1
|
Ahmad W, Coffman L, Ray RL, Balan V, Weerasooriya A, Khan AL. Microbiome diversity and variations in industrial hemp genotypes. Sci Rep 2024; 14:29560. [PMID: 39609496 PMCID: PMC11605117 DOI: 10.1038/s41598-024-79192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Microbes like bacteria and fungi are crucial for host plant growth and development. However, environmental factors and host genotypes can influence microbiome composition and diversity in plants such as industrial hemp (Cannabis sativa L.). Herein, we evaluated the endophytic and rhizosphere microbial communities of two cannabidiol (CBD; Sweet Sensi and Cherry Wine) and two fibers (American Victory and Unknown). The four hemp varieties showed significant variations in microbiome diversity. The roots had significantly abundant fungal and bacterial endophyte diversity indices, whereas the stem had higher fungal than bacterial diversity. Interestingly, the soil system showed no significant diversity variation across CBD vs. fiber genotypes. In fungal phyla, Ascomycota and Basidiomycota were significantly more abundant in roots and stems than leaves in CBD-rich genotypes compared to fiber-rich genotypes. The highly abundant bacterial phyla were Proteobacteria, Acidobacteria, and Actinobacteria. We found 16 and 11 core-microbiome bacterial and fungal species across genotypes. Sphingomonas, Pseudomonas, and Bacillus were the core bacteria of fiber genotypes with high abundance compared to CBD genotypes. Contrarily, Microbacterium, and Rhizobium were significantly higher in CBD than fiber. The Alternaria and Gibberella formed a core-fungal microbiome of fiber-genotype than CBD. Contrarily, Penicillium, and Nigrospora were significantly more abundant in CBD than fiber genotypes. In conclusion, specific hemp genotypes recruit specialized microbial communities in the rhizosphere and phyllosphere. Utilizing the core-microbiome species can help to maintain and improve the growth of hemp plants and to target specialized traits of the genotype.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX, USA
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, USA
| | - Lauryn Coffman
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX, USA
| | - Ram L Ray
- Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, USA
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX, USA
| | - Aruna Weerasooriya
- Cooperative Agricultural Research Center, College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX, USA.
| | - Abdul Latif Khan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX, USA.
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Daraz U, Erhunmwunse AS, Dubeux JCB, Mackowiak C, Liao HL, Wang XB. Soil fungal community structure and function response to rhizoma perennial peanut cultivars. BMC PLANT BIOLOGY 2024; 24:582. [PMID: 38898415 PMCID: PMC11186081 DOI: 10.1186/s12870-024-05209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Crop-associated microorganisms play a crucial role in soil nutrient cycling, and crop growth, and health. Fine-scale patterns in soil microbial community diversity and composition are commonly regulated by plant species or genotype. Despite extensive reports in different crop or its cultivar effects on the microbial community, it is uncertain how rhizoma peanut (RP, Arachis glabrata Benth.), a perennial warm-season legume forage that is well-adapted in the southern USA, affects soil microbial community across different cultivars. RESULTS This study explored the influence of seven different RP cultivars on the taxonomic composition, diversity, and functional groups of soil fungal communities through a field trial in Marianna, Florida, Southern USA, using next-generation sequencing technique. Our results showed that the taxonomic diversity and composition of the fungal community differed significantly across RP cultivars. Alpha diversity (Shannon, Simpson, and Pielou's evenness) was significantly higher in Ecoturf but lower in UF_Peace and Florigraze compared to other cultivars (p < 0.001). Phylogenetic diversity (Faith's PD) was lowest in Latitude compared to other cultivars (p < 0.0001). The dominant phyla were Ascomycota (13.34%), Mortierellomycota (3.82%), and Basidiomycota (2.99%), which were significantly greater in Florigraze, UF_Peace, and Ecoturf, respectively. The relative abundance of Neocosmospora was markedly high (21.45%) in UF_Tito and showed large variations across cultivars. The relative abundance of the dominant genera was significantly greater in Arbrook than in other cultivars. There were also significant differences in the co-occurrence network, showing different keystone taxa and more positive correlations than the negative correlations across cultivars. FUNGuild analysis showed that the relative abundance of functional guilds including pathogenic, saprotrophic, endophytic, mycorrhizal and parasitic fungi significantly differed among cultivars. Ecoturf had the greatest relative abundance of mycorrhizal fungal group (5.10 ± 0.44), whereas UF_Peace had the greatest relative abundance of endophytic (4.52 ± 0.56) and parasitic fungi (1.67 ± 0.30) compared to other cultivars. CONCLUSIONS Our findings provide evidence of crop cultivar's effect in shaping fine-scale fungal community patterns in legume-based forage systems.
Collapse
Affiliation(s)
- Umar Daraz
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral, Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
| | | | - José C B Dubeux
- North Florida Research and Education Center, University of Florida, Marianna, FL, USA
| | - Cheryl Mackowiak
- North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | - Xiao-Bo Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral, Agriculture Science and Technology, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Mejías M, Madrid R, Díaz K, Gutiérrez-Cortés I, Pulgar R, Mandakovic D. The Impact of Environmental Gaseous Pollutants on the Cultivable Bacterial and Fungal Communities of the Aerobiome. Microorganisms 2024; 12:1103. [PMID: 38930485 PMCID: PMC11206153 DOI: 10.3390/microorganisms12061103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding air microbial content, especially in highly polluted urban areas, is crucial for assessing its effect on human health and ecosystems. In this context, the impact of gaseous pollutants on the aerobiome remains inconclusive due to a lack of studies separating this factor from other contaminants or environmental factors. In this study, we aimed to experimentally assess the influence of contrasting concentrations of atmospheric gaseous pollutants as isolated variables on the composition of the aerobiome. Our study sites were contrasting Air Quality Index (AQI) sites of the Metropolitan Region of Chile, where nitric oxide (NO) was significantly lower at the low-AQI site than at the high-AQI site, while ozone (O3) was significantly higher. Cultivable aerobiome communities from the low-AQI site were exposed to their own pollutants or those from the high-AQI site and characterized using high-throughput sequencing (HTS), which allowed comparisons between the entire cultivable communities. The results showed increased alpha diversity in bacterial and fungal communities exposed to the high-AQI site compared to the low-AQI site. Beta diversity and compositional hierarchical clustering analyses revealed a clear separation based on NO and O3 concentrations. At the phylum level, four bacterial and three fungal phyla were identified, revealing an over-representation of Actinobacteriota and Basidiomycota in the samples transferred to the high-AQI site, while Proteobacteria were more abundant in the community maintained at the low-AQI site. At the functional level, bacterial imputed functions were over-represented only in samples maintained at the low-AQI site, while fungal functions were affected in both conditions. Overall, our results highlight the impact of NO and/or O3 on both taxonomic and functional compositions of the cultivable aerobiome. This study provides, for the first time, insights into the influence of contrasting pollutant gases on entire bacterial and fungal cultivable communities through a controlled environmental intervention.
Collapse
Affiliation(s)
- Madelaine Mejías
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
- Programa de Doctorado en Ecología Integrativa, Universidad Mayor, Santiago 8580745, Chile
| | - Romina Madrid
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| | - Karina Díaz
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| | - Ignacio Gutiérrez-Cortés
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento, Universidad de Chile, Santiago 7830490, Chile
| | - Dinka Mandakovic
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile; (M.M.); (R.M.); (K.D.); (I.G.-C.)
| |
Collapse
|
4
|
Kumar A, Solanki MK, Wang Z, Solanki AC, Singh VK, Divvela PK. Revealing the seed microbiome: Navigating sequencing tools, microbial assembly, and functions to amplify plant fitness. Microbiol Res 2024; 279:127549. [PMID: 38056172 DOI: 10.1016/j.micres.2023.127549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
Microbial communities within seeds play a vital role in transmitting themselves to the next generation of plants. These microorganisms significantly impact seed vigor and early seedling growth, for successful crop establishment. Previous studies reported on seed-associated microbial communities and their influence on processes like dormancy release, germination, and disease protection. Modern sequencing and conventional methods reveal microbial community structures and environmental impacts, these information helps in microbial selection and manipulation. These studies form the foundation for using seed microbiomes to enhance crop resilience and productivity. While existing research has primarily focused on characterizing microbiota in dried mature seeds, a significant gap exists in understanding how these microbial communities assemble during seed development. The review also discusses applying seed-associated microorganisms to improve crops in the context of climate change. However, limited knowledge is available about the microbial assembly pattern on seeds, and their impact on plant growth. The review provides insight into microbial composition, functions, and significance for plant health, particularly regarding growth promotion and pest control.
Collapse
Affiliation(s)
- Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Anjali Chandrol Solanki
- Department of Agriculture, Mansarover Global University, Bhopal, Madhya Pradesh 462042, India
| | - Vipin Kumar Singh
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224123, Uttar Pradesh, India
| | | |
Collapse
|
5
|
Toppo P, Jangir P, Mehra N, Kapoor R, Mathur P. Bioprospecting of endophytic fungi from medicinal plant Anisomeles indica L. for their diverse role in agricultural and industrial sectors. Sci Rep 2024; 14:588. [PMID: 38182714 PMCID: PMC10770348 DOI: 10.1038/s41598-023-51057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Endophytes are microorganisms that inhabit various plant parts and cause no damage to the host plants. During the last few years, a number of novel endophytic fungi have been isolated and identified from medicinal plants and were found to be utilized as bio-stimulants and bio fertilizers. In lieu of this, the present study aims to isolate and identify endophytic fungi associated with the leaves of Anisomeles indica L. an important medicinal plant of the Terai-Duars region of West Bengal. A total of ten endophytic fungi were isolated from the leaves of A. indica and five were identified using ITS1/ITS4 sequencing based on their ability for plant growth promotion, secondary metabolite production, and extracellular enzyme production. Endophytic fungal isolates were identified as Colletotrichum yulongense Ai1, Colletotrichum cobbittiense Ai2, Colletotrichum alienum Ai2.1, Colletotrichum cobbittiense Ai3, and Fusarium equiseti. Five isolates tested positive for their plant growth promotion potential, while isolates Ai4. Ai1, Ai2, and Ai2.1 showed significant production of secondary metabolites viz. alkaloids, phenolics, flavonoids, saponins, etc. Isolate Ai2 showed maximum total phenolic concentration (25.98 mg g-1), while isolate Ai4 showed maximum total flavonoid concentration (20.10 mg g-1). Significant results were observed for the production of extracellular enzymes such as cellulases, amylases, laccases, lipases, etc. The isolates significantly influenced the seed germination percentage of tomato seedlings and augmented their growth and development under in vitro assay. The present work comprehensively tested these isolates and ascertained their huge application for the commercial utilization of these isolates both in the agricultural and industrial sectors.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Pooja Jangir
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Namita Mehra
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Rupam Kapoor
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
6
|
Khuna S, Kumla J, Srinuanpan S, Lumyong S, Suwannarach N. Multifarious Characterization and Efficacy of Three Phosphate-Solubilizing Aspergillus Species as Biostimulants in Improving Root Induction of Cassava and Sugarcane Stem Cuttings. PLANTS (BASEL, SWITZERLAND) 2023; 12:3630. [PMID: 37896093 PMCID: PMC10610185 DOI: 10.3390/plants12203630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Several soil fungi significantly contribute to the enhancement of plant development by improving nutrient uptake and producing growth-promoting metabolites. In the present study, three strains of phosphate-solubilizing fungi, namely, Aspergillus chiangmaiensis SDBR-CMUI4, A. pseudopiperis SDBR-CMUI1, and A. pseudotubingensis SDBR-CMUO2, were examined for their plant-growth-promoting capabilities. The findings demonstrated that all fungi showed positive siderophore production, but only A. pseudopiperis can produce indole-3-acetic acid. All fungi were able to solubilize insoluble phosphate minerals [Ca3(PO4)2 and FePO4] by producing phosphatase enzymes and organic acids (oxalic, tartaric, and succinic acids). These three fungal species were grown at a water activity ranging from 0.837 to 0.998, pH values ranging from 4 to 9, temperatures between 4 and 40 °C, and 16-17% NaCl in order to evaluate their drought, pH, temperature, and salt tolerances, respectively. Moreover, the results indicated that A. pseudopiperis and A. pseudotubingensis were able to tolerate commercial insecticides (methomyl and propargite) at the recommended dosages for field application. The viability of each fungal strain in the inoculum was higher than 50% at 4 and 20 °C after 3 months of storage. Subsequently, all fungi were characterized as plant-growth-promoting strains by improving the root inductions of cassava (Manihot esculenta Crantz) and sugarcane (Saccharum officinarum L.) stem cuttings in greenhouse experiments. No symptoms of plant disease were observed with any of the treatments involving fungal inoculation and control. The cassava and sugarcane stem cuttings inoculated with fungal strains and supplemented with Ca3(PO4)2 exhibited significantly increased root lengths, shoot and root dry biomasses, chlorophyll concentrations, and cellular inorganic phosphate contents. Therefore, the application of these phosphate-solubilizing fungi is regarded as a new frontier in the induction of roots and the promotion of growth in plants.
Collapse
Affiliation(s)
- Surapong Khuna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (J.K.); (S.S.); (S.L.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Prajapati P, Yadav M, Nishad JH, Gautam VS, Kharwar RN. Salt tolerant fungal endophytes alleviate the growth and yield of saline-affected wheat genotype PBW-343. Microbiol Res 2023; 278:127514. [PMID: 39491974 DOI: 10.1016/j.micres.2023.127514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2024]
Abstract
The purpose of this work was to assess how salt-tolerant wheat endophytic fungi promoted the growth of salt-sensitive wheat after inoculation. The endophytic fungal assemblages from salt-tolerant wheat genotypes (KRL-213, KRL-210 and KRL-19) and from salt-sensitive wheat genotype (PBW-343) were characterized, identified and determined for the current study. Of the fifty fungal isolates collected from both the salt-tolerant and the salt-sensitive wheat genotypes, 8 isolates recovered from salt-tolerant varieties were found to be resistant at high salt concentrations. These 8 isolates were characterized through several biochemical tests, such as plant growth promoting assay, extracellular enzymatic assay, carbohydrate utilization assay, antagonism versus plants pathogens and capacity to promote wheat seedlings (pot experiments). All tests revealed the positive results for 4 fungal strains (K13TR/150, K19TR/200, K-19TL/150 and K-19TL/200). These 4 fungi were identified as Aspergillus medius (K19TR/200), Cladosporium parahalotolerant (K13TR/150), Aspergillus versicolor (K19TL/150) and Aspergillus nishimurae (K19TL/200) through 18 S rDNA sequencing. Out of these, C. parahalotolerant and A. medius showed the synergistic effect with each other, so these 2 isolates were used in further experiments. These 2 isolates were involved in increasing the root-shoot length, proline and MDA contents. SEM and fluorescence microscopy were used to detect endophytic fungal colonization in the root of seedlings. C. parahalotolerant and A. medius heavily colonized the roots and it was noticed on the 21st day of the growth phase. These findings imply that fungal isolates have the potential to confer stress tolerance to their respective hosts and may enhance the agricultural production in the future, especially considering the changes in climate.
Collapse
Affiliation(s)
- Priyanka Prajapati
- Mycopathology and Microbial Technology Laboratory, CAS in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Monika Yadav
- Mycopathology and Microbial Technology Laboratory, CAS in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Jay Hind Nishad
- Mycopathology and Microbial Technology Laboratory, CAS in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Veer Singh Gautam
- Mycopathology and Microbial Technology Laboratory, CAS in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ravindra Nath Kharwar
- Mycopathology and Microbial Technology Laboratory, CAS in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|