1
|
Huang Y, Abdugheni R, Ma J, Wang R, Gao L, Liu Y, Li W, Cai M, Li L. Halomonas flagellata sp. nov., a halophilic bacterium isolated from saline soil in Xinjiang. Arch Microbiol 2023; 205:340. [PMID: 37750964 DOI: 10.1007/s00203-023-03670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
A Gram-stain-negative, strictly aerobic, motile, slightly curved rod-shaped bacterium with multiple flagella, designated strain EGI 63088T, was isolated from a bulk soil of Kalidium foliatum, collected from Wujiaqu in Xinjiang Uighur Autonomous Region, PR China. The optimal growth temperature, salinity, and pH for strain EGI 63088T growth were 30 °C, 3% (w/v) NaCl and 8, respectively. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain EGI 63088T showed the highest sequence similarities to Halomonas heilongjiangensis 9-2T (97.94%), H. lysinitropha 3(2)T (97.51%), and H. daqiaonensis CGMCC 1.9150T (97.08%). The average nucleotide identity and digital DNA-DNA hybridization values between the strain EGI 63088T and H. heilongjiangensis 9-2T were 89.03 and 41.10%, respectively. The DNA G + C content of the genome for strain EGI 63088T was 66.3 mol%. The most prevalent antibiotic resistance and virulence-related genes in Halomonas genomes were Streptomyces cinnamoneu EF-Tu mutant, pilT, and cheY, respectively. The predominant fatty acids of strain EGI 63088T were summed feature 8 (C18: 1 ω6c and/or C18: 1 ω7c), summed feature 3 (C16: 1 ω6c and/or C16: 1 ω7c), and C16: 0; its major respiratory quinone was ubiquinone-9 (Q-9), and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. According to the above results, strain EGI 63088T is considered a novel species of the genus Halomonas, for which the name Halomonas flagellata sp. nov. is proposed. The type strain is EGI 63088T (= KCTC 92047T = CGMCC 1.19133T).
Collapse
Affiliation(s)
- Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Rui Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yonghong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Man Cai
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
2
|
Li BB, Zhang XJ, Wu D, Zhang DD, Fang BZ, Liu HC, Zhou YG, Cai M, Li WJ, Nie GX. Devosia ureilytica sp. nov., isolated from Kuche River in China. Int J Syst Evol Microbiol 2022; 72. [PMID: 36748494 DOI: 10.1099/ijsem.0.005663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Two novel strains, designated XJ19-45T and XJ19-1, were isolated from water of Kuche River in Xinjiang Uygur Autonomous Region, China. Their cells were Gram-stain-negative, aerobic and motile rods. The phylogenetic analyses based on 16S rRNA genes and genomes showed that the two isolates belonged to the genus Devosia and the closest relative was Devosia subaequoris HST3-14T. The 16S rRNA genes sequences pairwise similarities, average nucleotide identities, digital DNA-DNA hybridizations and average amino acid identities between type strain XJ19-45T and other relatives were all less than 98.3, 80.3, 23.6 and 85.7 %, respectively, all below the species delineation thresholds. Pan-genomic analysis indicated that the novel isolate XJ19-45T shared 1594 core gene clusters with the 11 closely related type strains in Devosia, and the number of strain-specific clusters was 390. The major cellular fatty acids (>10 %) of the two isolates were summed feature 8, C18 : 1 ω7c 11-methyl and C16 : 0. Diphosphatidylglycerol, phosphatidylglycerol and glycolipids were the major polar lipids, and Q10 was the detected respiratory quinone. Based on the results of phenotypic, physiological, chemotaxonomic and genotypic characterizations, we propose that the isolates represent a novel species, for which the name Devosia ureilytica sp. nov. is proposed. The type strain is XJ19-45T (=CGMCC 1.19388T=KCTC 92263T).
Collapse
Affiliation(s)
- Bin-Bin Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.,China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Juan Zhang
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Danni Wu
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Dan-Dan Zhang
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Hong-Can Liu
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Man Cai
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Jun Li
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| |
Collapse
|
3
|
Collet L, Vander Wauven C, Oudjama Y, Galleni M, Dutoit R. Highlighting the factors governing transglycosylation in the GH5_5 endo-1,4-β-glucanase RBcel1. Acta Crystallogr D Struct Biol 2022; 78:278-289. [PMID: 35234142 PMCID: PMC8900817 DOI: 10.1107/s2059798321013541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022] Open
Abstract
Transglycosylating glycoside hydrolases (GHs) offer great potential for the enzymatic synthesis of oligosaccharides. Although knowledge is progressing, there is no unique strategy to improve the transglycosylation yield. Obtaining efficient enzymatic tools for glycan synthesis with GHs remains dependent on an improved understanding of the molecular factors governing the balance between hydrolysis and transglycosylation. This enzymatic and structural study of RBcel1, a transglycosylase from the GH5_5 subfamily isolated from an uncultured bacterium, aims to unravel such factors. The size of the acceptor and donor sugars was found to be critical since transglycosylation is efficient with oligosaccharides at least the size of cellotetraose as the donor and cellotriose as the acceptor. The reaction pH is important in driving the balance between hydrolysis and transglycosylation: hydrolysis is favored at pH values below 8, while transglycosylation becomes the major reaction at basic pH. Solving the structures of two RBcel1 variants, RBcel1_E135Q and RBcel1_Y201F, in complex with ligands has brought to light some of the molecular factors behind transglycosylation. The structure of RBcel1_E135Q in complex with cellotriose allowed a +3 subsite to be defined, in accordance with the requirement for cellotriose as a transglycosylation acceptor. The structure of RBcel1_Y201F has been obtained with several transglycosylation intermediates, providing crystallographic evidence of transglycosylation. The catalytic cleft is filled with (i) donors ranging from cellotriose to cellohexaose in the negative subsites and (ii) cellobiose and cellotriose in the positive subsites. Such a structure is particularly relevant since it is the first structure of a GH5 enzyme in complex with transglycosylation products that has been obtained with neither of the catalytic glutamate residues modified.
Collapse
Affiliation(s)
- Laetitia Collet
- LABIRIS, 1 Avenue Emile Gryzon, 1070 Brussels, Belgium
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | | | | - Moreno Galleni
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
4
|
Lalucat J, Gomila M, Mulet M, Zaruma A, García-Valdés E. Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov. Syst Appl Microbiol 2021; 45:126289. [PMID: 34920232 DOI: 10.1016/j.syapm.2021.126289] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Pseudomonas is one the best studied bacterial genera, and it is the genus with the highest number of species among the gram-negative bacteria. Pseudomonas spp. are widely distributed and play relevant ecological roles; several species are commensal or pathogenic to humans, animals and plants. The main aim of the present minireview is the discussion of how the Pseudomonas taxonomy has evolved with the development of bacterial taxonomy since the first description of the genus in 1894. We discuss how the successive implementation of novel methodologies has influenced the taxonomy of the genus and, vice versa, how the taxonomic studies developed in Pseudomonas have introduced novel tools and concepts to bacterial taxonomy. Current phylogenomic analyses of the family Pseudomonadaceae demonstrate that a considerable number of named Pseudomonas spp. are not monophyletic with P. aeruginosa, the type species of the genus, and that a reorganization of several genera can be foreseen. Phylogenomics of Pseudomonas, Azomonas and Azotobacter within the Pseudomonadaceae is presented as a case study. Five new genus names are delineated to accommodate five well-defined phylogenetic branches that are supported by the shared genes in each group, and two of them can be differentiated by physiological and ecological properties: the recently described genus Halopseudomonas and the genus Stutzerimonas proposed in the present study. Five former Pseudomonas species are transferred to Halopseudomonas and 10 species to Stutzerimonas.
Collapse
Affiliation(s)
- Jorge Lalucat
- Microbiologia, Departament Biologia, Universitat de les Illes Balears, Spain; Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Spain.
| | - Margarita Gomila
- Microbiologia, Departament Biologia, Universitat de les Illes Balears, Spain
| | - Magdalena Mulet
- Microbiologia, Departament Biologia, Universitat de les Illes Balears, Spain
| | - Anderson Zaruma
- Microbiologia, Departament Biologia, Universitat de les Illes Balears, Spain
| | - Elena García-Valdés
- Microbiologia, Departament Biologia, Universitat de les Illes Balears, Spain; Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Spain
| |
Collapse
|
5
|
Wu D, Liu H, Zhou Y, Wu X, Nie Y, Cai M. Roseomonas oleicola sp. nov., isolated from an oil production mixture in Yumen Oilfield, and emended description of Roseomonas frigidaquae. Int J Syst Evol Microbiol 2021; 71. [PMID: 34710024 DOI: 10.1099/ijsem.0.005064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A pink, ovoid-shaped, Gram-stain-negative, strictly aerobic and motile bacterial strain, designated ROY-5-3T, was isolated from an oil production mixture from Yumen Oilfield in PR China. The strain grew at 4-42 °C (optimum, 30 °C), at pH 5-10 (optimum, 7) and with 0-5 % (w/v) NaCl (optimum, 0%). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that ROY-5-3T belongs to the genus Roseomonas and shared the highest pairwise similarities with Roseomonas frigidaquae CW67T (98.1%), Roseomonas selenitidurans BU-1T (97.8%), Roseomonas tokyonensis K-20T (97.7%) and Roseomonas stagni HS-69T (97.3%). The average nucleotide identity and digital DNA-DNA hybridization values between ROY-5-3T and other related type strains of Roseomonas species were less than 84.08 and 28.60 %, respectively, both below the species delineation threshold. Pan-genomic analysis showed that the novel isolate ROY-5-3T shared 3265 core gene families with the four closely related type strains in Roseomonas, and the number of strain-specific gene families was 513. The major fatty acids were identified as summed feature 8 (C18 : 1 ω6c/C18 : 1 ω7c), summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c) and C16 : 0. Strain ROY-5-3T contained Q-10 as the main ubiquinone and the genomic DNA G+C content was 69.8 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol. Based on the phylogenetic, morphological, physiological, chemotaxonomic and genome analyses, strain ROY-5-3T represents a novel species of the genus Roseomonas for which the name Roseomonas oleicola sp. nov. is proposed. The type strain is ROY-5-3T (=CGMCC 1.13459T =KCTC 82484T).
Collapse
Affiliation(s)
- Danni Wu
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hongcan Liu
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiaolei Wu
- College of Engineering, Peking University, Beijing 100871, PR China
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, PR China
| | - Man Cai
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
6
|
Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2021; 71. [PMID: 34596501 DOI: 10.1099/ijsem.0.004943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem,, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
7
|
Zhang Y, Qiao D, Shi W, Wu D, Cai M. Capnocytophaga periodontitidis sp. nov., isolated from subgingival plaque of periodontitis patient. Int J Syst Evol Microbiol 2021; 71. [PMID: 34431768 DOI: 10.1099/ijsem.0.004979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two carbon dioxide-requiring, gliding, Gram-stain-negative strains, designated p1a2T and 051621, were isolated from subgingival plaque in association with severe periodontitis. The 16S rRNA gene sequence analysis revealed that they represented members of the genus Capnocytophaga and had less than 96.4 % pairwise similarity with species with validly published names in this genus. The whole-genome sequences of those strains had less than 91.9 % average nucleotide identity and 48.4 % digital DNA-DNA hybridization values with the other type strains of species of the genus Capnocytophaga, both below the species delineation threshold. The results of pan-genomic analysis indicated that p1a2T and 051621 shared 765 core gene families with the other ten species in this genus, and the numbers of strain-specific gene families were 493 and 455, respectively. The major fatty acids were iso-C15 : 0 and C16 : 0. A combination of phenotypic, chemotaxonomic, phylogenetic and genotypic data clearly indicate that p1a2T and 051621 should be considered to represent a novel species of the genus Capnocytophaga, for which the name Capnocytophaga periodontitidis sp. nov. is proposed. The type strain is p1a2T (=CGMCC 1.17337T=JCM 34126T).
Collapse
Affiliation(s)
- Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, PR China
| | - Dan Qiao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, PR China
| | - Wenyu Shi
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Danni Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Man Cai
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
8
|
Wu D, Zhang XJ, Liu HC, Zhou YG, Wu XL, Nie Y, Kang YQ, Cai M. Azospirillum oleiclasticum sp. nov, a nitrogen-fixing and heavy oil degrading bacterium isolated from an oil production mixture of Yumen Oilfield. Syst Appl Microbiol 2020; 44:126171. [PMID: 33360414 DOI: 10.1016/j.syapm.2020.126171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Two nitrogen-fixing and heavy oil degrading strains, designated RWY-5-1-1T and ROY-1-1-2, were isolated from an oil production mixture from Yumen Oilfield in China. The 16S rRNA gene sequence showed they belong to Azospirillum and have less than 96.1 % pairwise similarity with each species in this genus. The average nucleotide identity and digital DNA-DNA hybridization values between them and other type strains of Azospirillum species were less than 75.69 % and 22.0 %, respectively, both below the species delineation threshold. Pan-genomic analysis showed that the novel isolate RWY-5-1-1T shared 2145 core gene families with other type strains in Azospirillum, and the number of strain-specific gene families was 1623, almost two times more than the number known from other species. Furthermore, genes related to nitrogenase, hydrocarbon degradation and biosurfactant production were found in the isolates' genomes. Also, this strain was capable of reducing acetylene to ethylene at a rate of 22nmol ethylene h-1 (108 cells) and degrading heavy oil at a rate of 36.2 %. The major fatty acids and polar lipids were summed feature 8 (C18:1ω7c/C18:1ω6c), and phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylcholine. Furthermore, a combination of phenotypic, chemotaxonomic, phylogenetic and genotypic data clearly indicated that strains RWY-5-1-1T and ROY-1-1-2 represent a novel species, for which the name Azospirillum oleiclasticum sp. nov. is proposed. The type strain is RWY-5-1-1T (=CGMCC 1.13426T =KCTC 72259 T). Azospirillum novel strains with the ability of heavy oil degradation associated with the promotion of plant growth has never been reported to date.
Collapse
Affiliation(s)
- Danni Wu
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiao-Juan Zhang
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025 Guizhou, People's Republic of China
| | - Hong-Can Liu
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ying-Qian Kang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025 Guizhou, People's Republic of China
| | - Man Cai
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|