1
|
Aktas DK, Aydin S. Production of new functional coconut milk kefir with blueberry extract and microalgae: the comparison of the prebiotic potentials on lactic acid bacteria of kefir grain and biochemical characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1986-1997. [PMID: 39285997 PMCID: PMC11401817 DOI: 10.1007/s13197-024-05974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Probiotic foods are recognized for their importance on human health. Kefir is a versatile probiotic food that can be made from non-dairy sources for vegan diet. This study evaluated the addition of microalga Haematococcus pluvialis (0.50% w/v) and blueberry Vaccinium myrtillus (0.50% w/v) extracts to compare their influence on the biochemical properties and the bacterial community of coconut milk kefir through Nanopore-based DNA sequencing. Results revealed that the V. myrtillus increased the microbial diversity in coconut milk kefir with more abundant Proteobacteria species such as Lacticaseibacillus paracasei (22%) and Lactococcus lactis (6.3%). Microalga demonstrated the opposite effect on C, making Firmicutes represent the whole of the microbiota. Biochemical analysis revealed increased fat content in the kefir samples, with the C1 registering 1.62% and the 1.07% in C2, in contrast to the control group's 0.87% fat content. The crude protein content exhibited a decrease in both samples compared to the control group (0.00% and 0.88% versus 1.07%). These findings suggest that fortifying vegan kefir with prebiotics has the potential to induce significant alterations in the kefir microbiota. Graphical abstract
Collapse
Affiliation(s)
- Doğan Kürşad Aktas
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Turkey
| | - Sevcan Aydin
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Turkey
| |
Collapse
|
2
|
Sadurski J, Polak-Berecka M, Staniszewski A, Waśko A. Step-by-Step Metagenomics for Food Microbiome Analysis: A Detailed Review. Foods 2024; 13:2216. [PMID: 39063300 PMCID: PMC11276190 DOI: 10.3390/foods13142216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This review article offers a comprehensive overview of the current understanding of using metagenomic tools in food microbiome research. It covers the scientific foundation and practical application of genetic analysis techniques for microbial material from food, including bioinformatic analysis and data interpretation. The method discussed in the article for analyzing microorganisms in food without traditional culture methods is known as food metagenomics. This approach, along with other omics technologies such as nutrigenomics, proteomics, metabolomics, and transcriptomics, collectively forms the field of foodomics. Food metagenomics allows swift and thorough examination of bacteria and potential metabolic pathways by utilizing foodomic databases. Despite its established scientific basis and available bioinformatics resources, the research approach of food metagenomics outlined in the article is not yet widely implemented in industry. The authors believe that the integration of next-generation sequencing (NGS) with rapidly advancing digital technologies such as artificial intelligence (AI), the Internet of Things (IoT), and big data will facilitate the widespread adoption of this research strategy in microbial analysis for the food industry. This adoption is expected to enhance food safety and product quality in the near future.
Collapse
Affiliation(s)
- Jan Sadurski
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-704 Lublin, Poland; (M.P.-B.); (A.S.); (A.W.)
| | | | | | | |
Collapse
|
3
|
Chen K, Yang J, Guo X, Han W, Wang H, Zeng X, Wang Z, Yuan Y, Yue T. Microflora structure and functional capacity in Tibetan kefir grains and selenium-enriched Tibetan kefir grains: A metagenomic analysis. Food Microbiol 2024; 119:104454. [PMID: 38225054 DOI: 10.1016/j.fm.2023.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Tibetan kefir grains (TKGs) are a complex protein-lipid-polysaccharide matrix composed of various microorganisms. Microorganisms have the benefit of being effective, secure, and controllable when used for selenium enrichment. In this study, selenium-enriched Tibetan kefir grains (Se-TKGs) were made, and the microbiology composition was analyzed through a metagenomic analysis, to explore the influence of selenium enrichment. The microbial composition of TKGs and Se-TKGs, as well as the probiotic species, quorum sensing system (QS) and functional genes were compared and evaluated. Lactobacillus kefiranofaciens was the most abundant microbial species in both communities. Compared with TKGs, Se-TKGs had a much higher relative abundance of acetic acid bacteria. Lactobacillus helveticus was the most common probiotic species both in TKGs and Se-TKGs. Probiotics with antibacterial and anti-inflammatory properties were more abundant in Se-TKGs. QS analysis revealed that Se-TKGs contained more QS system-associated genes than TKGs. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the pathway for human disease ko01501 had the greatest relative abundance in both TKGs and Se-TKGs. Compared with TKGs, Se-TKGs demonstrated a greater relative abundance of different drug resistance-related metabolic pathways. Additionally, linear discriminant analysis effect size was used to examine the biomarkers responsible for the difference between the two groups. In this study, we focused on the microbiological structure of TKGs and Se-TKGs, with the aim of establishing a foundation for a more thorough investigation of Se-TKGs and providing a basis for exploring potential future use.
Collapse
Affiliation(s)
- Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Jinyi Yang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xinyuan Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Weiyu Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
4
|
Dahiya D, Nigam PS. Nutraceutical Combinational Therapy for Diarrhoea Control with Probiotic Beverages from Fermented Fruits, Vegetables and Cereals to Regain Lost Hydration, Nutrition and Gut Microbiota. Microorganisms 2023; 11:2190. [PMID: 37764034 PMCID: PMC10537194 DOI: 10.3390/microorganisms11092190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
This article deals with the condition of irregular bowel movements known as diarrhoea, its pathology, symptoms and aetiology. The information has been presented on causes of diarrhoea that include gut infections, food intolerances and allergies to certain ingredients, problems in the gastrointestinal tract like irritable bowel syndrome, inflammatory bowel disease and, the condition of dysbiosis which occurs due to long-term use of antibiotics, or other medicines, etc. Most cases of diarrhoea can be resolved without needing medical treatment; however, it is still important to avoid dehydration of the body and use some supplements to get necessary nutrients which are lost with frequent bowel movements before they can get absorbed and assimilated in the gastrointestinal tract. Probiotic products are reported as natural therapeutic agents, which can reduce the risk of diarrhoea in both adults and children. The intake of dietary fluid supplements in the form of fermented beverages containing probiotic strains could help in diarrhoea control. The patient would achieve benefits with the consumption of these functional beverages in three ways-by regaining lost fluids to the body, supplementing beneficial gut bacteria to restore diversity in gut microbiota, which was disturbed in the condition of diarrhoea as well as regaining a source of quick nutrition to recoup energy.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|