1
|
Fuchs F, Frickmann H, Hahn A, Balczun C, Hagen RM, Feldt T, Sarfo FS, Di Cristanziano V, Loderstädt U, Ehrhardt S, Schoppen S, Tagbor H, Eberhardt KA. Absence of measurable quantities of Candida auris and Cryptococcus spp. in the gut microbiota of Ghanaian individuals with and without HIV infection as confirmed by applying multiple real-time PCR assays. J Med Microbiol 2024; 73. [PMID: 39392223 DOI: 10.1099/jmm.0.001916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Introduction. Fungal infections are relevant health risks for individuals with acquired immunodeficiency in the resource-limited tropics, but available surveillance data are scarce. For Candida auris and Cryptococcus spp., the evolution from environmental reservoirs to human pathogens causing life-threatening diseases is currently discussed as a public health concern in the context of climate change and limited treatment options.Gap statement. Uncovering the gastrointestinal tract as an epidemiological niche of fungi emerging from the environment into individuals for whom fungal infections are not diagnosed.Aim. To contribute to data on the local epidemiology of C. auris and Cryptococcus spp. in Western African Ghana by analysing gastrointestinal samples of Ghanaian individuals.Methodology. Four real-time PCR assays targeting C. auris and five real-time PCR assays targeting Cryptococcus spp. were applied with stool samples of 875 non-age-stratified Ghanaian HIV patients and 30 Ghanaian control individuals without known HIV infection. Also, 664 samples from Ghanaian children under 2 years of age were investigated. The true abundance of the target micro-organism was considered as unlikely in the case of one or fewer positive signals, likely in the case of two to three positive signals and highly likely in the case of four or more positive signals per sample in the real-time PCR assays.Results. The combined application of sensitive, target-specific real-time PCR assays indicates that neither C. auris, Cryptococcus neoformans complex nor Cryptococcus gattii complex were part of the gut microbiota of Ghanaian individuals with or without HIV infection.Conclusion. Despite the significant disease burden from these pathogens in immunosuppressed Ghanaian individuals, detection from gastrointestinal samples was unlikely, which should be taken into account when discussing screening strategies for these fungi of public health concern. In contrast, the detection of these fungi from such samples should not routinely be considered as commensal colonization flora.
Collapse
Affiliation(s)
- Frieder Fuchs
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Andreas Hahn
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Carsten Balczun
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Fred Stephen Sarfo
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany
| | - Ulrike Loderstädt
- Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan Ehrhardt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
| | - Stefanie Schoppen
- Department of Health and Social Science, Hochschule Fresenius, Hamburg, Germany
| | - Harry Tagbor
- Department of Community Health, School of Medicine, University of Health and Allied Sciences, PMB 31, Ho, Volta Region, Ghana
| | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center, Hamburg, Germany
| |
Collapse
|
2
|
Gedik O, Karahan AG. Properties and stability of Lactiplantibacillus plantarum AB6-25 and Saccharomyces boulardii T8-3C single and double-layered microcapsules containing Na-alginate and/or demineralized whey powder with lactobionic acid. Int J Biol Macromol 2024; 271:132406. [PMID: 38754658 DOI: 10.1016/j.ijbiomac.2024.132406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The present study aimed to enhance the survivability of the encapsulated biocomposites of Lactiplantibacillus plantarum AB6-25 and Saccharomyces boulardii T8-3C within the gastrointestinal system (GIS) and during storage period. AB6-25 and T8-3C were individually co-encapsulated using either lactobionic acid (LBA) in Na-alginate (ALG)/demineralized whey powder (DWP) or solely potential probiotics in ALG microcapsules. Free probiotic cells were utilized as the control group. Both microcapsules and free cells underwent freeze-drying. The encapsulation and freeze-drying efficiency of core materials were evaluated. The protective effect of encapsulation on the probiotics was examined under simulated GIS conditions and during storage at either 25 °C or 4 °C. Additionally, the microcapsules underwent analysis using fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscope (SEM). Encapsulation and freeze-drying processes were carried out efficiently in all groups (88.46 %-99.13 %). SEM revealed that the microcapsules possessed a spherical and homogeneous structure, with sizes ranging from 3 to 10 μm. ALG/DWP and LBA presence in the microcapsule structure was confirmed through FTIR, XRD analysis indicated the formation of a new composite. Over 180 days, all microcapsule groups stored at 4 °C maintained their therapeutic dosage viability. However, after four months, microcapsules stored at 25 °C exhibited a decline in yeast survivability below the therapeutic threshold. Experimental groups demonstrated better viability under simulated GIS conditions compared to the control. These findings suggest the potential use of microencapsulated probiotics as a food supplement and indicate that microcapsule groups containing AB6-25 and T8-3C stored at 4 °C can be preserved for six months.
Collapse
Affiliation(s)
- Oğuzhan Gedik
- Süleyman Demirel University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Isparta, Türkiye
| | - Aynur Gül Karahan
- Süleyman Demirel University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Isparta, Türkiye.
| |
Collapse
|
3
|
Ghorbani Alvanegh A, Mirzaei Nodooshan M, Dorostkar R, Ranjbar R, Jalali Kondori B, Shahriary A, Parastouei K, Vazifedust S, Afrasiab E, Esmaeili Gouvarchinghaleh H. Antiproliferative effects of mesenchymal stem cells carrying Newcastle disease virus and Lactobacillus Casei extract on CT26 Cell line: synergistic effects in cancer therapy. Infect Agent Cancer 2023; 18:46. [PMID: 37525229 PMCID: PMC10391864 DOI: 10.1186/s13027-023-00521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND AND AIMS Colorectal Cancer (CRC) is a frequent malignancy with a high mortality rate. Specific inherited and environmental influences can affect CRC. Oncolytic viruses and bacteria in treating CRC are one of the innovative therapeutic options. This study aims to determine whether mesenchymal stem cells (MSCs) infected with the Newcastle Disease Virus (NDV) in combination with Lactobacillus casei extract (L. casei) have a synergistic effects on CRC cell line growth. MATERIALS AND METHODS MSCs taken from the bone marrow of BALB/c mice and were infected with the 20 MOI of NDV. Then, using the CT26 cell line in various groups as a single and combined treatment, the anticancer potential of MSCs containing the NDV and L. casei extract was examined. The evaluations considered the CT26 survival and the rate at which LDH, ROS, and levels of caspases eight and nine were produced following various treatments. RESULTS NDV, MSCs-NDV, and L. casei in alone or combined treatment significantly increased apoptosis percent, LDH, and ROS production compared with the control group (P˂0.05). Also, NDV, in free or capsulated in MSCs, had anticancer effects, but in capsulated form, it had a delay compared with free NDV. The findings proved that L. casei primarily stimulates the extrinsic pathway, while NDV therapy promotes apoptosis through the activation of both intrinsic and extrinsic apoptosis pathways. CONCLUSIONS The results suggest that MSCs carrying oncolytic NDV in combination with L. casei extract as a potentially effective strategy for cancer immunotherapy by promoting the generation of LDH, ROS, and apoptosis in the microenvironment of the CT26 cell line.
Collapse
Affiliation(s)
| | | | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Karim Parastouei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Soheil Vazifedust
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elmira Afrasiab
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | |
Collapse
|
4
|
Pawar K, Aranha C. Lactobacilli metabolites restore E-cadherin and suppress MMP9 in cervical cancer cells. Curr Res Toxicol 2022; 3:100088. [PMID: 36176311 PMCID: PMC9513734 DOI: 10.1016/j.crtox.2022.100088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Clara Aranha
- Corresponding author at: Department of Molecular Immunology and Microbiology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai 400102, India
| |
Collapse
|