to be broad. In most ecosystems, bacteria exist primarily as structured surface-associated biofilms that can be highly tolerant to antibiotics and thus represent an important health issue. Here, we explored drug repurposing as a strategy to identify new antibiofilm compounds, screening over 1,000 compounds from the Prestwick Chemical Library of approved drugs for specific activities that prevent biofilm formation by Escherichia coli. Most growth-inhibiting compounds, which include known antibacterial but also antiviral and other drugs, also reduced biofilm formation. However, we also identified several drugs that were biofilm inhibitory at doses where only a weak effect or no effect on planktonic growth could be observed. The activities of the most specific antibiofilm compounds were further characterized using gene expression analysis, proteomics, and microscopy. We observed that most of these drugs acted by repressing genes responsible for the production of curli, a major component of the E. coli biofilm matrix. This repression apparently occurred through the induction of several different stress responses, including DNA and cell wall damage, and homeostasis of divalent cations, demonstrating that biofilm formation can be inhibited through a variety of molecular mechanisms. One tested drug, tyloxapol, did not affect curli expression or cell growth but instead inhibited biofilm formation by suppressing bacterial attachment to the surface. IMPORTANCE The prevention of bacterial biofilm formation is one of the major current challenges in microbiology. Here, by systematically screening a large number of approved drugs for their ability to suppress biofilm formation by Escherichia coli, we identified a number of prospective antibiofilm compounds. We further demonstrated different mechanisms of action for individual compounds, from induction of replicative stress to disbalance of cation homeostasis to inhibition of bacterial attachment to the surface. Our work demonstrates the potential of drug repurposing for the prevention of bacterial biofilm formation and suggests that also for other bacteria, the activity spectrum of antibiofilm compounds is likely to be broad.
Collapse
|
16
|
Khan F, Pham DTN, Tabassum N, Oloketuyi SF, Kim YM. Treatment strategies targeting persister cell formation in bacterial pathogens. Crit Rev Microbiol 2020; 46:665-688. [DOI: 10.1080/1040841x.2020.1822278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| |
Collapse
|
17
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
18
|
Khan F, Oloketuyi SF, Kim YM. Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria. Curr Drug Targets 2020; 20:1156-1179. [PMID: 31020938 DOI: 10.2174/1389450120666190423161249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 12/14/2022]
Abstract
The increase in antibiotic resistance of pathogenic bacteria has led to the development of new therapeutic approaches to inhibit biofilm formation as well as interfere quorum sensing (QS) signaling systems. The QS system is a phenomenon in which pathogenic bacteria produce signaling molecules that are involved in cell to cell communication, production of virulence factors, biofilm maturation, and several other functions. In the natural environment, several non-pathogenic bacteria are present as mixed population along with pathogenic bacteria and they control the behavior of microbial community by producing secondary metabolites. Similarly, non-pathogenic bacteria also take advantages of the QS signaling molecule as a sole carbon source for their growth through catabolism with enzymes. Several enzymes are produced by bacteria which disrupt the biofilm architecture by degrading the composition of extracellular polymeric substances (EPS) such as exopolysaccharide, extracellular- DNA and protein. Thus, the interference of QS system by bacterial metabolic products and enzymatic catalysis, modification of the QS signaling molecules as well as enzymatic disruption of biofilm architecture have been considered as the alternative therapeutic approaches. This review article elaborates on the diversity of different bacterial species with respect to their metabolic products as well as enzymes and their molecular modes of action. The bacterial enzymes and metabolic products will open new and promising perspectives for the development of strategies against the pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| | | | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
19
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Antibiotics Application Strategies to Control Biofilm Formation in Pathogenic Bacteria. Curr Pharm Biotechnol 2020; 21:270-286. [PMID: 31721708 DOI: 10.2174/1389201020666191112155905] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/09/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. METHODS Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. RESULTS Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. CONCLUSION The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| | - Dung T N Pham
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Sandra F Oloketuyi
- Laboratory for Environmental and Life Sciences, University of Nova Gorica 5000, Nova Gorica, Slovenia
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
20
|
Khan F, Yu H, Kim YM. Bactericidal Activity of Usnic Acid-Chitosan Nanoparticles against Persister Cells of Biofilm-Forming Pathogenic Bacteria. Mar Drugs 2020; 18:E270. [PMID: 32443816 PMCID: PMC7281555 DOI: 10.3390/md18050270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to prepare usnic acid (UA)-loaded chitosan (CS) nanoparticles (UA-CS NPs) and evaluate its antibacterial activity against biofilm-forming pathogenic bacteria. UA-CS NPs were prepared through simple ionic gelification of UA with CS, and further characterized using Fourier transform infrared spectroscopy, X-ray diffraction, and field-emission transmission electron microscopy. The UA-CS NPs presented a loading capacity (LC) of 5.2%, encapsulation efficiency (EE) of 24%, and a spherical shape and rough surface. The maximum release of UA was higher in pH 1.2 buffer solution as compared to that in pH 6.8 and 7.4 buffer solution. The average size and zeta potential of the UA-CS NPs was 311.5 ± 49.9 nm in diameter and +27.3 ± 0.8 mV, respectively. The newly prepared UA-CS NPs exhibited antibacterial activity against persister cells obtained from the stationary phase in batch culture, mature biofilms, and antibiotic-induced gram-positive and gram-negative pathogenic bacteria. Exposure of sub-inhibitory concentrations of UA-CS NPs to the bacterial cells resulted in a change in morphology. The present study suggests an alternative method for the application of UA into nanoparticles. Furthermore, the anti-persister activity of UA-CS NPs may be another possible strategy for the treatment of infections caused by biofilm-forming pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, Korea;
| | - Hongsik Yu
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Korea;
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan 48513, Korea;
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
21
|
Mulat M, Khan F, Muluneh G, Pandita A. Phytochemical Profile and Antimicrobial Effects of Different Medicinal Plant: Current Knowledge and Future Perspectives. CURRENT TRADITIONAL MEDICINE 2020. [DOI: 10.2174/2215083805666190730151118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The application of medicinal plants for combating various human ailments, as a
food fortificant and additive have been adapted from ancient routine custom. Currently,
developing countries use plants as a major source of primary health care. Besides, the emerging
drug resistant pathogenic microbes encourage the utilization of medicinal plants as
preeminent alternative sources of new bioactive substances. Extensive research findings
have been reported in the last three decades. But methods to investigate the phytoconstituent
and their biological effects are limited. This review contains brief explanations about the selection
of medicinal plants, procedure for obtaining the crude as well as essential oil extracts,
phytochemical screening, and in-vitro evaluation of antimicrobial activity. Furthermore, the
antimicrobial activity of medicinal plant extracts reported from their respective solvent
fractionated and non-fractionated in-vitro analysis has also been described in the present paper.
The bioactive substances from medicinal plant along with chemical structure and biological
effects are highlighted in the content.
Collapse
Affiliation(s)
- Mulugeta Mulat
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| | - Fazlurrahman Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| | - Gizachew Muluneh
- Division of Microbiology, College of Natural Science, Wollo University, Dessie, Ethiopia
| | - Archana Pandita
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| |
Collapse
|
22
|
Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf B Biointerfaces 2020; 185:110627. [DOI: 10.1016/j.colsurfb.2019.110627] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/08/2023]
|
23
|
Zhao Y, Zeng D, Yan C, Chen W, Ren J, Jiang Y, Jiang L, Xue F, Ji D, Tang F, Zhou M, Dai J. Rapid and accurate detection of Escherichia coli O157:H7 in beef using microfluidic wax-printed paper-based ELISA. Analyst 2020; 145:3106-3115. [DOI: 10.1039/d0an00224k] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Escherichia coli O157:H7 is a severe foodborne pathogen. Paper-based ELISA can rapidly and accurately detect E.coli O157:H7 in beef. The method has good sensitivity, specificity and repeatability. It is suitable for point-of-care testing and offers new ideas for the detection of other foodborne pathogens.
Collapse
|
24
|
Identification phenotypic and genotypic characterization of biofilm formation in Escherichia coli isolated from urinary tract infections and their antibiotics resistance. BMC Res Notes 2019; 12:796. [PMID: 31805997 PMCID: PMC6896667 DOI: 10.1186/s13104-019-4825-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023] Open
Abstract
Objective Urinary tract infections (UTIs) are the most common infectious diseases, and Escherichia coli is the most common pathogen isolated from patients with UTIs. The products of sfa, afa and foc genes are important for binding of the bacterium to urinary tract epithelium. Our aim was to investigate these genes in E. colis isolated from patients with UTIS. The frequencies of the genes were determined using PCR. Biofilm formation and antibiotic resistance rates were determined using microtiter plate and disk diffusion methods, respectively. The P < 0.05 was considered statistically significant. Results The frequencies of sfa, afa and foc were 75.3%, 17.5% and 22.5%, respectively showing a significantly higher prevalence of the sfa gene. The most effective antibiotics against the E. colis were nitrofurantoin and amikacin. The highest microbial resistance rates were also observed against amoxicillin and ampicillin. Furthermore, 12.7%, 6.3%, 74.7% and 6.3% of the isolates showed strong, moderate, weak capacities and no connections to form biofilms, respectively. The expression of the sfa gene was significantly associated with forming strong biofilms. Regarding the variabilities in the characteristics of E. coli strains associated with UTIs, it seems reasonable to adjust diagnostic and therapeutic methods according to the regional microbial characteristics.
Collapse
|
25
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Regulation and controlling the motility properties of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2019; 104:33-49. [DOI: 10.1007/s00253-019-10201-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
|
26
|
Liu L, Ye C, Soteyome T, Zhao X, Xia J, Xu W, Mao Y, Peng R, Chen J, Xu Z, Shirtliff ME, Harro JM. Inhibitory effects of two types of food additives on biofilm formation by foodborne pathogens. Microbiologyopen 2019; 8:e00853. [PMID: 31179649 PMCID: PMC6741122 DOI: 10.1002/mbo3.853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
The inhibition of microbial biofilms is a significant concern in food safety. In the present study, the inhibitory effect of sodium citrate and cinnamic aldehyde on biofilm formation at minimum inhibitory concentrations (MICs) and sub-MICs was investigated for Escherichia coli O157:H7 and Staphylococcus aureus. The biofilm inhibition rate was measured to evaluate the effect of sodium citrate on S. aureus biofilms at 24, 48, 72, and 96 hr. According to the results, an antibiofilm effect was shown by both food additives, with 10 mg/ml of sodium citrate exhibiting the greatest inhibition of S. aureus biofilms at 24 hr (inhibition rate as high as 77.51%). These findings strongly suggest that sodium citrate exhibits a pronounced inhibitory effect on biofilm formation with great potential in the extension of food preservation and storage.
Collapse
Affiliation(s)
- Liyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhouChina
| | - Congxiu Ye
- Department of Dermato‐VenereologyThird Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Thanapop Soteyome
- Home Economics TechnologyRajamangala University of Technology Phra NakhonBangkokThailand
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological EngineeringWuhan Institute of TechnologyWuhanChina
| | - Jing Xia
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological EngineeringWuhan Institute of TechnologyWuhanChina
| | - Wenyi Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhouChina
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhouChina
| | - Ruixin Peng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhouChina
| | - Jinxuan Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhouChina
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of TechnologyGuangzhouChina
- Home Economics TechnologyRajamangala University of Technology Phra NakhonBangkokThailand
- Department of Microbial Pathogenesis, School of DentistryUniversity of MarylandBaltimoreMaryland
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)GuangzhouChina
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, School of DentistryUniversity of MarylandBaltimoreMaryland
| | - Janette M. Harro
- Department of Microbial Pathogenesis, School of DentistryUniversity of MarylandBaltimoreMaryland
| |
Collapse
|