1
|
Chen M, Grégoire DS, Bain JG, Blowes DW, Hug LA. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Appl Environ Microbiol 2024; 90:e0014324. [PMID: 38814057 PMCID: PMC11218620 DOI: 10.1128/aem.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
The oxidation of sulfide-bearing mine tailings catalyzed by acidophilic iron and sulfur-oxidizing bacteria releases toxic metals and other contaminants into soil and groundwater as acid mine drainage. Understanding the environmental variables that control the community structure and metabolic activity of microbes indigenous to tailings (especially the abiotic stressors of low pH and high dissolved metal content) is crucial to developing sustainable bioremediation strategies. We determined the microbial community composition along two continuous vertical gradients of Cu/Ni mine tailings at each of two tailings impoundments near Sudbury, Ontario. 16S rRNA amplicon data showed high variability in community diversity and composition between locations, as well as at different depths within each location. A temporal comparison for one tailings location showed low fluctuation in microbial communities across 2 years. Differences in community composition correlated most strongly with pore-water pH, Eh, alkalinity, salinity, and the concentration of several dissolved metals (including iron, but not copper or nickel). The relative abundances of individual genera differed in their degrees of correlation with geochemical factors. Several abundant lineages present at these locations have not previously been associated with mine tailings environments, including novel species predicted to be involved in iron and sulfur cycling.IMPORTANCEMine tailings represent a significant threat to North American freshwater, with legacy tailings areas generating acid mine drainage (AMD) that contaminates rivers, lakes, and aquifers. Microbial activity accelerates AMD formation through oxidative metabolic processes but may also ameliorate acidic tailings by promoting secondary mineral precipitation and immobilizing dissolved metals. Tailings exhibit high geochemical variation within and between mine sites and may harbor many novel extremophiles adapted to high concentrations of toxic metals. Characterizing the unique microbiomes associated with tailing environments is key to identifying consortia that may be used as the foundation for innovative mine-waste bioremediation strategies. We provide an in-depth analysis of microbial diversity at four copper/nickel mine tailings impoundments, describe how communities (and individual lineages) differ based on geochemical gradients, predict organisms involved in AMD transformations, and identify taxonomically novel groups present that have not previously been observed in mine tailings.
Collapse
Affiliation(s)
- Molly Chen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel S. Grégoire
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jeffrey G. Bain
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - David W. Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Laura A. Hug
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Ascandari A, Aminu S, Safdi NEH, El Allali A, Daoud R. A bibliometric analysis of the global impact of metaproteomics research. Front Microbiol 2023; 14:1217727. [PMID: 37476667 PMCID: PMC10354264 DOI: 10.3389/fmicb.2023.1217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background Metaproteomics is a subfield in meta-omics that is used to characterize the proteome of a microbial community. Despite its importance and the plethora of publications in different research area, scientists struggle to fully comprehend its functional impact on the study of microbiomes. In this study, bibliometric analyses are used to evaluate the current state of metaproteomic research globally as well as evaluate the specific contribution of Africa to this burgeoning research area. In this study, we use bibliometric analyses to evaluate the current state of metaproteomic research globally, identify research frontiers and hotspots, and further predict future trends in metaproteomics. The specific contribution of Africa to this research area was evaluated. Methods Relevant documents from 2004 to 2022 were extracted from the Scopus database. The documents were subjected to bibliometric analyses and visualization using VOS viewer and Biblioshiny package in R. Factors such as the trends in publication, country and institutional cooperation networks, leading scientific journals, author's productivity, and keywords analyses were conducted. The African publications were ranked using Field-Weighted Citation Impact (FWCI) scores. Results A total of 1,138 documents were included and the number of publications increased drastically from 2004 to 2022 with more publications (170) reported in 2021. In terms of publishers, Frontiers in Microbiology had the highest number of total publications (62). The United States of America (USA), Germany, China, and Canada, together with other European countries were the most productive. Institution-wise, the Helmholtz Zentrum für Umweltforschung, Germany had more publications while Max Plank Institute had the highest total collaborative link strength. Jehmlich N. was the most productive author whereas Hettich RL had the highest h-index of 63. Regarding Africa, only 2.2% of the overall publications were from the continent with more publication outputs from South Africa. More than half of the publications from the continent had an FWCI score ≥ 1. Conclusion The scientific outputs of metaproteomics are rapidly evolving with developed countries leading the way. Although Africa showed prospects for future progress, this could only be accelerated by providing funding, increased collaborations, and mentorship programs.
Collapse
Affiliation(s)
- AbdulAziz Ascandari
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Suleiman Aminu
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Nour El Houda Safdi
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
3
|
Brito EMS, Guyoneaud R, Caretta CA, Joseph M, Goñi-Urriza M, Ollivier B, Hirschler-Réa A. Bacterial diversity of an acid mine drainage beside the Xichú River (Mexico) accessed by culture-dependent and culture-independent approaches. Extremophiles 2023; 27:5. [PMID: 36800123 DOI: 10.1007/s00792-023-01291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Xichú River is a Mexican river located in an environmental preservation area called Sierra Gorda Biosphere Reserve. Around it, there are tons of abandoned mine residues that represent a serious environmental issue. Sediment samples of Xichú River, visibly contaminated by flows of an acid mine drainage, were collected to study their prokaryotic diversity. The study was based on both cultural and non-cultural approaches. The analysis of total 16S rRNA gene by MiSEQ sequencing allowed to identify 182 Operational Taxonomic Units. The community was dominated by Pseudomonadota, Bacteroidota, "Desulfobacterota" and Acidobacteriota (27, 21, 19 and 16%, respectively). Different culture conditions were used focusing on the isolation of anaerobic bacteria, including sulfate-reducing bacteria (SRB) and arsenate-reducing bacteria (ARB). Finally, 16 strains were isolated. Among them, 12 were phylogenetically identified, with two strains being SRB, belonging to the genus Solidesulfovibrio ("Desulfobacterota"), while ten are ARB belonging to the genera Azospira (Pseudomonadota), Peribacillus (Bacillota), Raineyella and Propionicimonas (Actinomycetota). The isolate representative of Raineyella genus probably corresponds to a new species, which, besides arsenate, also reduces nitrate, nitrite, and fumarate.
Collapse
Affiliation(s)
- Elcia Margareth Souza Brito
- Environmental Engineering Department, Laboratory of Environmental Microbiology and Applied Molecular Biology, DI-CGT, Universidad de Guanajuato, CP 36000, Guanajuato (Gto.), Mexico
| | - Rémy Guyoneaud
- UMR 5254, Environmental Microbiology Group, E2S-UPPA CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| | - César Augusto Caretta
- Astronomy Department, Universidad de Guanajuato, DCNE-CGT, CP 36023, Guanajuato (Gto.), Mexico.
| | - Manon Joseph
- UM 110, CNRS, IRD, Aix Marseille Université, Institut Méditerranéen d'Océanologie (MIO), Marseille, France
| | - Marisol Goñi-Urriza
- UMR 5254, Environmental Microbiology Group, E2S-UPPA CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| | - Bernard Ollivier
- UM 110, CNRS, IRD, Aix Marseille Université, Institut Méditerranéen d'Océanologie (MIO), Marseille, France
| | - Agnès Hirschler-Réa
- UM 110, CNRS, IRD, Aix Marseille Université, Institut Méditerranéen d'Océanologie (MIO), Marseille, France
| |
Collapse
|
4
|
Lobanov V, Gobet A, Joyce A. Ecosystem-specific microbiota and microbiome databases in the era of big data. ENVIRONMENTAL MICROBIOME 2022; 17:37. [PMID: 35842686 PMCID: PMC9287977 DOI: 10.1186/s40793-022-00433-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/29/2022] [Indexed: 05/05/2023]
Abstract
The rapid development of sequencing methods over the past decades has accelerated both the potential scope and depth of microbiota and microbiome studies. Recent developments in the field have been marked by an expansion away from purely categorical studies towards a greater investigation of community functionality. As in-depth genomic and environmental coverage is often distributed unequally across major taxa and ecosystems, it can be difficult to identify or substantiate relationships within microbial communities. Generic databases containing datasets from diverse ecosystems have opened a new era of data accessibility despite costs in terms of data quality and heterogeneity. This challenge is readily embodied in the integration of meta-omics data alongside habitat-specific standards which help contextualise datasets both in terms of sample processing and background within the ecosystem. A special case of large genomic repositories, ecosystem-specific databases (ES-DB's), have emerged to consolidate and better standardise sample processing and analysis protocols around individual ecosystems under study, allowing independent studies to produce comparable datasets. Here, we provide a comprehensive review of this emerging tool for microbial community analysis in relation to current trends in the field. We focus on the factors leading to the formation of ES-DB's, their comparison to traditional microbial databases, the potential for ES-DB integration with meta-omics platforms, as well as inherent limitations in the applicability of ES-DB's.
Collapse
Affiliation(s)
- Victor Lobanov
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | | | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.
| |
Collapse
|
5
|
Gómez-Villegas P, Guerrero JL, Pérez-Rodriguez M, Bolívar JP, Morillo A, Vigara J, Léon R. Exploring the microbial community inhabiting the phosphogypsum stacks of Huelva (SW SPAIN) by a high throughput 16S/18S rDNA sequencing approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106103. [PMID: 35151972 DOI: 10.1016/j.aquatox.2022.106103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Around 100 Mt of phosphogypsum (PG) have been deposited in large stacks on the salt marshes of the Tinto River estuary in Huelva (SW Spain), covering about 1000 ha. These stacks contain extremely acidic water (pH < 2) with high concentrations of pollutants which can cause emissions into their surroundings, generating important environmental concerns. Despite many chemical, geological or hydrological studies have been conducted to characterize the PG stacks of Huelva, the microbial community inhabiting this extreme environment remains unexplored. Using a 16S/18S-rRNA-high throughput sequencing approach, we have uncovered the main taxonomic groups able to live in the acidic metal-contaminated water, which is in direct contact with the PG, demonstrating for the first time the existence of a huge diversity of microbial species in these extreme conditions. In addition, the physicochemical characteristics of the water sampled have been analyzed. These studies have revealed that the most abundant bacteria found in two different leachate samples of the PG stacks belong to the genera Acidiphilium, Pseudomonas, Leptosprillum, Acidithrix, or Acidithiobacillus, typically found in acid mine drainage (AMD) environments, which in total represent around 50% of the total bacterial community. Biodiversity of eukaryotes in PG water is lower than that of prokaryotes, especially in the water collected from the perimeter channel that surrounds the PG stacks, where the pH reaches a value of 1.5 and the activity concentrations exceed 300 Bq L-1 for 238U or 20 Bq L-1 for 210Po, values which are from four to five orders of magnitude higher than those usually found in unperturbed surface waters. Even so, an unexpected diversity of algae, fungi, and ciliates have been found in the PG stacks of Huelva, where chlorophyte microalgae and basidiomycetes fungi are the most abundant eukaryotes. Additional bioinformatics tools have been used to perform a functional analysis and predict the most common metabolic pathways in the PG microbiota. The obtained data indicate that the extreme conditions of these PG stacks hide an unexpected microbial diversity, which can play an important role in the dynamics of the contaminating compounds of the PG and provide new strains with unique biotechnological applications.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - José Luis Guerrero
- Department of Integrated Sciences, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Miguel Pérez-Rodriguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Córdoba, Spain
| | - Juan Pedro Bolívar
- Department of Integrated Sciences, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Antonio Morillo
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Javier Vigara
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain
| | - Rosa Léon
- Laboratory of Biochemistry, Center for Natural Resources, Health and Environment (RENSMA), University of Huelva, Avda. de las Fuerzas Armadas s/n, Huelva 21071, Spain.
| |
Collapse
|
6
|
Cortez D, Neira G, González C, Vergara E, Holmes DS. A Large-Scale Genome-Based Survey of Acidophilic Bacteria Suggests That Genome Streamlining Is an Adaption for Life at Low pH. Front Microbiol 2022; 13:803241. [PMID: 35387071 PMCID: PMC8978632 DOI: 10.3389/fmicb.2022.803241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
The genome streamlining theory suggests that reduction of microbial genome size optimizes energy utilization in stressful environments. Although this hypothesis has been explored in several cases of low-nutrient (oligotrophic) and high-temperature environments, little work has been carried out on microorganisms from low-pH environments, and what has been reported is inconclusive. In this study, we performed a large-scale comparative genomics investigation of more than 260 bacterial high-quality genome sequences of acidophiles, together with genomes of their closest phylogenetic relatives that live at circum-neutral pH. A statistically supported correlation is reported between reduction of genome size and decreasing pH that we demonstrate is due to gene loss and reduced gene sizes. This trend is independent from other genome size constraints such as temperature and G + C content. Genome streamlining in the evolution of acidophilic bacteria is thus supported by our results. The analyses of predicted Clusters of Orthologous Genes (COG) categories and subcellular location predictions indicate that acidophiles have a lower representation of genes encoding extracellular proteins, signal transduction mechanisms, and proteins with unknown function but are enriched in inner membrane proteins, chaperones, basic metabolism, and core cellular functions. Contrary to other reports for genome streamlining, there was no significant change in paralog frequencies across pH. However, a detailed analysis of COG categories revealed a higher proportion of genes in acidophiles in the following categories: "replication and repair," "amino acid transport," and "intracellular trafficking". This study brings increasing clarity regarding the genomic adaptations of acidophiles to life at low pH while putting elements, such as the reduction of average gene size, under the spotlight of streamlining theory.
Collapse
Affiliation(s)
- Diego Cortez
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
7
|
Abstract
The research and education mine “Reiche Zeche” in Freiberg (Saxony, Germany) represents one of the most famous mining facilities reminiscent to the century-long history of silver production in the Ore Mountains. The mine was set up at the end of the fourteenth century and became part of the “Bergakademie Freiberg” in 1919. Galena, pyrite, sphalerite, arsenopyrite, and chalcopyrite are the most common minerals found in the mine. As acid mine drainage is generated from the dissolution of sulfidic ores, the microbial habitats within the adits and galleries are characterized by low pH and high concentrations of metal(loid)s. The community composition was investigated at locations characterized by biofilm formation and iron-rich bottom pools. Amplicon libraries were sequenced on a MiSeq instrument. The taxonomic survey yielded an unexpected diversity of 25 bacterial phyla including ten genera of iron-oxidizing taxa. The community composition in the snottites and biofilms only slightly differed from the communities found in acidic bottom pools regarding the diversity of iron oxidizers, the key players in most investigated habitats. Sequences of the Candidate Phyla Radiation as, e.g., Dojkabacteria and Eremiobacterota were found in almost all samples. Archaea of the classes Thermoplasmata and Nitrososphaeria were detected in some biofilm communities.
Collapse
|
8
|
Munyai R, Ogola HJO, Modise DM. Microbial Community Diversity Dynamics in Acid Mine Drainage and Acid Mine Drainage-Polluted Soils: Implication on Mining Water Irrigation Agricultural Sustainability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.701870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental degradation related to mining-generated acid mine drainage (AMD) is a major global concern, contaminating surface and groundwater sources, including agricultural land. In the last two decades, many developing countries are expanding agricultural productivity in mine-impacted soils to meet food demand for their rapidly growing population. Further, the practice of AMD water (treated or untreated) irrigated agriculture is on the increase, particularly in water-stressed nations around the world. For sustainable agricultural production systems, optimal microbial diversity, and functioning is critical for soil health and plant productivity. Thus, this review presents up-to-date knowledge on the microbial structure and functional dynamics of AMD habitats and AMD-impacted agricultural soils. The long-term effects of AMD water such as soil acidification, heavy metals (HM), iron and sulfate pollution, greatly reduces microbial biomass, richness, and diversity, impairing soil health plant growth and productivity, and impacts food safety negatively. Despite these drawbacks, AMD-impacted habitats are unique ecological niches for novel acidophilic, HM, and sulfate-adapted microbial phylotypes that might be beneficial to optimal plant growth and productivity and bioremediation of polluted agricultural soils. This review has also highlighted the impact active and passive treatment technologies on AMD microbial diversity, further extending the discussion on the interrelated microbial diversity, and beneficial functions such as metal bioremediation, acidity neutralization, symbiotic rhizomicrobiome assembly, and plant growth promotion, sulfates/iron reduction, and biogeochemical N and C recycling under AMD-impacted environment. The significance of sulfur-reducing bacteria (SRB), iron-oxidizing bacteria (FeOB), and plant growth promoting rhizobacteria (PGPRs) as key players in many passive and active systems dedicated to bioremediation and microbe-assisted phytoremediation is also elucidated and discussed. Finally, new perspectives on the need for future studies, integrating meta-omics and process engineering on AMD-impacted microbiomes, key to designing and optimizing of robust active and passive bioremediation of AMD-water before application to agricultural production is proposed.
Collapse
|
9
|
Li M, Wen J. Recent progress in the application of omics technologies in the study of bio-mining microorganisms from extreme environments. Microb Cell Fact 2021; 20:178. [PMID: 34496835 PMCID: PMC8425152 DOI: 10.1186/s12934-021-01671-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/30/2021] [Indexed: 11/11/2022] Open
Abstract
Bio-mining microorganisms are a key factor affecting the metal recovery rate of bio-leaching, which inevitably produces an extremely acidic environment. As a powerful tool for exploring the adaptive mechanisms of microorganisms in extreme environments, omics technologies can greatly aid our understanding of bio-mining microorganisms and their communities on the gene, mRNA, and protein levels. These omics technologies have their own advantages in exploring microbial diversity, adaptive evolution, changes in metabolic characteristics, and resistance mechanisms of single strains or their communities to extreme environments. These technologies can also be used to discover potential new genes, enzymes, metabolites, metabolic pathways, and species. In addition, integrated multi-omics analysis can link information at different biomolecular levels, thereby obtaining more accurate and complete global adaptation mechanisms of bio-mining microorganisms. This review introduces the current status and future trends in the application of omics technologies in the study of bio-mining microorganisms and their communities in extreme environments.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, China.
- Frontier Science Center of Ministry of Education, Tianjin University, Tianjin, China.
| |
Collapse
|
10
|
Chacon-Baca E, Santos A, Sarmiento AM, Luís AT, Santisteban M, Fortes JC, Dávila JM, Diaz-Curiel JM, Grande JA. Acid Mine Drainage as Energizing Microbial Niches for the Formation of Iron Stromatolites: The Tintillo River in Southwest Spain. ASTROBIOLOGY 2021; 21:443-463. [PMID: 33351707 DOI: 10.1089/ast.2019.2164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Iberian Pyrite Belt in southwest Spain hosts some of the largest and diverse extreme acidic environments with textural variation across rapidly changing biogeochemical gradients at multiple scales. After almost three decades of studies, mostly focused on molecular evolution and metagenomics, there is an increasing awareness of the multidisciplinary potential of these types of settings, especially for astrobiology. Since modern automatized exploration on extraterrestrial surfaces is essentially based on the morphological recognition of biosignatures, a macroscopic characterization of such sedimentary extreme environments and how they look is crucial to identify life properties, but it is a perspective that most molecular approaches frequently miss. Although acid mine drainage (AMD) systems are toxic and contaminated, they offer at the same time the bioengineering tools for natural remediation strategies. This work presents a biosedimentological characterization of the clastic iron stromatolites in the Tintillo river. They occur as laminated terraced iron formations that are the most distinctive sedimentary facies at the Tintillo river, which is polluted by AMD. Iron stromatolites originate from fluvial abiotic factors that interact with biological zonation. The authigenic precipitation of schwertmannite and jarosite results from microbial-mineral interactions between mineral and organic matrices. The Tintillo iron stromatolites are composed of bacterial filaments and diatoms as Nitzschia aurariae, Pinnularia aljustrelica, Stauroneis kriegeri, and Fragilaria sp. Furthermore, the active biosorption and bioleaching of sulfur are suggested by the black and white coloration of microbial filaments inside stromatolites. AMD systems are hazardous due to physical, chemical, and biological agents, but they also provide biogeochemical sources with which to infer past geochemical conditions on Earth and inform exploration efforts on extraterrestrial surfaces in the future.
Collapse
Affiliation(s)
- Elizabeth Chacon-Baca
- Departamento de Geología, Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo Léon (UANL), Linares, México
| | - Ana Santos
- Department of Applied Geosciences, CCTH-Science and Technology Research Centre, University of Huelva, Huelva, Spain
- Applied Geosciences Research Group (RNM276), Departamento de Ciencias de la Tierra, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva, Spain
| | - Aguasanta Miguel Sarmiento
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Ana Teresa Luís
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- GeoBioTec Research Unit, Department of Geosciences, University of Aveiro, Aveiro, Portugal
| | - Maria Santisteban
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Juan Carlos Fortes
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - José Miguel Dávila
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| | - Jesus M Diaz-Curiel
- Departamento de Geología, Escuela Técnica Superior de Ingenieros de Minas, Madrid, Spain
| | - Jose Antonio Grande
- Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
- Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain
| |
Collapse
|