1
|
Dong W, Zhang J, Zou M, Chen L, Zhu L, Zhang L, Zhang G, Tang J, Yang Q, Hu Y, Chen S. High-Throughput Sequencing Analysis of Microbiota and Enzyme Activities in Xiaoqu from Seven Provinces in Southern China. J Microbiol Biotechnol 2024; 34:2290-2300. [PMID: 39317683 PMCID: PMC11637830 DOI: 10.4014/jmb.2405.05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
Xiaoqu, a pivotal starter in baijiu fermentation, provides the most microflora and enzymes to initiate and maintain baijiu brewing. This study aims to explore the differences in microbiota and enzyme activities among Xiaoqu samples from seven provinces in southern China using high-throughput sequencing, plate isolation, and activity detection. The analyses revealed significant differences in bacterial and fungal communities across the samples. A total of 22 bacterial species and 17 target fungal species were isolated and identified. Predominant bacteria included Bacillus (Bacillus subtilis) and lactic acid bacteria (LABs), while the fungal communities were primarily composed of yeasts (Saccharomyces cerevisiae) and various molds. The activities of α-amylase and glucoamylase varied significantly among the samples, and samples from HN1 and GZ2 exhibited the highest activities. Correlation analyses highlighted the pivotal role of LABs in maintaining acidity and the importance of molds and yeasts in the saccharification and fermentation processes. These findings shed light on the microbial composition and diversity of Xiaoqu and the critical role of microbes in baijiu production. Moreover, they suggested potential microbial resources for developing artificial Xiaoqu via synthetic microbial community in the future, enhancing baijiu fermentation efficiency and overall product quality.
Collapse
Affiliation(s)
- Weiwei Dong
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, P.R. China
| | - Jingjing Zhang
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Menglin Zou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, P.R. China
| | - Liang Chen
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Liping Zhu
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Long Zhang
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Gang Zhang
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Jie Tang
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Qiang Yang
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
| | - Yuanliang Hu
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, P.R. China
| | - Shenxi Chen
- Hubei key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Co., Ltd., Daye, Hubei 435100, P.R. China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, P.R. China
| |
Collapse
|
2
|
Yang L, Li H, Wu H, Sun X, Liu S, He Z. Investigating Flavor Enhancement Methods in NaCl-Reduced Chinese Bacon ( Larou) by Focusing on Physicochemical Characteristics, Bacterial Diversity, and Volatiles. Foods 2024; 13:3820. [PMID: 39682892 DOI: 10.3390/foods13233820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The higher NaCl concentration of Chinese bacon, which features a unique flavor, is a major restriction to consumption. Investigating the role of NaCl in Chinese bacon (Larou) would be beneficial to optimize the dosage and enhance flavor. This study was conducted to categorize Larou by comparing the quality of Larou cured with different concentrations of NaCl and then to investigate the methods of flavor enhancement of NaCl-reduced Larou. The results showed that, based on the differences in quality, Larou were categorized into three types, including the low-NaCl type (<4%, LT), the medium-NaCl type (4-8%, MT), and the high-NaCl type (>8%, HT). The vital physicochemical characteristics (PCs), predominant bacteria, and key volatile compounds (VOCs) were different for each type of Larou. The PCs contributing to the regulation of VOCs were total volatile basic nitrogen (TVB-N) and pH in LT, thiobarbituric acid reactive substance assay (TBARS) in MT, NaNO2, and moisture content in HT. Lactococcus or Lactobacillus, Staphylococcus, and Kocuria were flavor-producing bacteria in LT, MT, and HT, respectively. Vital PCs and predominant bacteria were associated with several key aldehydes, alcohols, and esters in Larou. Increasing the TVB-N, TBARS, and moisture content, decreasing the pH and NaNO2 properly, and inoculating with Staphylococcus and Kocuria were effective methods to enhance the flavor of LT. Vital PCs and predominant bacteria are prioritized to meet most of the quality and the biosafety, although key VOCs may be sacrificed at this point.
Collapse
Affiliation(s)
- Li Yang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Hongjun Li
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Engineering Research Center of Regional Food, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Han Wu
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Xuelian Sun
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Shuyun Liu
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Engineering Research Center of Regional Food, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715, China
| |
Collapse
|
3
|
Aguiar RAC, Ferreira FA, Rubio Cieza MY, Silva NCC, Miotto M, Carvalho MM, Bazzo BR, Botelho LAB, Dias RS, De Dea Lindner J. Staphylococcus aureus Isolated From Traditional Artisanal Raw Milk Cheese from Southern Brazil: Diversity, Virulence, and Antimicrobial Resistance Profile. J Food Prot 2024; 87:100285. [PMID: 38697483 DOI: 10.1016/j.jfp.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Staphylococcus aureus is one of the primary pathogenic agents found in cheeses produced with raw milk. Some strains of S. aureus are enterotoxigenic, possessing the ability to produce toxins responsible for staphylococcal food poisoning when present in contaminated foods. This study aimed to genotypically characterize, assess the antimicrobial resistance profile, and examine the enterotoxigenic potential of strains of S. aureus isolated from artisanal colonial cheese. Additionally, a bacterial diversity assessment in the cheeses was conducted by sequencing the 16S rRNA gene. The metataxomic profile revealed the presence of 68 distinct species in the cheese samples. Fifty-seven isolates of S. aureus were identified, with highlighted resistance to penicillin in 33% of the isolates, followed by clindamycin (28%), erythromycin (26%), and tetracycline (23%). The evaluated strains also exhibited inducible resistance to clindamycin, with nine isolates considered multidrug-resistant (MDR). The agr type I was the most prevalent (62%) among the isolates, followed by agr type II (24%). Additionally, ten spa types were identified. Although no enterotoxins and their associated genes were detected in the samples and isolates, respectively, the Panton-Valentine leukocidin gene (lukS-lukF) was found in 39% of the isolates. The presence of MDR pathogens in the artisanal raw milk cheese production chain underscores the need for quality management to prevent the contamination and dissemination of S. aureus strains.
Collapse
Affiliation(s)
- Renata Amanda Carneiro Aguiar
- Food Technology and Bioprocesses Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil
| | | | - Mirian Yuliza Rubio Cieza
- Department of Food Science and Nutrition, School of Food Engineering (FEA), State University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Science and Nutrition, School of Food Engineering (FEA), State University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Marília Miotto
- Food Technology and Bioprocesses Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil
| | - Michelle M Carvalho
- Food Technology and Bioprocesses Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil
| | | | | | - Ricardo Souza Dias
- Ezequiel Dias Foundation (FUNED), Enterotoxins Laboratory, Public Health Center of the State of Minas Gerais, 30510-010 Belo Horizonte, MG, Brazil
| | - Juliano De Dea Lindner
- Food Technology and Bioprocesses Research Group, Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Li W, Hua S, Du Z, Jiang H, Jiang S, Yu M, Ali Baloch W, Noonari S, Yan B, Gao H. Interactions between the gut bacterial community of Exopalaemon carinicauda and infection by Enterocytozoon hepatopenaei. J Invertebr Pathol 2024; 204:108115. [PMID: 38719180 DOI: 10.1016/j.jip.2024.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
To explore the relationship between the intestinal flora of Exopalaemon Carinicauda and infection by Enterocytozoo Hepatopenaei (EHP), we analyzed the species and richness of gut microbiota in infected individuals in different EHP load groups [i.e., control (C), high load (H), and low load (L)] using gene sequencing after infection. The results showed that the abundance of intestinal flora in the high-load EHP group was significantly lower than that in the healthy group. Based on the UPGMA cluster tree and PCoA analysis, with comparisons to healthy shrimp, the gut microbiota of the EHP high load and low load groups were clustered into one branch, which indicated that EHP infection changed the composition of the gut microbiota of infected shrimps. The heat map analysis of species abundance clustering revealed that the dominant bacteria in the low EHP load group and the control group were beneficial genera such as Lactococcus, Ligilactobacillius, and Bifidobacterium, but the dominant bacteria in the high EHP load group were harmful genera such as Pseudomonas, Photobacterium, and Candidatus hepatincola. The functions of the intestinal flora predicted that most genes related to metabolism were more abundant in healthy shrimp, most genes related to metabolism and the organisms' system were more abundant in the low EHP load group, and most genes related to diseases and environmental information processing were more abundant in the high EHP load group. After separation and purification, the dominant bacteria (Bifidobacterium animalis in healthy shrimp and Lactococcus garvieae in the low EHP load group) and the non-dominant bacteria (Macrococus caseolyticus in the low EHP load group) were obtained. Each of these isolated strains were used together with EHP to infect E. carinicauda, and the results showed that Bifidobacterium animali and Lactococcus garvieae significantly reduced the EHP load in EHP-infected individuals. At the same time, the morphology and structure of the hepatopancreas and intestinal tissue of EHP-infected E. carinicauda were improved. No improvement was seen in tissue that was infected with Macrococus caseolyticus.
Collapse
Affiliation(s)
- Wanying Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Songsong Hua
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Zhengwei Du
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Haiyi Jiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Shanshan Jiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Miaomiao Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Wazir Ali Baloch
- Department of Freshwater Biology and Fisheries, University of Sindh Jamshoro, 76080, Pakistan
| | - Sumera Noonari
- Department of Freshwater Biology and Fisheries, University of Sindh Jamshoro, 76080, Pakistan
| | - Binlun Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, Jiangsu, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, Jiangsu, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, Jiangsu, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, Jiangsu, China.
| |
Collapse
|
5
|
Sessou P, Keisam S, Gagara M, Komagbe G, Farougou S, Mahillon J, Jeyaram K. Comparative analyses of the bacterial communities present in the spontaneously fermented milk products of Northeast India and West Africa. Front Microbiol 2023; 14:1166518. [PMID: 37886068 PMCID: PMC10598763 DOI: 10.3389/fmicb.2023.1166518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/28/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Spontaneous fermentation of raw cow milk without backslopping is in practice worldwide as part of the traditional food culture, including "Doi" preparation in earthen pots in Northeast India, "Kindouri" of Niger and "Fanire" of Benin prepared in calabash vessels in West Africa. Very few reports are available about the differences in bacterial communities that evolved during the spontaneous mesophilic fermentation of cow milk in diverse geographical regions. Methods In this study, we used high throughput amplicon sequencing of bacterial 16S rRNA gene to investigate 44 samples of naturally fermented homemade milk products and compared the bacterial community structure of these foods, which are widely consumed in Northeast India and Western Africa. Results and discussion The spontaneous milk fermentation shared the lactic acid bacteria, mainly belonging to Lactobacillaceae (Lactobacillus) and Streptococcaceae (Lactococcus) in these two geographically isolated regions. Indian samples showed a high bacterial diversity with the predominance of Acetobacteraceae (Gluconobacter and Acetobacter) and Leuconostoc, whereas Staphylococcaceae (Macrococcus) was abundant in the West African samples. However, the Wagashi cheese of Benin, prepared by curdling the milk with proteolytic leaf extract of Calotrophis procera followed by natural fermentation, contained Streptococcaceae (Streptococcus spp.) as the dominant bacteria. Our analysis also detected several potential pathogens, like Streptococcus infantarius an emerging infectious foodborne pathogen in Wagashi samples, an uncultured bacterium of Enterobacteriaceae in Kindouri and Fanire samples, and Clostridium spp. in the Doi samples of Northeast India. These findings will allow us to develop strategies to address the safety issues related to spontaneous milk fermentation and implement technological interventions for controlled milk fermentation by designing starter culture consortiums for the sustainable production of uniform quality products with desirable functional and organoleptic properties.
Collapse
Affiliation(s)
- Philippe Sessou
- Research Unit on Communicable Diseases, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Cotonou, Benin
| | - Santosh Keisam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, Manipur, India
| | - Mariama Gagara
- Research Unit on Communicable Diseases, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Cotonou, Benin
- Central Livestock Laboratory, Niamey, Niger
| | - Gwladys Komagbe
- Research Unit on Communicable Diseases, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Cotonou, Benin
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Souaïbou Farougou
- Research Unit on Communicable Diseases, Laboratory of Research in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Cotonou, Benin
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, Manipur, India
- IBSD Regional Centre, Tadong, Gangtok, Sikkim, India
| |
Collapse
|
6
|
Bello S, Mudassir SH, Rudra B, Gupta RS. Phylogenomic and molecular markers based studies on Staphylococcaceae and Gemella species. Proposals for an emended family Staphylococcaceae and three new families (Abyssicoccaceae fam. nov., Salinicoccaceae fam. nov. and Gemellaceae fam. nov.) harboring four new genera, Lacicoccus gen. nov., Macrococcoides gen. nov., Gemelliphila gen. nov., and Phocicoccus gen. nov. Antonie Van Leeuwenhoek 2023; 116:937-973. [PMID: 37523090 DOI: 10.1007/s10482-023-01857-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
The family Staphylococcacae and genus Gemella contain several organisms of clinical or biotechnological importance. We report here comprehensive phylogenomic and comparative analyses on 112 available genomes from species in these taxa to clarify their evolutionary relationships and classification. In a phylogenomic tree based on 678 core proteins, Gemella species were separated from Staphylococcacae by a long branch indicating that they constitute a distinct family (Gemellaceae fam. nov.). In this tree, Staphylococcacae species formed two main clades, one encompassing the genera Aliicoccus, Jeotgalicoccus, Nosocomiicoccus and Salinicoccus (Family "Salinicoccaceae"), while the other clade consisted of the genera Macrococcus, Mammaliicoccus and Staphylococcus (Family Staphylococcaceae emend.). In this tree, species from the genera Gemella, Jeotgalicoccus, Macrococcus and Salinicoccus each formed two distinct clades. Two species clades for these genera are also observed in 16S rRNA gene trees and supported by average amino acid identity analysis. We also report here detailed analyses on protein sequences from Staphylococcaceae and Gemella genomes to identify conserved signature indels (CSIs) which are specific for different genus and family-level clades. These analyses have identified 120 novel CSIs robustly demarcating different proposed families and genera. The identified CSIs provide independent evidence that the genera Gemella, Jeotgalicoccus, Macrococcus and Salinicoccus consist of two distinct clades, which can be reliably distinguished based on multiple exclusively shared CSIs. We are proposing transfers of the species from the novel clades of the above four genera into the genera Gemelliphila gen. nov., Phocicoccus gen. nov., Macrococcoides gen. nov. and Lacicoccus gen. nov., respectively. The identified CSIs also provide strong evidence for division of Staphylococcaceae into an emended family Staphylococcaceae and two new families, Abyssicoccaceae fam. nov. and Salinicoccaceae fam. nov. All of these families can be reliably demarcated based on several exclusively shared CSIs.
Collapse
Affiliation(s)
- Sarah Bello
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Syed Huzaifa Mudassir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Bashudev Rudra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
7
|
Carroll LM, Pierneef R, Mafuna T, Magwedere K, Matle I. Genus-wide genomic characterization of Macrococcus: insights into evolution, population structure, and functional potential. Front Microbiol 2023; 14:1181376. [PMID: 37547688 PMCID: PMC10400458 DOI: 10.3389/fmicb.2023.1181376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Macrococcus species have been isolated from a range of mammals and mammal-derived food products. While they are largely considered to be animal commensals, Macrococcus spp. can be opportunistic pathogens in both veterinary and human clinical settings. This study aimed to provide insight into the evolution, population structure, and functional potential of the Macrococcus genus, with an emphasis on antimicrobial resistance (AMR) and virulence potential. Methods All high-quality, publicly available Macrococcus genomes (n = 104, accessed 27 August 2022), plus six South African genomes sequenced here (two strains from bovine clinical mastitis cases and four strains from beef products), underwent taxonomic assignment (using four different approaches), AMR determinant detection (via AMRFinderPlus), and virulence factor detection (using DIAMOND and the core Virulence Factor Database). Results Overall, the 110 Macrococcus genomes were of animal commensal, veterinary clinical, food-associated (including food spoilage), and environmental origins; five genomes (4.5%) originated from human clinical cases. Notably, none of the taxonomic assignment methods produced identical results, highlighting the potential for Macrococcus species misidentifications. The most common predicted antimicrobial classes associated with AMR determinants identified across Macrococcus included macrolides, beta-lactams, and aminoglycosides (n = 81, 61, and 44 of 110 genomes; 73.6, 55.5, and 40.0%, respectively). Genes showing homology to Staphylococcus aureus exoenzyme aureolysin were detected across multiple species (using 90% coverage, n = 40 and 77 genomes harboring aureolysin-like genes at 60 and 40% amino acid [AA] identity, respectively). S. aureus Panton-Valentine leucocidin toxin-associated lukF-PV and lukS-PV homologs were identified in eight M. canis genomes (≥40% AA identity, >85% coverage). Using a method that delineates populations using recent gene flow (PopCOGenT), two species (M. caseolyticus and M. armenti) were composed of multiple within-species populations. Notably, M. armenti was partitioned into two populations, which differed in functional potential (e.g., one harbored beta-lactamase family, type II toxin-antitoxin system, and stress response proteins, while the other possessed a Type VII secretion system; PopCOGenT p < 0.05). Discussion Overall, this study leverages all publicly available Macrococcus genomes in addition to newly sequenced genomes from South Africa to identify genomic elements associated with AMR or virulence potential, which can be queried in future experiments.
Collapse
Affiliation(s)
- Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Thendo Mafuna
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| |
Collapse
|
8
|
Zhang F, Wu S, Dai J, Huang J, Zhang J, Zhao M, Rong D, Li Y, Wang J, Chen M, Xue L, Ding Y, Wu Q. The emergence of novel macrolide resistance island in Macrococcus caseolyticus and Staphylococcus aureus of food origin. Int J Food Microbiol 2023; 386:110020. [PMID: 36427466 DOI: 10.1016/j.ijfoodmicro.2022.110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Food-derived Staphylococcaceae species with severe antimicrobial resistance, especially Staphylococcus aureus, is a major threat to public health. Macrococcus caseolyticus (M. caseolyticus) is a member of the Staphylococcaceae family which plays a vital role in fermented products and disease causation in animals. In our previous study, several Staphylococcus aureus antibiotic-resistant island msr (SaRImsr) were found in multidrug-resistant S. aureus. In this study, novel SaRImsr, SaRImsr-III emerged from S. aureus. Another novel SaRImsr-like further emerged in M. caseolyticus from food. These isolates' prevalence and genetic environment were investigated and characterized to understand the distribution and transmission of these novel SaRImsr strains. All SaRImsr-positive S. aureus isolates exhibited a multidrug resistance (MDR) phenotype, within which a series of antimicrobial resistance genes (ARGs) and virulence factor genes (VFs) were identified. In addition, three SaRImsr types, SaRImsr-I (15.1 kb), SaRImsr-II (16-17 kb), and SaRImsr-III (18 kb) carrying mef(D)-msr(F), were identified in these isolates' chromosomes. SaRImsr-(I-III) contains a site-specific integrase gene int and operon mef(D)-msr(F). SaRImsr-III has an additional orf3-orf4-IS30 arrangement downstream of mef(D) and msr(F). Moreover, the SaRImsr-like and macrolide-resistant transposon Tn6776 forming a novel mosaic structure coexisted in one M. caseolyticus isolate. Within this mosaic structure, the macrolide-resistant genes mef(D)-msr(F) were absent in SaRImsr-like, whereas an operon, mef(F)-msr(G), was identified in Tn6776. The SaRImsr-(I-III) and SaRImsr-like structure were inserted into the rpsI gene encoding the 30S ribosomal protein S9 in the chromosome. Excision and cyclisation of SaRImsr-III, SaRImsr-like, operon mef(D)-msr(F), and orf3-orf4-IS30 arrangements were confirmed using two-step PCR. This study is the first to report MDR S. aureus harbouring novel SaRImsr-III and M. caseolyticus containing novel mosaic structures isolated from retail foods. Similar SaRImsr-type resistant islands' occurrence and propagation in Staphylococcaceae species require continuous monitoring and investigation.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shi Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Jingsha Dai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Jiahui Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Miao Zhao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Dongli Rong
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Yuanyu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Liang Xue
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China
| | - Yu Ding
- Department of Food Science & Technology, Jinan University, Guangzhou 510632, China.
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, China.
| |
Collapse
|
9
|
Li H, Chen L, Zhang J, Zhao K, Tang H, Chen L. Effects of nisin and ε-polylysine on the microbial communities, biogenic amine formation and lipid oxidation in Chinese dry sausages. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2125586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huanhuan Li
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lijun Chen
- College of Chemistry and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jin Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Honggang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lihong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Van der Veken D, Leroy F. Prospects for the applicability of coagulase-negative cocci in fermented-meat products using omics approaches. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Zhao D, Chong Y, Hu J, Zhou X, Xiao C, Chen W. Proteomics and metagenomics reveal the relationship between microbial metabolism and protein hydrolysis in dried fermented grass carp using a lactic acid bacteria starter culture. Curr Res Food Sci 2022; 5:2316-2328. [DOI: 10.1016/j.crfs.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/21/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
|
12
|
Klempt M, Franz CMAP, Hammer P. Characterization of coagulase-negative staphylococci and macrococci isolated from cheese in Germany. J Dairy Sci 2022; 105:7951-7958. [PMID: 35965117 DOI: 10.3168/jds.2022-21941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022]
Abstract
Cheese, especially ripened varieties, harbor a very complex and heterogeneous microbiota. In addition to the desired microorganisms (starter cultures) added during cheese production, potentially harmful bacteria may also enter the production chain. Regarding the latter, the focus of this study was on coagulase-negative staphylococci (CNS) and Macrococcus caseolyticus. Both are known to harbor a variety of genes coding for antibiotic resistance, including mecA, mecB, mecC, and mecD. Coagulase-negative staphylococci or macrococci carrying such genes or other virulence factors should not be present in cheese. Cheese samples (101 in total) were collected from retail sources. Coagulase-negative staphylococci and M. caseolyticus were isolated utilizing selective agars, and species were identified by phenotypical tests and partial sequencing of the sodA gene. The results allowed identification of 53 CNS strains and 19 M. caseolyticus strains. Among the CNS, 11 isolates of Staphylococcus saprophyticus and one Staphylococcus epidermidis isolate were obtained. Both species are potential human pathogens and may thus adversely affect the safety of these food products. Screening for antimicrobial resistance was performed by application of disc diffusion tests, a gradient strip-test, and 14 different PCR tests. Evidence for methicillin resistance (by either positive disc diffusion assay for cefoxitin or by mec PCR) was found in CNS isolates and M. caseolyticus (9 isolates each). Regarding other virulence factors, no genetic determinants for coagulase or the most common staphylococcal enterotoxins sea, seb, sec, sed, and see were detected in any of the CNS or M. caseolyticus isolates by PCR testing. In conclusion, the presence of facultatively pathogenic CNS and carriers of genes for antibiotic resistance in both groups of microorganisms, especially mec genes, and the respective food safety issues need further evaluation and surveillance.
Collapse
Affiliation(s)
- M Klempt
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany
| | - C M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany
| | - P Hammer
- Department of Microbiology and Biotechnology, Max Rubner-Institute, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany.
| |
Collapse
|
13
|
Tanzina AY, Hoque MN, Mannan A, Foysal MJ, Rumi MH, Biswas S, Bhuiyan JJ, Siddiki AZ, Islam MS, Chin-Yen Tay A, Islam SR. Investigating the nutritional profile and bacteriome diversity in Bangladeshi sour yogurt. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Aragão BB, Trajano SC, de Oliveira RP, da Conceição Carvalho M, de Carvalho RG, Juliano MA, Junior JWP, Mota RA. Occurrence of emerging multiresistant pathogens in the production chain of artisanal goat coalho cheese in Brazil. Comp Immunol Microbiol Infect Dis 2022; 84:101785. [DOI: 10.1016/j.cimid.2022.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
|
15
|
|
16
|
Effects of chilling rate on the freshness and microbial community composition of lamb carcasses. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Lu T, Yang Y, Feng WJ, Jin QC, Wu ZG, Jin ZH. Effect of the compound bacterial agent on microbial community of the aerobic compost of food waste. Lett Appl Microbiol 2021; 74:32-43. [PMID: 34608649 DOI: 10.1111/lam.13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
In our study, we used 16SrRNA and ITS to investigate the microbial community composition and the effect of compound bacterial agent on the microbial community composition in the aerobic composting process of food waste (FW). At the bacterial level, the main phyla of Group A (compost naturally) were Proteobacteria and Firmicutes, and the main species were Pseudomonas_sp._GR7, Bacillus licheniformis and Pediococcus acidilactici. The main phyla of Group B (compost with compound bacterial agent) were Proteobacteria, Firmicutes and Streptophyta, and the main species were Klebsiella pneumoniae, Cronobacter sakazakii, Macrococcus caseolyticus, Enterococcus faecalis, Citrobacter freundii and Bacillus velezensis. It is worth noting that M. caseolyticus may be able to improve the effect of odour which is an important sensory index during aerobic composting. At the fungal level, the main phylum of both Groups A and B was Ascomycota, and the main species of Group A were Paecilomyces variotii, Byssochlamys spectabilis and Aspergillus fumigatus. The main species of Group B were Ogataea polymorpha and Millerozyma farinosa. Finally, the degradation rate of Group B was 81% that was about 15% higher than that of Group A, indicating that the compound bacterial agent could effectively improve the degradation rate and the composting process, while the low abundance of the compound bacterial agent in the composting process might be due to the small initial addition or the inhibition of other bacteria or fungi in the composting process.
Collapse
Affiliation(s)
- T Lu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China.,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Y Yang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - W J Feng
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Q C Jin
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Z G Wu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Z H Jin
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| |
Collapse
|